Complementos de Análisis. Año 2016

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Complementos de Análisis. Año 2016"

Transcripción

1 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver dichas ecuaciones. 1. La curva en el plano α(t) = (x(t), y(t)) es tal que si se traza desde un punto arbitrario de la curva una recta ortogonal a ella, ésta se intersecta con el eje x formando un segmento de longitud constante. (Sugerencia: parametrizar con parámetro longitud de arco.) 2. La ley de enfriamento de Newton dice: La razón a la cual un objeto se enfría (o se calienta si el entorno es más caliente) es proporcional a la diferencia entre las temperaturas del objeto y su entorno.(temperatura del entorno: 10, constante de proporción: 2, temperatura inicial del objeto: 20.) 3. Una curva de ecuación y = f(x) pasa por el origen. Dibujando lineas paralelas a los ejes coordenados desde cualquier punto de la curva se forma un rectángulo con dos lados sobre los ejes. La curva divide a cada uno de los rectángulos en dos regiones A yb, una de las cuales tiene área λ veces igual al área de la otra. 2 Métodos para resolver EDOs de primer orden. 2.1 Técnicas analíticas para EDOs de primer orden. 1. Encontrar la solución general de las siguientes ecuaciones diferenciales: (a) (3 x)y (2 + y) = 0, (b) e x y + e y = En los problemas siguientes, resolver las ecuaciones diferenciales sujetas a la condición inicial que se indica: (a) (1 x)dy y 2 dx = 0, y(1/2) = 1, (b) x 3 sin(y)y = 2, y π 2, x Las ecuaciones del tipo y = f(ax + by + c), con a, by c constantes dadas, se reducen a ecuaciones de variables separables mediante el cambio de variables z = ax + by + c. Resolver: (a) y = 1 x y + 1, (b) y = x + 2y 8 2x + 4y 1. 1

2 4. Se dice que una función f(x, y) es homogénea positiva de grado n si f(λx, λy) = λ n f(x, y), λ R +. Las ecuaciones de la forma y = f(x, y), con f una función homogónea de cualquier grado o las ecuaciones de la forma P (x, y)dx + Q(x, y)dy = 0, con P y Q funciones homogéneas del mismo grado se denominan ecuaciones diferenciales homogéneas. Demostrar que estas ecuaciones se reducen a ecuaciones de variables separables mediante la sustitución y(x) = xv(x) y resolver: (a) ydx + xdy = x 2 + y 2 dx, (b) y = xy x 2 y Las ecuaciones de la forma y ax + by + c = f se convierten en ecuaciones homogéneas dx + ey + f mediante el cambio de variables u = ax + by + c y v = dx + ey + f. Resolver: (x + y + 2) + (x y + 4)y = Resolver mediante el método de factor integrante las siguientes EDOs lineales: (a) y 2 y x + 1 = ex (1 + x) 2, (b) (1 + x 2 )y + y = arctan(x), (c) y 2y x + 1 = (x + 1)3, pasando por (x0, yo) = (0, 1). 7. Las ecuaciones diferenciales del tipo y + P (x)y = Q(x)y α, se denominan ecuaciones de Bernoulli. Probar que, para α 1, el cambio de variable z = y 1 α reduce la ecuación de Bernoulli a una ecuación lineal en z(x). Resolver (a) xy + y = y 2 log x, (b) y 4y x = x y. 8. Verificar que las siguientes ecuaciones son ecuaciones diferenciales exactas y resolver: (a) (2x y)dx + (3y 2 x)dy = 0, (b) (e y + 1) cos x dx + e y sin x dy = Verificar que los factores integrantes 1 x 2 y 1 x 2 +y 2 transforman la ecuación diferencial xdy ydx = 0 en una ecuación exacta. Resolver la ecuación resultante en ambos casos. Coinciden las soluciones encontradas? 10. Resolver las siguientes EDOs lineales mediante el método de coeficientes indeterminados: (a) y = xy, y(0) = 1. (b) y = 2 y, y(1) = 1. x (c) y + 3y = 1, y(0) = 0. 1 x 2

