Matemáticas Discretas Grafos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas Discretas Grafos"

Transcripción

1 Coorinión Cinis Computionls - INAOE Mtmátis Disrts Grfos Cursos Propéutios 200 Cinis Computionls INAOE Grfos Dfiniions básis Cminos y ilos Grfos ulrinos y hmiltoninos Isomorfismo Árbols Dr. Luis Villsñor Pin 2 Gnrlis Los grfos son struturs isrts ompusts por vértis y rists qu ontn prs sos puntos Son un bstrión útil pr molr situions tls omo: Rs omputors Estruturs tos Rs létris y tlfónis Ciruitos létrios Sistms rrtros Sistms tom isions Qué son? Un grfo s un rprsntión gráfi objtos y rlions binris ntr éstos. Un grfo s rprsnt gráfimnt por mio puntos o pquños írulos, qu signn vértis, y líns qu los unn, qu rprsntn ls rists

2 Grfos irigios Un grfo irigio/ígrfo G = (V, E) onsist un onjunto vértis V (o noos) y un onjunto rists (o ros) irigis E V V Not qu ls rists (, b) tin un irión; un vérti funt/orign y un vérti trminl b V={,2,,4,5} E = {(,), (2,), (,4), (4,), (5,), (5,4), (5,5)} Grfos simpls Un grfo no irigio G = (V,E) sin uto lzos s nomin grfo simpl E s trmin por un rlión simétri, ntirflxiv, tl qu {,b} E si y solo si (,b) R V={,2,,4,5} E = {{,2}, {,}, {2,}, {,4}, {,5}, {4,5}, {2,5}} Dfiniions Si ={u, v} s un rist ntons s i qu los vértis u y v son los xtrmos Un vérti y un rist son inints si l vérti s uno los xtrmos l rist Dos vértis u y v son ynts si {u, v} s un rist Rprsntión grfos simpls {,2} 2 {,} {2,} {2,4} {,4} 4 {,4} 7 8 2

3 Ejmplo: vértis Cuáls vértis son ynts? 2 Ejmplo: vértis Cuáls vértis son ynts? s ynt 2 y 2 s ynt y s ynt y 2 4 no s ynt vérti lguno Ejmplo: vértis Cuáls rists son inints?, 2, 4 son inints 2 2 s inint on, 2, 4 s inint on 2, 4 no s inint on ningun rist Dfiniions Dos rists sois l mismo pr vértis son rists prlls Un rist inint n un sólo vérti s un ilo Un vérti qu no s inint n ningun rist s un vérti islo

4 Mtriz yni Form rprsntr grfos y rlions Ejmplo Cuál s l mtriz yni l grfo l figur? Tipos grfos Un grfo no irigio sin uto lzos (un ilo sobr un mismo vérti) s nomin grfo simpl Un grfo on rists prlls (os rists pun ontr un mismo pr vértis) s llmo multigrfo Un grfo omplto s un grfo on ros ntr pr vértis Un grfo pso s qul qu tin psos soios noos y/o ros Grfos ompltos S llm grfo omplto (o liqu) n n vértis un grfo on n vértis v, v 2,, v n on pr too y b qu prtnn V xist un rist {, b}. Est grfo s not K n, y l númro rists K n s n(n-)/2 C pr vértis istintos omprt un rist 5 6 4

5 Gros El gro un vérti v un grfo s l númro g(v) rists inints on él. Si g(v) = 0 s i qu v s un vérti islo En grfos irigios xistn gro ntr y gro sli L susión gros un grfo s obtin ornno n form rint los gros toos los vértis Ejmplo: gro un vérti Cuál s gro l vérti 2? g(2)=+++2+2= Ejmplo: gro un vérti Cuáls son los gro ntr y sli los vértis l grfo mostro n l figur? g - () = 0 g - (2) = g - () = 4 g + () = 2 g + (2) = g + () = 2 2 Torm Eulr En too grfo G=(V, E) s umpl v V g( v) 2 E Ls rists s pun ontr onsirno unts son inints n vérti y sumno toos los númros obtnios. Pro si rist rsult ont os vs, un pr uno sus xtrmos

6 Ejmplos Si un grfo tin un susión gros 0,,, 2,, 4, Cuánts rists tin? ( )/2=5 Exist lgún grfo uy susión gros s,, 2,, 4? No, o qu = s impr Subgrfos Si G = (V, E) y H = (W, F) son grfos tls qu W V y F E, ntons s i qu H s un subgrfo G y qu G s un suprgrfo H. C rist F s inint on vértis n W 2 22 Ejmplo b b b Cminos y ilos Un mino longitu n s un grfo G = (V, E) on V = {v 0, v, v 2,..., v n } y E = {v 0 v, v v 2,..., v n v n }. Un mino s rprsnt no l susión v 0 v... v n sus vértis, ntnino qu ls rists son v 0 v, v v 2,..., v n v n. A v 0 y v n s ls llm xtrmos l mino. Cmino: Suni orn vértis y ros. Cmino rro: Cuyo iniio s igul qu l finl Cmino simpl: Sin rists rptis. Cmino lmntl: Sin vértis rptios

