PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado."

Transcripción

1 1

2

3 PROBABILIDAD EXPERIMENTOS Al fijar las condiciones iniciales para un experimento se da lugar a dos tipos de situaciones: a) Experimentos determinísticos: se conoce el resultado. Por ejemplo: si suelto un lápiz se cae. b) Experimentos aleatorios: no se puede predecir el resultado. Por ejemplo: elegir un día de la semana para ir al cine. ESPACIO MUESTRAL (S) ó ( E ) Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado. Espacio muestral: S = { 1;;3;4;5;6} Cualquier subconjunto de puntos muestrales se llama suceso: en el ejemplo anterior podríamos definir los siguientes sucesos: A = {obtención de cara par }= { ;4;6} B = {obtención de números menores que tres}= {1;} C = {obtención de cara impar}= {1;3;5} SUCESOS MUTUAMENTE EXCLUYENTES Dos sucesos A y B incluidos en un espacio muestral S son mutuamente excluyentes cuando no pueden ocurrir simultáneamente. Es decir A y B mutuamente excluyentes si y solo si A B = Por ejemplo: En el tiro del dado los sucesos A y C son mutuamente excluyentes. 3

4 PROBABILIDAD DEFINICION CLASICA DE LAPLACE Dado un experimento aleatorio con resultados equiprobables y un suceso A incluido en él, la probabilidad de que ocurra el suceso A se define como P (A) = numero de casos favorables del suceso A numero de casos posibles del experimento Supongamos que nuestro experimento es el lanzamiento de un dado. Los resultados posibles son : 1;;3;4;5 y 6. Si el suceso A es la aparición de número par: P (A) = 3 6 = 1 DEFINICION AXIOMÁTICA DE PROBABILIDAD Dado el experimento, S su espacio muestral asociado, A y B sucesos cualquiera del mismo, se verifica: I) 0 P (A) 1 II) P (S) = 1 III) Si A y B son sucesos que se excluyen mutuamente (no pueden ocurrir juntos, es decir A B = ), entonces P(A B) = P(A) + P(B) CONSECUENCIAS I) P( ) = 0 II) P (A ) = 1 - P(A); siendo A = S - A, el suceso complementario SUCESOS INDEPENDIENTES Es decir que dos sucesos son independientes si la ocurrencia de uno de ellos no influye en la ocurrencia del otro. P(A B) = P(A). P(B) Los sucesos A y B; son, A B ; definidos en un espacio muestral S. 4

5 PRÁCTICA 1- PROBABILIDAD 1-. Definir si los siguientes son experimentos aleatorios ó determinísticos: a. Se arrojan dos monedas y un dado b. Se elige un Licenciado en Administración Hotelera de una lista para ingresar a trabajar a un determinado hotel. -.Determine si cada uno de los siguientes conjuntos de eventos son mutuamente excluyentes: a. De un grupo de estudiantes se elige aleatoriamente un individuo: la persona elegida es mujer, la persona elegida es hombre. b. Un estudiante es seleccionado aleatoriamente de la Universidad de Belgrano, la persona elegida es hombre, o es mayor de 1 años. 3-. Se arrojan dos monedas. i) Defina el espacio muestral. ii) calcular la probabilidad de obtener: a. Exactamente una cara b. Una cara y una seca c. Dos caras d. 3 caras Rta: a) 0.5 b)0.5 c)0.5 d)0 4-. En una encuesta entre estudiantes para Administración Hotelera se obtuvieron los siguientes datos acerca de el principal motivo para ingresar a la institución donde está matriculado. Motivo de la solicitud Sexo I II Masculino 5 0 Femenino 35 0 Siendo I: Calidad de la Institución y II : Costo o comodidad 5