3 2.2 Método de aproximaciones sucesivas. Teorema de existencia y unicidad. Técnicas cualitativas para EDOs de primer orden. 1. Considerar el problema de valores iniciales y + y = 2e x, y(0) = 1. (a) Hallar la solución exacta y(x) de este problema. (b) Aplicar el método de aproximaciones sucesivas y determinar explícitamente y n (x). (c) Demostrar que y n (x) y(x) para todo x. 2. Resolver mediante el método de aproximaciones sucesivas la siguiente ecuación y = y, y(1) = 1. x 3. Encontrar una función f(x) que satisfaga la siguiente ecuación integral: f(x) = 1 + x 2 t 2 f(t)dt. 4. El lema de Gronwall establece que si una función continua y no negativa g satisface la inecuación t g(t) A + B g(s)ds, t (t 0 α, t 0 + β), t 0 donde A y B son positivos, entonces g(t) Ae B t t 0, t (t 0 α, t 0 + β). Usando el lema de Gronwall probar que si x 1 yx 2 son soluciones de x = f(t, x), x i (t 0 ) = a i, i = 1, 2, donde f C 1 (R 2 ), entonces para todo intervalo I conteniendo a t 0, existe L > 0 tal que x 1 (t) x 2 (t) a 1 a 2 e L t t 0, t I. 5. Hallar la familia de funciones y = y(x) solución de y = f(x, y) : (a) f(x, y) = 2, (b) f(x, y) = y(1 y). En cada caso graficar el campo de pendientes (sobre el plano se dibujan algunos segmentos pequeños centrados en (x,y) con pendiente f(x, y) ) y algunas de las soluciones encontradas. Qué se observa? 6. Sea f : R 2 R una función continua. Por el teorema de Peano, existe solución local (posible- mente no única) al problema (x) = f(x, y) y(x 0 ) = y 0 Supongamos que vale d dx ( y(x) 2 ) K + y(x) 2 en cualquier intervalo donde la solución está definida. Probar que existe una solución global para la ecuación. 7. Dadas las siguientes ecuaciones diferenciales: { 2y (i) y = x x 0 0 x = 0, (ii) y = y (a) Hallar sus curvas integrales y representarlas en un gráfico. (b) En qué puntos no se satisfacen las condiciones del Teorema de existencia y unicidad de Picard? Qué se observa en estos puntos? 3

4 2.3 EDOs lineales. Aspectos generales. a(t) b(t) 1. (a) Sea Ψ(t) = una matriz de coeficientes derivables y sea P = c(t) d(t) una función vectorial. Probar que (ΨP) (t) = Ψ (t)p(t) + Ψ(t)P (t). (b) Consideremos el sistema de EDOs lineal homogéneo de ecuaciones diferenciales Y (t) = Ψ(t)Y(t). (1) Supongamos que la función matricial M satisface la ecuación M (t) = Ψ(t)M(t). ( p1 (t) p 2 (t) Probar que Y(t) = M(t)C, donde C es un vector arbitrario, es solución del sistema (1). Qué otra propiedad se le debe pedir a la matriz M para asegurar que todas las soluciones de (1) han sido halladas? (c) Consideremos ahora el sistema de EDOs lineal no homogéneo de ecuaciones diferenciales Y (t) = Ψ(t)Y(t) + F(t). Supongamos que la función matricial M satisface M (t) = Ψ(t)M(t), y det M(t) 0. Probar que Y(t) = M(t)C(t), donde C(t) es una función vectorial apropiada, es solución del sistema. Encontrar un sistema de ecuaciones diferenciales que cumpla C(t). ) 2. Verificar que d dt e t te t 1 2 t2 e t 0 e t te t 0 0 e t = e t te t 1 2 t2 e t 0 e t te t 0 0 e t Usar lo anterior para encontrar soluciones de y 1 = y 1 + y 2 y 2 = y 2 + y 3 y 3 = y 3 3. Sea L(y) = y + a 1 (x)y + a 2 (x)y, donde a j, j = 1, 2, son funciones continuas en un intervalo I y sean φ 1 y φ 2 soluciones de L(y) = 0. Sea W [φ 1, φ 2 ] el wronskiano asociado a φ 1 y φ 2 : φ1 (x) φ W [φ 1, φ 2 ](x) = 2 (x) φ 1 (x) φ 2 (x) (a) Probar que (b) Probar que W [φ 1, φ 2 ] (x) = a 1 (x)w [φ 1, φ 2 ](x). W [φ 1, φ 2 ](x) = e x x 0 a 1 (t)dt W [φ1, φ 2 ](x 0 ), x 0 I. (c) Probar que φ 1 y φ 2 son linealmente independientes en I sii W [φ 1, φ 2 ](x) 0 x I. 4. Resolver la ecuación diferencial x 3 y xy +y = 0, sabiendo que y 1 (x) = x es una solución. Sugerencia: usar el ejercicio anterior. 4