7 Cminos y ilos Ejmplo Un ilo longitu n s un grfo G = (V,E) orn n, on vértis v 0, v,..., v n y rists v 0 v, v v 2,..., v n 2 v n y v n v 0. Cilo: Cmino lmntl rro. Ciruito: Cmino simpl rro. Cmino -b {, b},{b, }, {, }, {, }, {, }, {, b} Cmino b f b f Cmino f {f, }, {, }, {, }, {, } Cmino b f Distni y iámtro L istni (u, v) ntr os vértis u y v un grfo s l longitu l mino más orto u v. Si no xist ningún mino u v ntons (u, v) =. El iámtro G s l máxim istni ntr os vértis G y s not im(g). Grfo onxo Un grfo G = (V, E) s onxo si pr ulquir pr vértis u, y v xist un mino n G qu los un, s ir un mino on xtrmos u y v. Equivlntmnt, G s onxo si im(g) <

8 Ejmplo S G=(V, E) un grfo no irigio n V={, b,,,, f, g} El grfo no s onxo Los os sub-grfos son onxos b g Problms Cminos y Ciruitos Enontrr si xist un mino ntr un pr vértis Enontrr l mino más orto ntr un pr vértis Enontrr mino qu ps por rist un sol vz (Eulr) Enontrr iruito qu ps por vérti un sol vz (Hmilton) f 29 0 Cmino simpl Eulr Un mino simpl Eulr s un mino qu ps por tos ls rists xtmnt un sol vz. Los punts Königsbrg Cmino simpl Eulr Torm: () Si un grfo onxo tin más os noos on gro impr, no xist un mino simpl Eulr. (b) Si xistn xtmnt os vértis gro impr, l grfo s pu rorrr, pro l mino h mpzr n uno los os vértis gro impr y trminr n l otro. () Si no xistn vértis gro impr, l grfo s pu rorrr. El mino simpr srá rro. 2 8

9 Cilo Hmilton Sn G=(V, E) un grfo, s i qu G tin un ilo Hmilton si xist un ilo n G qu inluy toos y uno los vértis n V. Ejmplo En l grfo l figur, ls rists {, b}, {b, }, {, f}, {f, }, {, }, {, g}, {g, h} y {h, i} proun un mino Hmilton b f g h i 4 Exist soluión? Do un grfo ulquir, s posibl trminr si pos un mino Hmiltonino? Es un prgunt muy pri l Eulr, sí qu s sprrí un rspust l mismo tipo Sin mbrgo, s trt un problm NP-omplto (Torm Gry-Johnson) Cliqu Grfo omplto: pr noos istintos son ynts Conjunto omplto: subonjunto W G qu inu un subgrfo omplto G Cliqu: subonjunto noos qu s onjunto omplto y máximo (no hy un onjunto omplto qu lo ontng) 5 8 9

10 Cliqus Cliqus 9 40 Cliqus Isomorfismo Dos grfos G={V, E} y G ={V, E } son isomorfos si xist un biyión f: V V qu prsrv l rlión yni, s ir tl qu {u, v} E si y solo si {f(u), f(v)} E Dos grfos isomorfos bn tnr l mismo númro vértis. Tos ls propis qu s rivn l rlión yni bn sr iéntis: mismo númro rists y susions gro

11 Ejmplo: isomorfismo Ejmplo Los os grfos rprsntos n l figur son isomorfos: b w x y z Grfos isomorfos 4 44 Ejmplo Tipos isomorfismos b f x v u y w z Isomorfismo grfos orrsponni : ntr os grfos G - G2 Isomorfismo subgrfos orrsponni ntr un grfo G y los subgrfos G2 Dobl isomorfismo subgrfos orrsponni ntr los subgrfos G y los subgrfos G2 Grfos no isomorfos 45 46

12 Búsqu on bktrking Búsqu on bktrking S onstruy un árbol n l qu ls trytoris orrsponn isomorfismos: s tom un noo G y tos sus posibls orrsponnis n G2 (primr nivl) s busn los noos ontos los noos orrsponints l primr nivl (sguno nivl) s ontinu hst qu no xistn orrsponnis ls trytoris n l árbol orrsponn isomorfismos subgrfos ntr G y G2 A/A A/A B/B C/C C/C Árbols Un árbol s un grfo onxo y ílio S G(V, E) un grfo. Ls firmions siguints son quivlnts: G s un árbol Dos vértis ulsquir G stán unios por un únio mino G s onxo pro si s l quit ulquir rist j srlo G s ílio pro si s l grg un rist ulquir j srlo Ejmplo El grfo l izquir s un árbol pro l l rh no b f b f