6 Si se selecciona un archivo aleatoriamente, determine las probabilidades de que el individuo seleccionado a. Sea de sexo femenino b. La calidad de la Institución sea el principal motivo de su elección. Rta a) 0.55 b) El siguiente cuadro resume la experiencia docente y la preparación profesional de los profesores de una universidad pública. Experiencia Docente Preparación Menos de Profesional 5 Años o Más Inferior al grado de maestría Grado de maestría o superior Sea A el evento de que un profesor, seleccionado aleatoriamente, tenga grado inferior a la maestría, y sea B el profesor tiene menos de 5 años de experiencia. Determine: a. P(A B) b. P(A B) c.p( B ) VARIABLE ALEATORIA Algunas definiciones Variable aleatoria: descripción numérica del resultado de un experimento aleatorio. Variable aleatoria discreta: es aquella variable que puede asumir una cantidad finita de resultados posibles o, una cantidad infinita numerable. Variable aleatoria continua: es aquella variable que puede asumir cualquier valor de un intervalo o de un conjunto de intervalos de números reales. Función de probabilidad: regla que asigna probabilidades a cada valor que puede tomar la variable. Función de densidad de probabilidad: función que asigna probabilidades a los intervalos de valores de una variable aleatoria continua. La probabilidad que le corresponde a un intervalo es el área sobre ese intervalo y bajo la curva representativa de la función. La función de probabilidad asigna probabilidades a cada elemento del recorrido y se debe cumplir que: 6

7 i) p ii) ( xi ) 0 p( x ) = 1 Rx i iii ) P( X = x) = f ( x) Cada probabilidad cero o más y la suma de las probabilidades en el recorrido de una variable aleatoria discreta ser 1. Función de Distribución: definida para cualquier valor x R, da la probabilidad acumulada hasta ese valor x. Esperanza o media o valor esperado de una variable aleatoria: medida de la localización central de la variable aleatoria. Cálculo de la esperanza de una variable aleatoria discreta: E ( x) = µ = xf ( x) Propiedades del valor esperado: 1-E(c)=c -E(cx)=cE(x) 3-E(X+Y)=E(X)+E(Y) 4-E(X-Y)=E(X)-E(Y) 5-E(aX+B)=aE(X)+B Varianza de una variable aleatoria: medida de variabilidad o de dispersión de una variable aleatoria. Cálculo de la varianza de una variable aleatoria discreta: Var( X ) = σ = ( x µ ) f ( x) = E( X ) E ( X ) Desviación estándar de una variable aleatoria: medida de variabilidad o de dispersión de una variable aleatoria, medida en la misma unidad que las observaciones de la variable aleatoria en cuestión. Cálculo del desvío estándar de una variable aleatoria: σ = σ = Var( X ) Propiedades de la varianza La varianza de una v.a. X es. σ = E ( X ) µ 7

8 Propiedades: 1-V(c)=0=> V(c ) = E(c )-[ E (c)] = c c = 0 -V(cx)= c V ( x) => V(c x)= [( cx) ] [ E( cx )] = E( c x ) [ ce( x) ] c E( x ) [ E( x) ] = c [ E( x ) [ E( x) ] ] c V ( x). E = - c = 3-V(aX+B)= a V ( X ) PRÁCTICA -VARIABLE ALEATORIA 1-Clasifique las siguientes variables aleatorias en discretas o continuas: a) X: la cantidad de ofertas de pasajes realizadas a buenos aires durante el mes de diciembre. b) R: Cantidad de horas de vuelo de Europa a Buenos Aires en el mes de enero. c) M: cantidad de alumnos que fuman en un curso de la carrera de probabilidad y Estadística de º año de la Facultad de Ciencias Económicas en la Lic. en Administración Hotelera. de la Universidad de Belgrano. d) Y: número de horas de televisión utilizadas en un determinado hotel De Mar de las Pampas en el salón principal durante el mes de enero. -Diga cuál de las siguientes funciones es una función de probabilidad. Justifique su respuesta, explicando también porqué rechaza a las otras dos. Y p 1 (y) P (y) P 3 (y) En la siguiente tabla se dan las distribuciones de probabilidad de los valores con los que califican su satisfacción en el trabajo los empleados de cierta empresa, para los cargos gerenciales y, para los cargos jerárquicos, no gerenciales. Las calificaciones van desde 1-muy insatisfecho hasta 5-muy satisfecho. Calificación Cargos gerenciales Cargos jerárquicos a) Tabule las funciones de distribución de las dos variables en estudio. b) Cuál es la probabilidad de que un empleado con cargo gerencial exprese su satisfacción en el trabajo con una calificación de por lo menos 4? 8