5 5. Hallar una solución general de xy + 2y + xy = 0 (a) Haciendo el cambio de variables u = xy. (b) Usando que y 1 = cos x es una solución en x > 0. x 6. Si (1 + x) 2 es una solución de la ecuación y + p(x)y + q(x)y = 0 y el Wronskiano de cualesquiera dos soluciones de la ecuación es constante, encontrar la solución general de y + p(x)y + q(x)y = 1 + x. 2.4 Métodos analíticos para EDOs lineales a coeficientes constantes. 1. Encontrar la solución general para los siguientes sistemas: (a) 1 = y 1 y 2 = y 1 + y 2 (b) 1 = y 1 5y 2 y 2 = 2y 1 y 2 (c) 1 = 3y 1 2y 2 y 2 = 2y 1 y 2 y 1 = y 1 + 2y 2 + 3y 3 (d) y 2 = 4y 2 + 3y 3 y 3 = 2y 3 2. Si Φ(t) es una matriz fundamental del sistema Y = AY, mostrar que el problema de valores iniciales Y = AY, Y(t 0 ) = Y 0 tiene como solución a Y(t) = Φ(t)Φ(t 0 ) 1 Y 0. Usar este resultado para resolver Y = Y, Y(1) = Hallar la solución del sistema 1 (t) = 2y 1 (t) + y 2 (t) + 1 y 2 (t) = 3y 2(t) + t 2 4. Encontrar todas las soluciones de las siguientes ecuaciones: (a) y = 4y, (b) y 3y + 2y = 0, (c) y + 10y = 0, y(0) = π, y (0) = π 2. (d) y 10y + 25y = 0, y(0) = 1, y (0) = Utilizando el método de variación de los parámetros resolver y + y = 1 cos x. 6. Sea L(y) = y + ay + by, con a y b constantes. Sea p(r) = r 2 + ar + b su polinomio característico. (a) Si α no es una raíz de p (p(α) 0), probar que el problema L(y) = e αx tiene una solución de la forma y = Be αx. (b) Si α es una raíz simple de p (p(α) = 0 y p (α) 0), probar que el problema L(y) = e αx tiene una solución de la forma y = Bxe αx. (c) Y si α es una raíz doble de p? 5

6 En general se puede probar que el problema L(y) = P n (x)e αx, con P n un polinomio de grado n, tiene una solución de la forma x s Q n (x)e αx, donde Q n es un polinomio de grado n y s es la multiplicidad de la raíz α ( s = 0 si α no es raíz de p). 7. Usando el resultado anterior encontrar las soluciones generales de las siguientes ecuaciones (a) y 5y + 6y = e x, (b) y + 4y + 3y = 1 + e 3x, (c) y + y = xe x. 6

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

7 Ecuación diferencial ordinaria de orden n con coecientes constantes

7 Ecuación diferencial ordinaria de orden n con coecientes constantes 7 Ecuación diferencial ordinaria de orden n con coecientes constantes La ecuación lineal homogénea de coecientes constantes de orden n es: donde a 1, a 2,..., a n son constantes. a n y (n) + a n 1 y n