13 Árbol Hoj o noo trminl: gro Noo rm o intrno: gro > Árbol Propis: Hy un trytori simpl ntr pr noos El númro noos = númro rists + Un árbol on 2 o más noos tin l mnos os noos hoj 5 52 Árbols irigios Árbol (nrizo): un noo on gro ntr 0 (ríz) y los más on Poliárbol (árbol irigio): s vulv un árbol l quitr ls irions Árbol irigio Trminologí: Ríz: vérti on gro ntr 0 Hoj: vérti on gro sli 0 Intrno: vérti on gro sli > 0 Hijo / Pr: rist A B, A s pr B y B s hijo A Hrmnos: tinn l mismo pr Dsnints / Asnints: mino A B, A s snint B y B s snint A 5 54

14 Árbol irigio Trminologí: Subárbol on ríz A: A y toos sus snints Subárbol A: subárbol on hijo A omo ríz Árbol orno: rists slints noo tiqutos on ntros Árbol ri m : noo rm (ríz o intrno) tin máximo m hijos. Es rgulr si /u tin xtmnt m hijos (binrio m =2) Torms Si G=(V, E) s un grfo no irigio, ntons G s onto si y sólo si G tin un árbol obrtur En ulquir árbol T=(V, E), V = E Rorrios n árbols S T un árbol on ríz r. Si t no tin otros vértis, ntons ls ríz onstituy los rorrio pr-orr y postorr. Si V >, sn T, T 2,, T k los subárbols T izquir rh: El rorrio n pr-orr T primro visit r y spués rorr los vértis T n pr-orr, lugo los vértis T 2 n pr-orr y sí susivmnt hst qu los vértis T k son rorrios n prorn El rorrio post-orr T rorr n post-orr los subárbols T, T 2,.., T k y spués visit l ríz Ejmplos Rorrio n pr-orr:, 2, 5,, 2,, 4,, 6, 7, 4, 8, 9, 0, 5, 6, 7 Rorrio n post-orr:, 2,, 4, 5, 2, 6, 7,, 8, 9,5, 6, 7, 0, 4,

15 Rorrio in-orr Ejmplo S T=(V, E) un árbol binrio on ríz n l vérti r: r Si V =, ntons l vérti r onstituy l rorrio in-orr T Si V >, s T L y T R los subárbols izquiro y rho T. El rorrio in-orr T visit primro los vértis T L in-orr y spués visit l ríz y finlmnt rorr in-orr los vértis T R f p j q h t n u Rorrio n orn: f,, p, j, q,,, r, h,, t, n, u

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos lr I 1r. utrimstr 013 Práti 1 - onjuntos Si s un suonjunto un onjunto rrnil V, notrmos por l omplmnto rspto V. Por onvnión, si x s un númro rl positivo, x not l únio númro rl positivo uyo uro s x. 1. Do

Más detalles

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris): Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso,

Más detalles

ESTRUCTURAS DE DATOS GRAFOS 173

ESTRUCTURAS DE DATOS GRAFOS 173 ESTRUCTURAS DE DATOS GRAFOS 173 TEMA 5 5.1. DEFINICIÓN DE GRAFO Grfos. A mnuo, uno s osrv l r ruts érs un pís intrs osrvr ómo ir un iu otr por ls ruts posils. En onsuni, s tin os onjuntos ojtos istintos:

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

SECOS EN BAJA TENSIÓN PARA USO GENERAL

SECOS EN BAJA TENSIÓN PARA USO GENERAL SEOS EN J TENSIÓN PR USO GENERL TRNSMGNE s un mprs i l lorión Trnsformors pr l inustri ltróni: trnsformors uio, pulso y ontrol, Trnsformors sos j tnsión, lstos pr iluminión y utotrnsformors pr quipos protión

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015 Primr Pril Introuión l Invstigión Oprions Fh: 5 myo 2015 INDICACIONES Durión l pril: 3 hrs. Esriir ls hojs un solo lo. No s prmit l uso mtril ni lulor. Numrr ls hojs. Ponr nomr y númro éul n l ángulo suprior

Más detalles

FORMACIÓN CONTINUA MODALIDAD: DISTANCIA CUESTIONARIO DE SATISFACCIÓN FINAL PARA PARTICIPANTES

FORMACIÓN CONTINUA MODALIDAD: DISTANCIA CUESTIONARIO DE SATISFACCIÓN FINAL PARA PARTICIPANTES FORMIÓN ONTINU MOLI: ISTNI Nombre del entro IÓN FORMTIV LOLI PROVINI ódigo de GRUPO FORM LT MIROSOFT OFFI 2007: NIVL SUPRIOR 2 7 5 / 0 0 1 LT USTIONRIO STISFIÓN FINL PR PRTIIPNTS l objetivo de este cuestionario

Más detalles

Enigmas 1: Productos envasados que se venden en los comercios

Enigmas 1: Productos envasados que se venden en los comercios Trr Cilo Primri Enigms 1: Proutos nvsos qu s vnn n los omrios Es un mtril vntjoso pr lrgr proutos qu s tinn qu protgr los ryos solrs Es un mtril qu onsrv muy in los limntos y s fáil oloión y lmnminto por

Más detalles

Nudo Es todo punto de la red en que concurren tres o más conductores.