9 c) Cuál es la probabilidad de que un empleado con cargo jerárquico, no gerencial, esté muy satisfecho en su trabajo?. d) Calcule la calificación media para los empleados con cargos gerenciales y, la calificación media, para los empleados con cargos jerárquicos, no gerenciales. e) Calcule la varianza y desvío estándar para los empleados con cargos gerenciales y, también para los empleados con cargos jerárquicos, no gerenciales. f) Qué grupo de empleados expresa mayor satisfacción? 4-La siguiente tabla muestra la distribución de probabilidad de la demanda mensual de determinado producto: en una cadena hotelera Demanda Probabilidad a) Defina la variable de estudio. b) Calcule la probabilidad de que la demanda mensual sea de a los sumo 00. c) Calcular la demanda media pedida mensualmente. d) Calcular la varianza y desvío estándar de la variable. 5- Un servicio voluntario de emergencias en un determinado hotel utilizadas en un mes tiene la siguiente ley de probabilidad: y 0 1 p(y) a) Calcule la probabilidad de que se realicen exactamente una llamada de emergencia. b) El servicio le cuesta al hotel $10 cada vez que se utiliza. Encuentre la media del costo mensual. Rta: a) 0.4 b)e( c )=13 9

10 VARIABLE ALEATORIA CONTINUA (a) Distribución normal estandarizada z 1 f ( z) = e < z < π F( z) = P [ Z < z] = f ( z) ; E (Z) = 0 σ (Z) = 1 Z N ( 0, 1) (b) Distribución normal general f ( x) = b 1 e π 1 x a b < x < Sea Z = x b E(X) = a σ ( X) = b X N ( a, b ) a. La transformación de X en Z, restándole su esperanza y dividiéndola por el desvío estándar, se denomina estandarización. Se verifica que: E(Z) = 0 σ ( Z ) = 1 VARIABLE ALEATORIA NORMAL PRACTICA 1-a) Sea Z una variable aleatoria con distribución N (0,1), hallar: a1) P[Z <1] Rta a) P[Z >1] Rta a3) P[-1.5 < Z < 0.5] Rta a4) P[ Z < 0.5 ] Rta b) Sea X una variable aleatoria con distribución N (10, ), hallar: b1) P[8 < X < 1] Rta b) P[ X < 13 ] Rta El tiempo de un viaje (ida y vuelta) de los camiones que transportan las comidas para una determinada red hotelera en una carretera tienen una demoran que sigue una distribución normal de media 50 minutos y desvío 8 minutos. Cuál es la probabilidad de que la duración del viaje sea mayor a 65 minutos? 10

11 3-Cierto tipo de acumulador eléctrico perteneciente a un Hotel dura en promedio 3 años, con una desviación stándard de 0.5 años. Suponiendo que las duraciones del aparato están normalmente distribuidas, obtenga la probabilidad de que un acumulador dado dure menos de a.3 años. Rta: Durante los últimos años ha crecido el volumen de acciones negociadas en la Bolsa hotelera. El volumen diario promedio fué de 646 milllones de acciones (Barron s, enero de 003). La distribución de probabilidad del volumen diario es aproximadamente normal, con un desvío de unos 100 millones de acciones. a) Cuál es la probabilidad de que el volumen negociado sea menor de 400 millones? b) Qué porcentaje de las veces el volumen negociado es mayor de 800millones de acciones? 5.- La duración de una pintura impermeabilizante de terrazas, es una variable normal con media 4 y desvío 1. Calcular: La probabilidad de que un trabajo efectuado con esa pintura dure : a)menos de 4,5 años. b) Más de 6 años c) Entre 5 y 7 años. Rta: a) 0,6915 b) 0,08 c) 0,

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

Axiomática de la Teoría de Probabilidades

Axiomática de la Teoría de Probabilidades Axiomática de la Teoría de Probabilidades Modelos matemáticos Según el experimento Cada ejecución del experimento se denomina prueba o ensayo Determinísticos Aleatorios Conjunto de resultados posibles

Más detalles

3 PROBABILIDAD Y DISTRIBUCION NORMAL

3 PROBABILIDAD Y DISTRIBUCION NORMAL 3 PROBABILIDAD Y DISTRIBUCION NORMAL La probabilidad puede ser considerada como una teoría referente a los resultados posibles de los experimentos. Estos experimentos deben ser repetitivos; es decir poder

Más detalles

Tema 4: Variables Aleatorias

Tema 4: Variables Aleatorias Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto

Más detalles

2.3 PROPIEDADES DE LA PROBABILIDAD

2.3 PROPIEDADES DE LA PROBABILIDAD 2.3 PROPIEDADES DE LA PROBABILIDAD 1. La probabilidad es positiva y menor o igual que 1. 0 p( 1 2. La probabilidad del suceso seguro es 1. p (E) = 1 3. Si A y B son incompatibles, es decir A B = entonces:

Más detalles

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00 U.D.3: Distribuciones Discretas. La Distribución Binomial 3.1 Variable Aleatoria Discreta. Función o Distribución de Probabilidad. Variable Aleatoria: - En un experimento aleatorio, se llama variable aleatoria

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

Tema 3. Probabilidad y variables aleatorias

Tema 3. Probabilidad y variables aleatorias 1 Tema 3. Probabilidad y variables aleatorias En este tema: Probabilidad: Experimentos aleatorios, espacio muestral, sucesos. Interpretaciones de la probabilidad. Propiedades de la probabilidad. Probabilidad

Más detalles

Conceptos iniciales: Probabilidad: Experimento: Determinístico: Aleatorio: Punto muestral ó Resultado: Evento:

Conceptos iniciales: Probabilidad: Experimento: Determinístico: Aleatorio: Punto muestral ó Resultado: Evento: Probabilidad. Experimento aleatorio, espaciomuestral, variable aleatoria. Probabilidad condicional. Sucesos mutuamente excluyentes e independientes. Variable aleatoria. Esperanza y varianza de una variable

Más detalles

EXPERIMENTO ALEATORIO

EXPERIMENTO ALEATORIO EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,

Más detalles

Variables Aleatorias Discretas

Variables Aleatorias Discretas Profesor Alberto Alvaradejo Ojeda 9 de septiembre de 2015 Índice 1. Variable aleatoria 3 1.1. Discretas...................................... 3 1.2. Continuas..................................... 3 1.3.

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con

Más detalles

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando

Más detalles

Tema 3: Cálculo de Probabilidades. Métodos Estadísticos

Tema 3: Cálculo de Probabilidades. Métodos Estadísticos Tema 3: Cálculo de Probabilidades Métodos Estadísticos 2 INTRODUCCIÓN Qué es la probabilidad? Es la creencia en la ocurrencia de un evento o suceso. Ejemplos de sucesos probables: Sacar cara en una moneda.

Más detalles

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido

Más detalles

UNIDAD: GEOMETRÍA PROBABILIDADES I. Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido de veces.

UNIDAD: GEOMETRÍA PROBABILIDADES I. Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido de veces. C u r s o : Matemática º Medio Material Nº MT - UNIDAD: GEOMETRÍA PROBABILIDADES I NOCIONES ELEMENTALES Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido

Más detalles

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Teresa Pérez P DíazD Profesora de matemática tica Conceptos Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Ejemplos: E : Lanzar un dado,

Más detalles

TEMAS BIMESTRAL. Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

TEMAS BIMESTRAL. Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Profesora: Mónica Marcela Parra Zapata A continuación se presentan los temas que serán evaluados en el Bimestral de estadística del grado octavo. El grado octavo 1 presentará el bimestral el miércoles

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS El zoo binomial: las probabilidades en la distribución binomial. Tutorial 5, sección 2 X = número de éxitos al repetir n veces un experimento con probabilidaf de éxito p

Más detalles

Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i :

Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i : Teorema de Bayes(5) 75 Gráficamente, tenemos un suceso A en un espacio muestral particionado. Conocemos las probabilidades a priori o probabilidades de las partes sabiendo que ocurrió A: Teorema de Bayes(6)

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 3 PROBABILIDADES Definiciones Algunas definiciones en Probabilidades Teoría de conjuntos Espacio muestral (E) Evento o suceso Eventos mutuamente excluyentes

Más detalles

Disponible en el sitio OCW de la Universidad Nacional de Córdoba.

Disponible en el sitio OCW de la Universidad Nacional de Córdoba. OCW - UNC OpenCourseWare I UNC Curso: Estadística I U 4. Variables Aleatorias Autora: Rosanna Casini Cómo citar el material: Disponible en el sitio OCW de la Universidad Nacional de Córdoba. Casini, Rosanna

Más detalles

Tema 3. VARIABLES ALEATORIAS.