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

1 Ecuaciones diferenciales

1 Ecuaciones diferenciales 1 Ecuaciones diferenciales La solución a una ecuación algebraica es un número, o un conjunto de números que satisfacen la ecuación. Por ejemplo las soluciónes de x 2 4x + 3 = 0 son x 0 = 1 y x 1 = 3. Las

Más detalles

Soluciones de la ecuación diferencial lineal homogénea

Soluciones de la ecuación diferencial lineal homogénea Ecuaciones diferenciales lineales de orden superior Ampliación de matemáticas urso 2008-2009 Ecuación diferencial lineal de orden n (x dn y n + P (x dn y n + + P n (x dy + P n(xy = G(x ( donde, P,...,

Más detalles

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.)

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) 1.1 Definiciones Se llama ecuación diferencial a toda ecuación que contiene las derivadas de una o más variables dependientes respecto

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x

Más detalles

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior L. A. Núñez * Centro de Astrofísica Teórica, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

x = t 3 (x t) 2 + x t. (1)

x = t 3 (x t) 2 + x t. (1) Problema 1 - Considera la siguiente ecuación de primer orden: x = t 3 (x t + x t (1 (a Comprueba que x(t = t es solución de la ecuación (b Demuestra que si x = x(t es la solución que pasa por el punto

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS LINEALES DE SEGUNDO ORDEN

ECUACIONES DIFERENCIALES ORDINARIAS LINEALES DE SEGUNDO ORDEN ECUACIONES DIFERENCIALES ORDINARIAS LINEALES DE SEGUNDO ORDEN ARIEL M. SALORT asalort@dm.uba.ar Marzo de 2016 1. Teoría general Una ecuación diferencial ordinaria lineal de segundo orden puede ser escrita

Más detalles

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular.

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. 1. Definiciones previas 1.1. Wronskiano Diremos que el Wronskiano de un conjunto

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

SISTEMAS LINEALES DE PRIMER ORDEN

SISTEMAS LINEALES DE PRIMER ORDEN CAPÍTULO 7 SISTEMAS LINEALES DE PRIMER ORDEN 7.1. INTRODUCCION Estudiaremos el sistema de n ecuaciones lineales de primer orden: x 1 = a 11 (t)x 1 +a 12 (t)x 2 +...+a 1n (t)x n +f 1 (t) x 2 = a 21 (t)x

Más detalles

1. SISTEMAS DE ECUACIONES DIFERENCIALES

1. SISTEMAS DE ECUACIONES DIFERENCIALES 1 1 SISTEMAS DE ECUACIONES DIFERENCIALES 11 SISTEMAS LINEALES DE PRIMER ORDEN Un sistema de ecuaciones diferenciales del tipo dx 1 dt a 11 tx 1 + a 1n tx n + f 1 t dx n dt a n1 tx 1 + a nn tx n + f n t

Más detalles

Integrales de línea. Teorema de Green

Integrales de línea. Teorema de Green Integrales de línea. Teorema de Green José Antonio Vallejo Departamento de Matemáticas Facultad de iencias Universidad Autónoma de San Luis Potosí email: jvallejo@fciencias.uaslp.mx 16 Noviembre 2007 1.

Más detalles

Álgebra Lineal VII: Independencia Lineal.