Nudo Es todo punto de la red en que concurren tres o más conductores. ltos 1 4.12-1 Rgls Kirhho Un iruito, n gnrl, stá ormo por un onjunto rsistnis y gnrors..m. ontos un orm ritrri, mnr qu no simpr s posil sustituir los onjuntos rsistnis por sus quivlnts, y qu no suln str

Más detalles

También pueden descomponerse los segmentos en función de los vectores posición lo que da como resultado:

También pueden descomponerse los segmentos en función de los vectores posición lo que da como resultado: EL ÁLGER GEÉTRI EL ESPI Y TIEP 87 6. GEETRÍ EL TETRER Volmn l ttrro El volmn n ttrro s l st prt l volmn l prllpípo q lo ontin (vés igr 5.6). El volmn l prllpípo s igl l proto trior trs rists lsqir no prlls.

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

CUESTIONARIO DIAGNÓSTICO DE SITUACIÓN DEL DESARROLLO DE COMPETENCIAS EN LA RED/REA

CUESTIONARIO DIAGNÓSTICO DE SITUACIÓN DEL DESARROLLO DE COMPETENCIAS EN LA RED/REA CUESTIONARIO DIAGNÓSTICO DE SITUACIÓN DEL DESARROLLO DE COMPETENCIAS EN LA RED/REA El srrll mptnis prv un mbi psitiv rimint nstnt trnsfrmins qu mprn ls prsns, ls lírs, ls rgnizins y ls sis. Ls intgrnts

Más detalles

Soluciones a los ejercicios, problemas y cuestiones Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios, problemas y cuestiones Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Soluions los jriios prolms ustions Uni. El onjunto los númros rls Mtmátis plis ls inis Soils I NÚMEROS RIONLES E IRRIONLES. Hll l númro iml qu orrspon un ls siguints rions. omnt l rsulto: 0 00 0 0000 00

Más detalles

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS.

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Prof., Enriqu Matus Nivs Doctorano n Eucación Matmática. FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Una función ponncial s aqulla n la qu la variabl stá n l ponnt. Algunos - - -5 jmplos funcions

Más detalles

RELACIONES DE ORDEN. ÁLGEBRAS DE BOOLE., y 2. ) x 1.. Comprueba que es de equivalencia y calcula el conjunto cociente.

RELACIONES DE ORDEN. ÁLGEBRAS DE BOOLE., y 2. ) x 1.. Comprueba que es de equivalencia y calcula el conjunto cociente. Dprmno Mmái Apli. Ful Inormái. UPM. Rlions quivlni RELACIONES DE ORDEN. ÁLGEBRAS DE BOOLE ) En l onjuno N N s in l rlión (, ) R (, ). =.. Avrigu si s quivlni y si lo s lul l ls l lmno [(4, 8)]. 2) En l

Más detalles

Capítulo 1. Definición : Es la figura geométrica determinada por la reunión de dos rayos no alineados que tienen el mismo origen.

Capítulo 1. Definición : Es la figura geométrica determinada por la reunión de dos rayos no alineados que tienen el mismo origen. pítulo 1 ÁNGULS finiión : Es l figur gométri trmin por l runión os ryos no linos qu tinn l mismo orign. Elmntos 1. Vérti :. Los : y Notión : * Ángulo : ), Ô * i l ángulo : m ) =. gión Intrior un ángulo

Más detalles

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias Oprions Unitris Máni d Fluidos Prdids por Friión Sundris EIQ 303 Primr Smstr 0 Prosor: Luis V A Ls prdids por riión (prdids d r) s pudn lsiir n dos tipos: ) ) Prdids Sundris Prdids Primris. Ls prdids d

Más detalles

Encuesta sobre el uso de Internet para búsquedas de información sobre Salud Mental

Encuesta sobre el uso de Internet para búsquedas de información sobre Salud Mental Enust sor l uso Intrnt pr úsqus inormión sor Slu Mntl Inormión gnrl 1. E: 2. Génro: Msulino (Pon un ruz n lo qu pro) Fmnino 3. Cuál s tu ár stuio? Art, Ltrs, Estuios Soils Cini, Ingnirí, Ténios Emprsrils,

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -

Más detalles

GRAMATICAS REGULARES - EXPRESIONES REGULARES

GRAMATICAS REGULARES - EXPRESIONES REGULARES CIENCIAS DE LA COMPUTACION I 29 GRAMATICAS REGULARES - EXPRESIONES REGULARES Grmátis Ls grmátis formles definen un lenguje desriiendo ómo se pueden generr ls dens del lenguje. Un grmáti forml es un udrupl

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

Problemas puertas lógicas, karnaugh...