Tema 3. VARIABLES ALEATORIAS. 3..- Introducción. Tema 3. VARIABLES ALEATORIAS. Objetivo: Encontrar modelos matemáticos para el trabajo con probabilidad de sucesos. En particular, se quiere trabajar con funciones reales de variable

Más detalles

Probabilidad PROBABILIDAD

Probabilidad PROBABILIDAD PROBABILIDAD La probabilidad es un método mediante el cual se obtiene la frecuencia de un suceso determinado mediante la realización de un experimento aleatorio, del que se conocen todos los resultados

Más detalles

VARIABLES ALEATORIAS Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLES ALEATORIAS Y FUNCIÓN DE DISTRIBUCIÓN VARIABLES ALEATORIAS Y FUNCIÓN DE DISTRIBUCIÓN BIBLIOGRAFIA Walpole, Ronal E., Myres, Raymond H., Myres, Sharon L.: Probabilidad y Estadística para Ingenieros. McGraw Hill-Interamericana. Canavos G. Probabilidad

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: ESTADISTICA DE LA PROBABILIDAD DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

CAPÍTULO 6: VARIABLES ALEATORIAS

CAPÍTULO 6: VARIABLES ALEATORIAS Página 1 de 11 CAPÍTULO 6: VARIABLES ALEATORIAS En el capítulo 4, de estadística descriptiva, se estudiaron las distribuciones de frecuencias de conjuntos de datos y en el capítulo 5 se trataron los fundamentos

Más detalles

Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero

Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero Fundamentos de la Teoría de la Probabilidad Ing. Eduardo Cruz Romero www.tics-tlapa.com Teoría elemental de la probabilidad (1/3) El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos

Más detalles

Probabilidad E x p e r i m e n t o s d e t e r m i n i s t a s E j e m p l o E x p e r i m e n t o s a l e a t o r i o s a z a r E j e m p l o s

Probabilidad E x p e r i m e n t o s d e t e r m i n i s t a s E j e m p l o E x p e r i m e n t o s a l e a t o r i o s a z a r E j e m p l o s Probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Ejemplo Si dejamos caer una piedra desde una ventana sabemos, sin lugar a

Más detalles

4. CONCEPTOS BASICOS DE PROBABILIDAD

4. CONCEPTOS BASICOS DE PROBABILIDAD 4. CONCEPTOS BASICOS DE PROBABILIDAD 4.1 Introducción La probabilidad y la estadística son, sin duda, las ramas de las Matemáticas que están en mayor auge en este siglo, y tienen una tremenda aplicabilidad

Más detalles

GUIA PARA PRIMER EXAMEN PARCIAL DE PROBABILIDAD Y ESTADISTICA

GUIA PARA PRIMER EXAMEN PARCIAL DE PROBABILIDAD Y ESTADISTICA GUIA PARA PRIMER EXAMEN PARCIAL DE PROBABILIDAD Y ESTADISTICA Deberán apoyarse en los ejercicios resueltos en clase marcados con el símbolo E Los conceptos de probabilidad, fenómeno aleatorio, determinista,

Más detalles

Guía Matemática NM 4: Probabilidades

Guía Matemática NM 4: Probabilidades Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof.: Ximena Gallegos H. Guía Matemática NM : Probabilidades Nombre: Curso: Aprendizaje Esperado: Determinar la probabilidad de ocurrencia de

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

9 APROXIMACIONES DE LA BINOMIAL

9 APROXIMACIONES DE LA BINOMIAL 9 APROXIMACIONES DE LA BINOMIAL 1 Una variable aleatoria sigue una distribución binomial B(n = 1000; p = 0,003). Mediante la aproximación por una distribución de POISSON, calcular P(X = 2), P(X 3) y P(X

Más detalles

6. VARIABLES ALEATORIAS

6. VARIABLES ALEATORIAS 6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta

Más detalles

Probabilidad 2º curso de Bachillerato Ciencias Sociales

Probabilidad 2º curso de Bachillerato Ciencias Sociales PROBABILIDAD Índice: 1. Experimentos aleatorios. Espacio muestral----------------------------------------------------- 2 2. Suceso aleatorio ------------------------------------------------------------------------------------