Álgebra Lineal VII: Independencia Lineal. Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

2.3 Ecuaciones diferenciales lineales

2.3 Ecuaciones diferenciales lineales .3 Ecuaciones diferenciales lineales 45.3 Ecuaciones diferenciales lineales Las ecuaciones diferenciales ordinarias de primer orden pueden ser lineales o no lineales. En esta sección centraremos la atención

Más detalles

Ecuaciones Diferenciales Ordinarias de Orden Superior al primero

Ecuaciones Diferenciales Ordinarias de Orden Superior al primero Tema 5 Ecuaciones Diferenciales Ordinarias de Orden Superior al primero Una ecuación diferencial ordinaria de orden n es de manera general una expresión del tipo: F (x, y, y, y,..., y (n) ) = 0 o bien,

Más detalles

1.1 El caso particular de las curvas planas.

1.1 El caso particular de las curvas planas. Chapter 1 Complementos de teoría de curvas 1.1 El caso particular de las curvas planas. Una curva en el espacio cuya torsión se anula está contenida en algún plano. Supongamos que ese plano es el z = 0,

Más detalles

Ecuaciones Diferenciales Ordinarias de Primer Orden

Ecuaciones Diferenciales Ordinarias de Primer Orden Tema 2 Ecuaciones Diferenciales Ordinarias de Primer Orden Introducción Estudiaremos en este tema varios tipos de E.D.O. de primer orden que es posible resolver de forma exacta. 2.1 Ecuaciones en variables

Más detalles

Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal

Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal Conferencia clase Al desacoplar las ecuaciones se tiene stemas de ecuaciones diferenciales lineales usando álgebra lineal Contenido. 1. stemas de ecuaciones diferenciales de primer orden. 2. Forma matricial

Más detalles

PROBLEMAS DE ECUACIONES DIFERENCIALES

PROBLEMAS DE ECUACIONES DIFERENCIALES PROBLEMAS DE ECUACIONES DIFERENCIALES Manuel Calvo CURSO 2005/06 Índice general 1. MÉTODOS ELEMENTALES DE INTEGRACIÓN 3 1.1. Ecuaciones de variables separables................ 3 1.2. Problemas de ecuaciones

Más detalles

Integrales dobles. Integrales dobles

Integrales dobles. Integrales dobles Integrales dobles Integrales iteradas b g2 (x) a g 1 (x) f(x, y) dydx ó d h2 (y) c h 1 (y) f(x, y) dxdy Los límites interiores de integración pueden ser variables respecto a la variable exterior de integración,

Más detalles

AMPLIACIÓN DE ECUACIONES DIFERENCIALES

AMPLIACIÓN DE ECUACIONES DIFERENCIALES AMPLIACIÓN DE ECUACIONES DIFERENCIALES DEPARTAMENTO DE MATEMÁTICA APLICADA FERNANDO GARCÍA CASTAÑO Curso 2011/2012 ii Índice general 1. Métodos elementales de integración 1 1.1. Introducción a las ecuaciones

Más detalles

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1)

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1) Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : Se pide: v = x yē x + x tē y (3.1) a. A qué tipo de formalismo corresponde este análisis del escurrimiento, lagrangeano o eulereano?

Más detalles

1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes)

1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes) Bloque 7. VECTORES. ECUACIONES DE LA RECTA. (En el libro Tema 9, página 159) 1. Coordenadas en el plano. 2. Definiciones: vector libre, módulo, dirección, sentido, vectores equipolentes, vector fijo, coordenadas

Más detalles

IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio opción A, modelo de año 200 [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función a maximizar A (/2)(x)(y)

Más detalles

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV 8.4. CRITERIO DE ESTAB.: METODO DE LIAPUNOV 309 8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV Consideremos el sistema autónomo dx = F (x, y) dt (8.32) dt = G(x, y), y supongamos que tiene

Más detalles

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales.

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Ecuaciones diferenciales de primer orden. Traectorias ortogonales. Muchas aplicaciones problemas de la ciencia, la ingeniería la economía se formulan en términos

Más detalles

CAMPOS: CIRCULACIÓN Y FLUJO

CAMPOS: CIRCULACIÓN Y FLUJO AMPO: IRULAIÓN Y FLUJO Dado el vector a ( x + y) i ˆ + xy ˆ j calcular su circulación a lo largo de la recta y x+ desde el punto A (, ) al B (, 2). olución: I.T.I. 99, 5, I.T.T. 2 En la trayectoria que

Más detalles

Lección 11 Ecuaciones Diferenciales de Segundo Orden. Ecuaciones de segundo orden