Problemas puertas lógicas, karnaugh... ENUNCIADOS Prolems puerts lógis, krnugh... 1. Psr el iruito formo por puerts lógis o iruito ominionl funión lógi o Boolen 2. Psr puerts lógis ls funiones oolens siguientes : F= AB'C'+D'+A+B'' F = A+B'+C'D''+A'+B''CA+B''

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

perspectiva cónica & proyección de sombras

perspectiva cónica & proyección de sombras expresión grái rojs mioletti primer ño este ossier es sólo un poyo el ontenio pso en lses, pensno en reorzr oneptos que pueen ser un tnto omplejos e explir... y más, e entener. l prouni on l que se ps

Más detalles

Una nueva visión en la seguridad de las máquinas: pren ISO 13 849-1 Partes de los sistemas de mando relativas a la seguridad

Una nueva visión en la seguridad de las máquinas: pren ISO 13 849-1 Partes de los sistemas de mando relativas a la seguridad Un nuv visión n l sguri ls máquins: pren ISO 13 849-1 Prts los sistms mno rltivs l sguri Punto iniil pr vlorr l ruión l risgo S 1 jo Nivl fiili rqurio PL r P P2 F2 P1 S2 F1 P1 P2 S1 Ctgory B 1 2 3 4 Un

Más detalles

4.2. Ejemplo de aplicación.

4.2. Ejemplo de aplicación. HEB 8 Dsarrollo dl método d los dsplazamintos 45 4.. Ejmplo d aplicación. ontinuando con l pórtico dscrito n l apartado (3.8), s van a calcular las cargas y, postriormnt, sguir con l cálculo matricial,

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

Taller 3: material previo

Taller 3: material previo Tller 3: mteril previo El tller 3 está dedido los diferentes modelos de empquetmiento ompto de esfers y prender ontr átomos dentro de l eld unidd. Por ello, ntes de l orrespondiente sesión (dís 20, 21

Más detalles

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1.

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1. TRNSRMINES GEMÉTRIS Poyctivi y homogfí Homologí y fini Invsión TEM4 IUJ GEMÉTRI bjtivos y ointcions mtoológics Est Tm tin como objtivos intouci l lumno n los conocimintos poyctivi, homogfí, homologí, fini

Más detalles

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio?

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio? FÍSICA GENERAL I Ls d Nwton Cuáls d los siguints objtos stán n quilibrio? Un globo d hlio qu s ntin n l ir sin sndr ni dsndr b Un bol lnzd hi rrib undo s nuntr n su punto ás lto Un j qu s dsliz sin friión

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

El Verdadero Cálculo de la Devaluación

El Verdadero Cálculo de la Devaluación El vrdadro alulo d la Dvaluaión El Vrdadro Cálulo d la Dvaluaión Riardo Botro G. rbgstoks@hotmail.om Casi a diario nontramos n la prnsa onómia inormaión omo sta El día d ayr la tasa rprsntativa dl mrado

Más detalles

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest

Más detalles

ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA

ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA SÓLO PARA USO OFICIAL 1. Complto l Comité Dirión Tléono 3. 2. Orgnizión Ptroinor (si s pli) l Cnito y Pusto qu Soliit

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía Ecuación para cirquitons n ínas d transmisión con carga éctrica discrta. K. J. Candía Dpartamnto d Ectrónica, Univrsidad d Tarapacá, Arica, Chi Emai: kchandia@uta.c Rsumn En sta Chara s mustra un mcanismo

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

0. x = 0. 0. x = b. x Solución:

0. x = 0. 0. x = b. x Solución: TEMA : ECUACIONES E INECUACIONES CONCEPTO DE ECUACIÓN Un uión s un igul lgri qu l umpln tn solo un sri númros qu son ls soluions. Es ir, Ls soluions un uión son los vlors qu n tomr ls ltrs pr qu l igul

Más detalles

ÀQUƒ ES LA TOPOLOGêA?

ÀQUƒ ES LA TOPOLOGêA? Qué s l Topologí? ÀQUƒ ES LA TOPOLOGêA? Mrt Mho Stdlr (*)... Admás d qull prt d l gomtrí qu trt sor ntidds y qu s h studido n todo timpo on grn ddiión, l primro qu mnionó l otr prt, hst ntons dsonoid,

Más detalles

Seguridad en máquinas

Seguridad en máquinas Obsrvación d la norma UNE EN ISO 11161 rlacionada con los rquisitos qu db cumplir la structura d dispositivos d protcción Los dispositivos d protcción dbrán disñars y construirs d acurdo con la norma ISO

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 UNIVERSIDADES ÚBLICAS DE LA COMUNIDAD DE MADRID RUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 20-202 MATERIA: TECNOLOGÍA INDUSTRIAL II MODELO INSTRUCCIONES Y CRITERIOS GENERALES