Más detalles

U D PROBABILIDAD 2º BACHILLERATO Col. LA PRESENTACIÓN PROBABILIDAD

U D PROBABILIDAD 2º BACHILLERATO Col. LA PRESENTACIÓN PROBABILIDAD PROBABILIDAD 0. DEFINICIONES PREVIAS 1. DISTINTAS CONCEPCIONES DE PROBABILIDAD a. Definición Clásica b. Definición Frecuentista 2. DEFINICIÓN AXIOMÁTICA DE PROBABILIDAD a. Espacio Muestral b. Suceso Aleatorio

Más detalles

Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Ejemplo Si dejamos caer una piedra desde una ventana sabemos, sin lugar a

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

Son los experimentos de los que podemos predecir el resultado antes de que se realicen. PROBABILIDAD Definición de probabilidad La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.

Más detalles

Teoría de la decisión

Teoría de la decisión Unidad 7.. Definiciones. Muestreo aleatorio y estadístico. Estadísticos importantes. Técnica de muestreo. Transformación integral Muestreo: selección de un subconjunto de una población ) Representativo

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades

Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades Experimentos deterministas Probabilidad Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Si dejamos caer una piedra desde una ventana sabemos, sin lugar a dudas,

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

CAPÍTULO IV CONCEPTOS BÁSICOS DE PROBABILIDAD

CAPÍTULO IV CONCEPTOS BÁSICOS DE PROBABILIDAD CAPÍTULO IV CONCEPTOS BÁSICOS DE PROBABILIDAD Por qué hablar de Probabilidad En el primer capítulo cuando definimos algunos conceptos hablamos de población y de muestra, dijimos que cuando trabajamos con

Más detalles

TEOREMA DEL LÍMITE CENTRAL

TEOREMA DEL LÍMITE CENTRAL Material de clase n 2 Domingo 13 Junio TEOREMA DEL LÍMITE CENTRAL A medida que n se vuelve más grande, la distribución de las medias muestrales se aproxima a una distribución normal con una media x = µ

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

LECTURA 10: NOCIONES DE PROBABILIDAD (PARTE I) DEFINICIONES BÁSICAS DE PROBABILIDAD. PROBABILIDAD Y ENFOQUES DE PROBABILIDAD

LECTURA 10: NOCIONES DE PROBABILIDAD (PARTE I) DEFINICIONES BÁSICAS DE PROBABILIDAD. PROBABILIDAD Y ENFOQUES DE PROBABILIDAD LECTURA 10: NOCIONES DE PROBABILIDAD (PARTE I) DEFINICIONES BÁSICAS DE PROBABILIDAD. PROBABILIDAD Y ENFOQUES DE PROBABILIDAD TEMA 20: DEFINICIONES BASICAS DE PROBABILIDAD 1. EXPERIMENTO Un experimento

Más detalles

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos PROBABILIDAD CÁLCULO DE PROBABILIDADES Experimentos y sucesos Experimento aleatorio Es aquel cuyo resultado depende del azar, es decir no se puede predecir de antemano qué resultado se va a obtener aunque

Más detalles

TEMA 6: CÁLCULO DE PROBABILIDADES. 6.1 Concepto de suceso aleatorio. Terminología y definiciones.

TEMA 6: CÁLCULO DE PROBABILIDADES. 6.1 Concepto de suceso aleatorio. Terminología y definiciones. I.E.S. Salvador Serrano Dto. de Matemáticas (Daniel García) 2º CCSS 202 / TEMA : CÁLCULO DE PROBABILIDADES.. Concepto de suceso aleatorio. Terminología y definiciones. La probabilidad se centra en los

Más detalles

Tiempo completo Tiempo parcial Total Mujeres Hombres Total

Tiempo completo Tiempo parcial Total Mujeres Hombres Total ASIGNACION DE ROBABILIDAD A manera de introducción al tema analicemos las diferencias entre eventos mutuamente excluyentes, no mutuamente excluyentes, dependientes e independientes. Ejemplo : En un grupo

Más detalles

Ejercicios resueltos

Ejercicios resueltos UNIDAD TEMÁTICA 4 Lección 4 VARIABLE ALEATORIA ENUNCIADO 1 Se hacen n lanzamientos independientes con un dado ordinario de 6 lados. Calcula la probabilidad que: (a El mayor de los números obtenidos sea