Lección 11 Ecuaciones Diferenciales de Segundo Orden. Ecuaciones de segundo orden Lección 11 Ecuaciones Diferenciales de Segundo Orden 1 En forma normal: Ejemplo: Ecuaciones de segundo orden x = f (t, x, x ) 2tx x + 1 x = 0 x = (x ) 2 1 2tx Casos Particulares Ecuaciones en las que no

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales José Vicente Romero Bauset jvromero@mat.upv.es Tema 2: Ecuaciones diferenciales ordinarias de orden 1 Ecuaciones diferenciales separables EDO separable Una EDO de orden 1 F (t,y,y ) se dice separable si

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

Superficies paramétricas

Superficies paramétricas SESIÓN 7 7.1 Introducción En este curso ya se han estudiando superficies S que corresponden a gráficos de funciones de dos variables con dos tipos de representaciones: Representación explícita de S, cuando

Más detalles

Ecuaciones diferenciales. Una introducción para el curso de Cálculo I y II.

Ecuaciones diferenciales. Una introducción para el curso de Cálculo I y II. Ecuaciones diferenciales. Una introducción para el curso de Cálculo I y II. Eleonora Catsigeras * 23 de julio de 2007 Notas para el curso de Cálculo II de la Facultad de Ingeniería. 1. Definición y ejemplos

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

Noviembre 2006, Versión 1.1. Ejercicio 1 Resuelve las siguientes ecuaciones diferenciales ordinarias. 1. 4y 00 + y 0 =0. 2. y 00 y 0 6y =0.

Noviembre 2006, Versión 1.1. Ejercicio 1 Resuelve las siguientes ecuaciones diferenciales ordinarias. 1. 4y 00 + y 0 =0. 2. y 00 y 0 6y =0. E.T.S. Minas: Métodos Matemáticos Ejercicios resueltos Tema 8 EDOs de orden superior Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 006/07

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

Integración doble Integrales dobles sobre regiones no rectangulares

Integración doble Integrales dobles sobre regiones no rectangulares Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos

Más detalles

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean

Más detalles

ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo

ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo Eleonora Catsigeras * 17 de Noviembre 2013 Notas para

Más detalles

1. Hallar el número de operaciones en la evaluación de un polinomio p n (x) = a 0 + a 1 x + + a n x n por el método estándar y el de Horner.

1. Hallar el número de operaciones en la evaluación de un polinomio p n (x) = a 0 + a 1 x + + a n x n por el método estándar y el de Horner. Interpolación. Hallar el número de operaciones en la evaluación de un polinomio p n () = a + a + + a n n por el método estándar y el de Horner.. Hallar el polinomio de interpolación de Lagrange y de Newton

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 9: Campos Direccionales, Curvas Integrales. Eistencia y Unicidad Elaborado por los profesores Edgar Cabello y Marcos González La ecuación y = f(, y) determina el coeficiente angular de la tangente

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales 1.- Resolver la siguiente ecuación diferencial: (x + y -4) dx + (5y -1) dy=0.- Obtener la solución general de la ecuación diferencial (x-1) y dx + x (y+1) dy = 0. Hallar la solución particular que pasa

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría

Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría 6 Espacio afín 1. Rectas en el espacio Piensa y calcula Calcula las coordenadas de un vector que tenga la dirección de la recta que pasa por los puntos A2, 1, 5 y B3, 1, 4 AB 1, 2, 1 Aplica la teoría 1.

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.3 Ecuaciones diferenciales lineales Las ecuaciones diferenciales ordinarias de primer orden pueden ser lineales o no lineales. En esta sección centraremos

Más detalles

4 Integrales de línea y de superficie

4 Integrales de línea y de superficie a t e a PROBLEMA DE ÁLULO II t i c a s 1 o Ings. Industrial y de Telecomunicación URO 2009 2010 4 Integrales de línea y de superficie 4.1 Integrales sobre curvas y campos conservativos. Problema 4.1 Integra

Más detalles

COEFICIENTES INDETERMINADOS: MÉTODO DE SUPERPOSICIÓN *

COEFICIENTES INDETERMINADOS: MÉTODO DE SUPERPOSICIÓN * 40 CAPÍTULO 4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR 5. Determine la solución general de y 6y y 34y 0 si se sabe que y e 4x cos x es una solución. 52. Para resolver y (4) y 0, es necesario encontrar

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

LECCIÓN 7: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A HOMOGÉNEAS.