Más detalles

1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2)

1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2) Mr l opión que ontiene el vetor fijo definido por los puntos A(3,4) y B(-2,-5). AA AB = (-1,1) AA AB = (5,9) AB = (-5,-9) AB = (1,-1) Mr tods ls opiones que definen el vetor fijo AB = (-2,1). AA A(-5,-3)

Más detalles

1. Indicar el lenguaje aceptado por los siguientes autómatas :

1. Indicar el lenguaje aceptado por los siguientes autómatas : Universidd Rey Jun Crlos Grdo en Ingenierí de Computdores Máquins Secuenciles, Autómts y Lengujes Hoj de Prolems: Autómts Finitos Determinists Nivel del ejercicio : ( ) ásico, ( ) medio, ( ) vnzdo.. Indicr

Más detalles

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión

Más detalles

Ecuaciones de Poisson y Laplace

Ecuaciones de Poisson y Laplace Elctc y Mgntsmo / Elctostátc Dfncón Los conuctos n lctostátc. mpo un cg puntul. plccons l Ly Guss Intgls supposcón. Potncl lctostátco Dfncón Intptcón. Intgls supposcón. Ecucons Posson y Lplc. oncons Intfs.oncons

Más detalles

DEPARTAMENTO DE INFORMATICA UDES

DEPARTAMENTO DE INFORMATICA UDES PRTMNTO INFORMTI US URSOS SIOS INFORMTI SMSTR - 2016 IRIIO SMSTR OIO NOMR L URSO RQUISITOS RUPOS HORRIOS ISPONILS STUINTS TOS LS LS FULTS PRIMR SMSTR PRIMR SMSTR (INII L 9 SMN LS) 8221 INFORMTI SI * WINOWS

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

SISTEMAS BINARIO, DE IMAL, OCTAL y HEXADECIMAL. b) 100112. e) 101012

SISTEMAS BINARIO, DE IMAL, OCTAL y HEXADECIMAL. b) 100112. e) 101012 Carrra: Tcnicatura Suprir n Análisis y Prgramación d Sistmas Asignatura: Arquitctura d cmputadras Prfsr: Ing. Gabril Duprut Trabaj práctic Nr. : Sistmas d numración y códigs A l larg d st práctic cnstruirá

Más detalles

EMPRÉSTITOS DEPARTAMENTO DE MATEMÁTICA ECONÓMICA, FINANCIERA Y ACTUARIAL. División de Ciencias Jurídicas, Económicas y Sociales

EMPRÉSTITOS DEPARTAMENTO DE MATEMÁTICA ECONÓMICA, FINANCIERA Y ACTUARIAL. División de Ciencias Jurídicas, Económicas y Sociales MPRÉSTITOS Carn Badía, Hortènsia Fontanals, Mrch Galisto, José Mª Lcina, Mª Angls Pons, Trsa Prixns, Dídac Raírz, F. Javir Sarrasí y Anna Mª Sucarrats DPARTAMNTO D MATMÁTICA CONÓMICA, FINANCIRA Y ACTUARIAL

Más detalles

Enfrentando Comportamientos Difíciles Usando el Sistema de Guía

Enfrentando Comportamientos Difíciles Usando el Sistema de Guía Enfrntando Comportamintos Difícils Usando l Sistma d Guía R s o u r c & R f r r a l H a n d o u t Agrsión Obsrvación - Prguntas Trata la niña d hacr contacto d una manra inapropiada? Está tratando d sr

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

GRUPOS Y SEMIGRUPOS. Unidad 5

GRUPOS Y SEMIGRUPOS. Unidad 5 GRUPOS Y SEMIGRUPOS En sta unidad studiarmos algunas d las structuras algbraicas qu s utilizan n Toría d Codificación y también n l studio d máquinas d stado finito, como por jmplo los autómatas qu vrmos

Más detalles

VI. JUSTICIA. i. - JUSTICIA CRIMINAL.

VI. JUSTICIA. i. - JUSTICIA CRIMINAL. VI. JUSTICIA. i. - JUSTICIA CRIMINAL. Utilizando la d la Administración d Justicia n l o años di 883, i 884 y i 885, publicada por l Ministrio d Graci a minto d lo prvnido n cl Ral dcrto d 18 d marzo d

Más detalles

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1 Tem 0 L ompeteni monopolísti el oligopolio Miroeonomí Intermedi 0/. Tem 0 . Crterístis de l ompeteni monopolísti. El equilirio de l ompeteni monopolísti orto plzo lrgo plzo. Crterístis del oligopolio 4.