Más detalles

II. PROBABILIDAD MTRO. FRANCISCO JAVIER CRUZ ARIZA

II. PROBABILIDAD MTRO. FRANCISCO JAVIER CRUZ ARIZA II. PROBABILIDAD MTRO. FRANCISCO JAVIER CRUZ ARIZA PROBABILIDAD Es una medida numérica que refleja la posibilidad de que ocurra un evento. Permite obtener conclusiones sobre las características de la variable

Más detalles

Unidad II: Fundamentos de la teoría de probabilidad

Unidad II: Fundamentos de la teoría de probabilidad Unidad II: Fundamentos de la teoría de probabilidad 2.1 Teoría elemental de probabilidad El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos que se denominan aleatorios, cuya característica

Más detalles

Probabilidad. Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido de veces.

Probabilidad. Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido de veces. Probabilidad Definiciones Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido de veces. Experimento aleatorio: Es aquel experimento cuyo resultado no

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS VERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS Grupo

Más detalles

Tema 5. Variables Aleatorias

Tema 5. Variables Aleatorias Tema 5. Variables Aleatorias Presentación y Objetivos. En este tema se estudia el concepto básico de Variable Aleatoria así como diversas funciones fundamentales en su desarrollo. Es un concepto clave,

Más detalles

Sesión 2: Teoría de Probabilidad

Sesión 2: Teoría de Probabilidad Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad las reglas mátemáticas de la probabilidad no son simplemente reglas para calcular frecuencias de variables aleatorias;

Más detalles

TEMA 3: Probabilidad. Modelos. Probabilidad

TEMA 3: Probabilidad. Modelos. Probabilidad TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un

Más detalles

Variables aleatorias continuas, TCL y Esperanza Condicional

Variables aleatorias continuas, TCL y Esperanza Condicional Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

Juan Carlos Colonia DISTRIBUCIONES MUESTRALES

Juan Carlos Colonia DISTRIBUCIONES MUESTRALES Juan Carlos Colonia DISTRIBUCIONES MUESTRALES POBLACIÓN Es el conjunto de individuos u objetos que poseen alguna característica común observable y de la cual se desea obtener información. El número de

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES PARTE I POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS V ERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS

Más detalles

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También

Más detalles

Variables aleatorias unidimensionales

Variables aleatorias unidimensionales Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen

Más detalles

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades.

Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades. Guía N 16 Nombre: Fecha: Contenidos: Probabilidad Clásica Objetivos: Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades. NOCIONES ELEMENTALES Experimento:

Más detalles

Probabilidades. Gerardo Arroyo Brenes

Probabilidades. Gerardo Arroyo Brenes Probabilidades Gerardo Arroyo Brenes Teoría de las Probabilidades Experimento: Es toda acción o proceso que produce resultados bien definidos. Ejemplos: Experimento Resultado: Lanzar una moneda Cara o

Más detalles

Distribuciones Discretas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 6.

Distribuciones Discretas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 6. Distribuciones Discretas de Probabilidad 1 Contenido 1. Variables Aleatorias. 2. Distribuciones Discretas de Probabilidad. 3. Valor Esperado y Varianza. Propiedades. 4. Distribución de Probabilidad Binomial.

Más detalles

Distribuciones de probabilidad discretas

Distribuciones de probabilidad discretas Lind, Douglas; William G. Marchal y Samuel A. Wathen (2012). Estadística aplicada a los negocios y la economía, 15 ed., McGraw Hill, China. Distribuciones de probabilidad discretas Capítulo 6 FVela/ McGraw-Hill/Irwin

Más detalles

Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7.

Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7. Distribuciones Continuas de Probabilidad 1 Contenido 1. Ejemplo. 2. Diferencia entre variables aleatorias discretas y continuas. 3. Diferencia de f(x) entre variables aleatorias discretas y continuas.

Más detalles

HOJA DE TRABAJO UNIDAD 3

HOJA DE TRABAJO UNIDAD 3 HOJA DE TRABAJO UNIDAD 3 1. Defina que es probabilidad Es el estudio de experimentos aleatorios o libres de determinación, el resultado es al azar. Se refiere al estudio de la aleatoriedad y a la incertidumbre.