LECCIÓN 7: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A HOMOGÉNEAS. 160 LECCIÓN 7: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A HOMOGÉNEAS. JUSTIFICACIÓN En esta lección centraremos nuestro estudio en aquellas ecuaciones diferenciales homogéneas mediante

Más detalles

Análisis II - Primer Parcial Coloquio- Tema 1

Análisis II - Primer Parcial Coloquio- Tema 1 .5. Coloquio 1/08/03. Análisis II - Primer Parcial Coloquio- Tema 1 1. Hallar a de manera que sea máximo el flujo de campo F (x,y,z)= (x,y,z) a través del borde ( con tapas!) del cilindro elíptico descripto

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS EJERCICIOS PROPUESTOS ) Se dan los siguientes puntos por sus coordenadas: A(3, 0), B(, 0), C(0, ) y sea P un punto variable sobre el eje. i) Hallar la ecuación de la recta (AC) y de la recta (r) perpendicular

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ CALZADA DE LA ESCUELA PREPARATORIA PROBLEMARIO GEOMETRÍA ANALÍTICA

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ CALZADA DE LA ESCUELA PREPARATORIA PROBLEMARIO GEOMETRÍA ANALÍTICA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ CALZADA DE LA ESCUELA PREPARATORIA PROBLEMARIO GEOMETRÍA ANALÍTICA ELABORO: ING. ROBERTO MERCADO DORANTES SEPTIEMBRE 2008 Sistemas coordenados

Más detalles

INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL DEFINIDA. APLICACIONES COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del

Más detalles

Ecuaciones diferenciales

Ecuaciones diferenciales Ecuaciones diferenciales Beatriz Campos Sancho Cristina Chiralt Monleon Departament de matemàtiques Codi d assignatura 35 Edita: Publicacions de la Universitat Jaume I. Servei de Comunicació i Publicacions

Más detalles

Ecuaciones diferenciales lineales con coeficientes constantes

Ecuaciones diferenciales lineales con coeficientes constantes Tema 4 Ecuaciones diferenciales lineales con coeficientes constantes Una ecuación diferencial lineal de orden n tiene la forma a 0 (x)y (n) + a 1 (x)y (n 1) + + a n 1 (x)y + a n (x)y = b(x) (41) Vamos

Más detalles

ESTÁTICA 3 3 VECTORES

ESTÁTICA 3 3 VECTORES ESTÁTICA Sesión 3 3 VECTORES 3.1. Componentes en dos dimensiones 3.1.1. Operación con vectores por sus componentes 3.1.2. Vectores de posición por sus componentes 3.2. Componentes en tres dimensiones 3.2.1.

Más detalles

1. Derivadas parciales

1. Derivadas parciales Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN Después

Más detalles

Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos

Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos 1. Efectuar cada una de las operaciones indicadas. a) (35 + 25i) + ( 12 5i) b) ( 75 i) + (34 + 42i) c)

Más detalles

2.2 Rectas en el plano

2.2 Rectas en el plano 2.2 Al igual que ocurre con el punto, en geometría intrínseca, el concepto de recta no tiene definición, sino que constituye otro de sus conceptos iniciales, indefinibles. Desde luego se trata de un conjunto

Más detalles

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Luis Alvarez León Univ. de Las Palmas de G.C. Luis Alvarez León () Métodos Numéricos Univ. de Las Palmas de G.C. 1 /

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos

Más detalles

S n = 3n + 2 n + 4. ln(1 + a n ) (3) Decidir, para cada una de las siguientes series, si es convergente o divergente.