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

Determinización: Construcción de Safra

Determinización: Construcción de Safra Determinizción: Construcción de Sfr Ddo: Autómt de Büchi A = (Q,Σ,Q 0,δ,F) Supong que Q = {q 1,...,q n }. Vmos construir un utómt de Rin determinist B tl que L ω (A) = L ω (B), donde B está compuesto por:

Más detalles

Rack & Building Systems

Rack & Building Systems Rack & Building Systms La Emprsa RBS a nacido por la sinrgia y complmnto qu xist ntr sus productos y por l afán constant d nustra mprsa por difrnciars d la comptncia. En l ára d almacnaj industrial RBS

Más detalles

Solución de los Problemas del Capítulo 3

Solución de los Problemas del Capítulo 3 1. Slccion l rspust corrct y xpliqu por qué. Un lctrón qu tin un n= y m= ) Db tnr un m s =+1/ b) Pud tnr un l= c) Pud tnr un l=, ó 1 d) Db tnr un l=1 L rspust corrct s l c) porqu si n=, los posibls vlors

Más detalles

INSTITUTO COSTARRICENSE DE ELECTRICIDAD UEN PRODUCCIÓN ELECTRICA CENTRO DE GENERACIÓN TORO

INSTITUTO COSTARRICENSE DE ELECTRICIDAD UEN PRODUCCIÓN ELECTRICA CENTRO DE GENERACIÓN TORO S MQUINS XISTNT INSTITUTO OSTRRINS LTRII UN PROUIÓN LTRI NTRO GNRIÓN TORO "mpliación sala de operadores entro de Producción ariblanco" R 0.00-0.0 R 0.00-0.0 TLRO TLRO TLRO ROTULO T UTO TLRO UTO UTO OMOR

Más detalles

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

RELACIONES GEOMÉTRICAS APUNTES REALIZADOS POR ANTONIO CUESTA

RELACIONES GEOMÉTRICAS APUNTES REALIZADOS POR ANTONIO CUESTA RLIONS GOMÉTRIS PUNTS RLIZOS POR NTONIO UST I G U L FINIIÓN: Se dice que dos figurs plns son igules, cundo sus ldos y ángulos están dispuestos de modo que, superponiendo un sobre otr, coinciden exctmente

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones. Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

TEMAS 3-6: EJERCICIOS ADICIONALES

TEMAS 3-6: EJERCICIOS ADICIONALES TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s

Más detalles

zeus TECNOLOGÍA DE MOLETEADO --> MOLETAS --> MOLETEADORES POR DEFORMACIÓN --> MOLETEADORES POR CORTE --> HERRAMIENTAS ESPECIALES

zeus TECNOLOGÍA DE MOLETEADO --> MOLETAS --> MOLETEADORES POR DEFORMACIÓN --> MOLETEADORES POR CORTE --> HERRAMIENTAS ESPECIALES zus TECNOLOGÍA DE MOLETEADO --> MOLETAS --> MOLETEADORES POR DEFORMACIÓN --> MOLETEADORES POR CORTE --> HERRAMIENTAS ESPECIALES TECNOLOGÍA. AsisTENCiA TéCNiCA. PAsióN. BiENVENiDOs A HOMMEL + KELLEr PräzisiONswErKzEuGE!

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar: IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y

Más detalles

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción ral d variabl ral s una aplicación d un subconjunto D d los númros rals n un subconjunto I d los númros

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

INDICACIONES. En estas preguntas tienes que unir con una línea las palabras o las oraciones con su dibujo. Une con una línea la palabra con su dibujo.

INDICACIONES. En estas preguntas tienes que unir con una línea las palabras o las oraciones con su dibujo. Une con una línea la palabra con su dibujo. 1 2 En ests pregunts tienes que unir on un líne ls plrs o ls oriones on su diujo. Ejemplo: INDICACIONES Une on un líne l plr on su diujo... gllo. Une on un líne l orión on su diujo.. Julio orre... 3 AHORA

Más detalles

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow Tem IV Eleión Soil El Análisis Positivo, Votión, Teorem de My, Teorem de Imposiilidd de Arrow 1 Qué hiimos en el tem nterior? Repso Estudimos ul deerí ser l ominión de reursos (en un eonomí de intermio)

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

AX = B. X es la matriz columna de las variables:

AX = B. X es la matriz columna de las variables: ÁLGEBR MTRICIL PRO. MRIEL SRMIENTO SESIÓN 9: METODO DE ELIMINCIÓN GUSSIN En est sesión, resolvemos sistems de ecuciones lineles de orden x y x. Pr ello escribimos el sistem en término de mtrices, por ejemplo:

Más detalles

McAfee Firewall Enterprise Control Center

McAfee Firewall Enterprise Control Center Guí e iniio rápio Revisión A MAfee Firewll Enterprise Control Center versión 5.3.2 Est guí e iniio rápio proporion instruiones e lto nivel pr l instlión e MAfee Firewll Enterprise Control Center. 1 Comproión

Más detalles

TAMAÑO DE LA MUESTRA

TAMAÑO DE LA MUESTRA Rv. Epidm. Md. Prv. (003), : 8-4 TAMAÑO DE LA MUESTRA Enric Matu, Jordi Casal CRSA. Cntr d Rcrca n Sanitat Animal / Dp. Sanitat i Anatomia Animals, Univrsitat Autònoma d Barclona, 0893-Bllatrra, Barclona