Más detalles

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población),

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

Variables Aleatorias. Introducción

Variables Aleatorias. Introducción Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,

Más detalles

Tema 9: Probabilidad: Definiciones

Tema 9: Probabilidad: Definiciones Tema 9: Probabilidad: Definiciones 1. CONCEPTOS Experimento aleatorio Suceso Espacio muestral 2. DEFINICIÓN DE PROBBILIDD Enfoque clásico Enfoque frecuencialista 3. PROBBILIDD CONDICIONL 4. TEOREMS BÁSICOS

Más detalles

Tema 3: Cálculo de Probabilidades Unidad 1: Introducción y Concepto

Tema 3: Cálculo de Probabilidades Unidad 1: Introducción y Concepto Estadística Tema 3: Cálculo de Probabilidades Unidad 1: Introducción y Concepto Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Octubre 2010 Contenidos...............................................................

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA

ANALISIS DE FRECUENCIA EN HIDROLOGIA ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos

Más detalles

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido Tema 4 Variables aleatorias En este tema se introduce el concepto de variable aleatoria y se estudian los distintos tipos de variables aleatorias a un nivel muy general, lo que nos permitirá manejar los

Más detalles

Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

Son los experimentos de los que podemos predecir el resultado antes de que se realicen. PROBABILIDAD La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio. Experimentos deterministas

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

Estadística Aplicada

Estadística Aplicada Estadística Aplicada Universidad Maimónides 2016 Clase 3. Algunos Conceptos de Probabilidad Pedro Elosegui Conceptos Probabilísticos - Probabilidad: valor entre cero y uno (inclusive) que describe la posibilidad

Más detalles

Distribuciones de Probabilidad

Distribuciones de Probabilidad Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica

Más detalles

TALLER 3 ESTADISTICA I

TALLER 3 ESTADISTICA I TALLER 3 ESTADISTICA I Profesor: Giovany Babativa 1. Un experimento consiste en lanzar un par de dados corrientes. Sea la variable aleatoria X la suma de los dos números. a. Determine el espacio muestral

Más detalles

Probabilidad del suceso imposible

Probabilidad del suceso imposible º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I TEMA 6.- ESTADÍSTICA INFERENCIAL PROFESOR: RAFAEL NÚÑEZ -------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

La probabilidad es el estudio de los experimentos aleatorios o no determinísticos.

La probabilidad es el estudio de los experimentos aleatorios o no determinísticos. II.- Probabilidad 1 Definición de Probabilidad La probabilidad es el estudio de los experimentos aleatorios o no determinísticos. 2 Experimentos deterministicos y aleatorios Experimentos determinísticos.

Más detalles

Apuntes de Probabilidad para 2º E.S.O

Apuntes de Probabilidad para 2º E.S.O Apuntes de Probabilidad para 2º E.S.O 1. Experimentos aleatorios Existen fenómenos donde la concurrencia de unas circunstancias fijas no permite anticipar cuál será el efecto producido. Por ejemplo, si

Más detalles

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1 Distribuciones de Probabilidad para Variables Aleatorias Discretas Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento Centro Estadística,

Más detalles

HABLEMOS DE PROBABILIDAD JORGE MARTINEZ COLLANTES PROFESOR PENSIONADO UNIVERSIDAD NACIONAL

HABLEMOS DE PROBABILIDAD JORGE MARTINEZ COLLANTES PROFESOR PENSIONADO UNIVERSIDAD NACIONAL HABLEMOS DE PROBABILIDAD JORGE MARTINEZ COLLANTES PROFESOR PENSIONADO UNIVERSIDAD NACIONAL Ganaremos el partido con Bolivia el próximo viernes? Cree que vamos a ganar el partido con Bolivia el viernes?

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

Teoría de la decisión

Teoría de la decisión Unidad 7.. Definiciones. Muestreo aleatorio y estadístico. Estadísticos importantes. Técnica de muestreo. Transformación integral 1 Muestreo: selección de un subconjunto de una población 1) Representativo

Más detalles

Distribuciones Paramétricas

Distribuciones Paramétricas Distribuciones Paramétricas Objetivo: Estudiar el uso de formas matemáticas particulares, llamadas distribuciones paramétricas, para representar las variaciones en los datos. Una distribución paramétrica

Más detalles