S n = 3n + 2 n + 4. ln(1 + a n ) (3) Decidir, para cada una de las siguientes series, si es convergente o divergente. CÁLCULO HOJA 1 INGENIERO TÉCNICO EN INFORMÁTICA DE SISTEMAS GRUPO DE MAÑANA, MÓSTOLES, 2008-09 (1) De la serie a n se sabe que la sucesión de sumas parciales viene dada por: S n = 3n + 2 n + 4. Encontrar

Más detalles

Operador Diferencial y Ecuaciones Diferenciales

Operador Diferencial y Ecuaciones Diferenciales Operador Diferencial y Ecuaciones Diferenciales. Operador Diferencial Un operador es un objeto matemático que convierte una función en otra, por ejemplo, el operador derivada convierte una función en una

Más detalles

Tema 1.- ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN

Tema 1.- ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN Tema 1.- ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN Ampliación de Matemáticas Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial. Índice General 1 Ecuaciones diferenciales ordinarias.

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2)

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 2. Halla la ecuación de la recta r, sabiendo que es paralela a y=2x-3 y pasa por el punto (1,3). 3. Halla la ecuación de la recta

Más detalles

Tarea 1 Ecuaciones Diferenciales I Semestre 2014-1

Tarea 1 Ecuaciones Diferenciales I Semestre 2014-1 Profesor: Juan Carlos Fernández Morelos Ayudante: Luisa Márquez Rentería Tarea 1 Ecuaciones Diferenciales I Semestre 2014-1 1. Indicar el orden de las siguientes ecuaciones e indicar si son lineales o

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

gráfica de una función afín dada en forma explícita

gráfica de una función afín dada en forma explícita PARADA TeÓRICA 3 Función afín. Ecuación explícita de la recta A la función polinómica de primer grado f(x) = ax + b, siendo ay b números reales, se la denomina función afín. Los coeficientes principal

Más detalles

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números

Más detalles

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253 Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían

Más detalles

Comisión de Pedagogía - Diego Chamorro Ecuaciones en Derivadas Parciales (Nivel 3).

Comisión de Pedagogía - Diego Chamorro Ecuaciones en Derivadas Parciales (Nivel 3). AMARUN www.amarun.org Comisión de Pedagogía - Diego Chamorro Ecuaciones en Derivadas Parciales (Nivel 3). Lección n 1: Repaso de Ecuaciones Diferenciales Ordinarias UPS, julio 2015 Índice 1. Dos ejemplos

Más detalles

Problemas de Geometría Analítica del Espacio

Problemas de Geometría Analítica del Espacio 1) Dados los vectores u(4, 4, 8), v( 2,, 5), w(3, 5, 8) y a(22,, 11). Hallar los valores de x, y, z que verifican la combinación lineal a = x u + y v + z w. 2) Dados los vectores a( 5, 19, n) y b( h, 3,

Más detalles

Derivada. 1. Pendiente de la recta tangente a una curva

Derivada. 1. Pendiente de la recta tangente a una curva Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1). INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

ECUACIONES EN DIFERENCIAS LINEALES CON COEFICIENTES CONSTANTES

ECUACIONES EN DIFERENCIAS LINEALES CON COEFICIENTES CONSTANTES ECUACIONES EN DIFERENCIAS LINEALES CON COEFICIENTES CONSTANTES Alejandro Lugon 008-1 1. Ecuaciones De Segundo Orden Consideremos la ecuación: x t+ + ax t+1 + bx t = 0 (1) la cual podemos escribir como:

Más detalles

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3 Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

Capítulo 2 Soluciones de ejercicios seleccionados

Capítulo 2 Soluciones de ejercicios seleccionados Capítulo Soluciones de ejercicios seleccionados Sección..4. (a) Sí. (b) No. (c) Sí.. (a) x = si α, pero si α = todo número real es solución de la ecuación. (b) (x, y) = (λ 7/, λ) para todo λ R.. Si k 6

Más detalles