Más detalles

CATÁLOGO PRODUCTOS. Visítenos en TUBOS Y PERFILES GALVATEC. GEOMETRÍA CALIDAD DISPONIBILIDAD SERVICIO

CATÁLOGO PRODUCTOS. Visítenos en  TUBOS Y PERFILES GALVATEC.  GEOMETRÍA CALIDAD DISPONIBILIDAD SERVICIO X x2 A F X B x1 Visítnos n www.vh.l CATÁLOGO PRODUCTOS GEOMETRÍA CALIDAD DISPONIBILIDAD SERVICIO GEOMETRÍA CALIDAD DISPONIBILIDAD SERVICIO GEOMETRÍA Dimnsión Tnmos gomtrí xt TUBOS Ovlidd Rtngulridd Nustros

Más detalles

MODEL: 11224552V / MODELO: 11224552V WOODEN WALL STORAGE CABINET WITH 3 BINS AND 4 HOOKS CABINETE DE ALMACENAMIENTO DE MADERA CON 3 CAJONES Y 4

MODEL: 11224552V / MODELO: 11224552V WOODEN WALL STORAGE CABINET WITH 3 BINS AND 4 HOOKS CABINETE DE ALMACENAMIENTO DE MADERA CON 3 CAJONES Y 4 MODEL: 11224552V / MODELO: 11224552V WOODEN WALL STORAGE ABINET WITH 3 BINS AND 4 HOOKS ABINETE DE ALMAENAMIENTO DE MADERA ON 3 AJONES Y 4 GANHOS NO A B D E F G H f g h PARTS LIST PARTES Y AESORIOS PARTS

Más detalles

SOLUCIONES DIGITALES PARA ANUNCIANTES MIEMBRO DE

SOLUCIONES DIGITALES PARA ANUNCIANTES MIEMBRO DE SOLUIONES IGITALES PARA ANUNIANTES MIEMBRO E El Intertive Avertising Bureu (IAB), funo nivel internionl en 996, es el prinipl orgnismo representtivo e l inustri puliitri online en el muno. omo soiión internionl

Más detalles

MOVIMIENTO VIBRATORIO Y VELOCIDAD TÉRMICA DE LOS ELECTRONES

MOVIMIENTO VIBRATORIO Y VELOCIDAD TÉRMICA DE LOS ELECTRONES MOVIMINO VIRAORIO Y VLOCIDAD ÉRMICA D LOS LCRONS M. Lópz-Garía Obsrando dsd l undo arosópio l oiinto d una partíula y spífiant l d un ltrón, podríaos onluir qu tin un oiinto rtilíno o uro y qu la traytoria

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ Mnguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE GLICI SEPTIEMRE - (RESUELTOS por ntonio Mnguino) MTEMÁTICS II Timpo máimo: hors minutos El lumno db rspondr solmnt los jrcicios d un d ls opcions

Más detalles

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal.

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal. Universidd de Jén Deprtmento de Mtemátics (Áre de Álgebr) Curso 2014/15 PRÁCTICA Nº 12 APICACIONES INEAES: Núcleo e Imgen de un plicción linel. Con est práctic se pretende revisr l definición de plicción

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

AUTOMATAS FINITOS Traductores

AUTOMATAS FINITOS Traductores Universidd de Morón Lengujes Formles y Autómts AUTOMATAS FINITOS Trductores AUTOMATAS FINITOS Un utómt finito es un modelo mtemático que posee entrds y slids. Un utomát finito recie los elementos tester

Más detalles

TEOREMA DE PITÁGORAS

TEOREMA DE PITÁGORAS TEOREMA DE PITÁGORAS 1.- El ldo de un udrdo mide 10 m. Cuánto mide su digonl? (Aproxim el resultdo hst ls déims)..- Ls digonles de un romo miden 15 m y 17 m, respetivmente. Cuánto miden sus ldos? (Aproxim

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO OPERCIONES UNIRIS PROF PEDRO VRGS UNEFM DPO ENERGÉIC Disponibl n: wwwopracionswordprsscom INERCMBIDORES UBO Y CRCZ: NÁLISIS ÉRMICO NÁLISIS ÉRMICO, CONSIDERCIONES GENERLES nts d scribir las cuacions qu

Más detalles

3.-AMORTIZACIÓN DE PRÉSTAMOS

3.-AMORTIZACIÓN DE PRÉSTAMOS .-MORTZÓ DE PRÉSTMOS..- Un prson solc un présmo. pr morzrlo n ños mn nuls consns pospgbls y un po nrés fcvo nul l 8%. Trnscurros ños y hbno bono l nul l rcr ño, curn uor y cror pr morzr l u pnn ls sguns

Más detalles