MARCOSAPB CIENCIAS NATURALES FÍSICA M. CIRCULAR U N.S.Q INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MARCOSAPB CIENCIAS NATURALES FÍSICA M. CIRCULAR U N.S.Q INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ"

Transcripción

1 MARCOSAPB CIENCIAS NAURALES FÍSICA M. CIRCULAR U N.S.Q INSIUCIÓN EDUCAIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ M.C.U. MOVIMIENO CIRCULAR UNIFORME Pieda atada a una cueda: estoy giando La tiea: estoy giando Atleta otando: paa lanza el disco Manecillas del eloj: otando Rueda giando Aspa giando odas las imágenes anteioes desciben un cuepo que se mueve con Movimiento cicula unifome (M.C.U). Actividades:. Identifique 4 situaciones más en donde se evidencie la pesencia del M.C.U.. Ate un cuepo al extemo de una cueda de 8 de longitud, sujete el oto extemo con los dedos ágalo gia, luego, suelte la cueda; finalmente, explique lo que ocue. Definición Abajo Izquieda Deeca Aiba Un cuepo se mueve con movimiento cicula unifome (MCU) cuando: a) La tayectoia que sigue es una cicunfeencia b) La velocidad cambia constantemente: deeca, izquieda, aiba y abajo c) La apidez es contante, es deci, siempe tiene el mismo valo en todos los puntos

2 MARCOSAPB CIENCIAS NAURALES FÍSICA M. CIRCULAR U N.S.Q Elementos del MCU. Son: la fecuencia ( ), el Peiodo ( ), la velocidad lineal o tangencial ( ), la velocidad angula ( ), la aceleación centípeta ( ) y la posición angula ( ).. La fecuencia ( ): es el númeo de vueltas ( ) que da el cuepo en la unidad de tiempo ( ) Opeacionalmente, se usa como unidad:, es lo que se conoce como Hz. El peiodo ( ): tiempo empleado en da una t n vuelta sola vuelta.. n t tiempo empleado El peiodo y la fecuencia se elacionan a tavés de la siguiente expesión: 3. Velocidad lineal o tangencial ( ): La velocidad que alcanza el cuepo al ecoe el aco (distancia) es: = adio S. Como:, luego: Impotante: la velocidad tangencial o lineal, es pependicula a la tayectoia y la adio de la cicunfeencia 4. Velocidad angula ( ): es el ángulo ( ) baido (ecoido) en la unidad de tiempo ( ) θ w

3 MARCOSAPB CIENCIAS NAURALES FÍSICA M. CIRCULAR U N.S.Q La velocidad lineal o tangencial y la angula, se elacionan po la siguiente fómula: V w t 5. Aceleación centípeta ( ): va diigida acia el cento de la cicunfeencia y se debe a la vaiación de la diección de la velocidad. a c ambién existe la aceleación centífuga, que se opone la centípeta, es deci, va diigida acia afuea y es de igual magnitud: 6. La posición angula ( ): es el cociente o azón ente el aco ( ) y el adio ( ) θ S Aco: es una poción de cicunfeencia DOS poleas unidas po una banda Polea Polea R V t R F F En este sistema, las velocidades tangenciales son iguales, poque es la misma velocidad de la banda Compaando: 3

4 MARCOSAPB CIENCIAS NAURALES FÍSICA M. CIRCULAR U N.S.Q Ejemplo Una ueda de automóvil de 30cm de adio, da 00 vueltas po minuto Hallemos: a) La fecuencia y el peiodo b) La velocidad angula c) La velocidad con que la llanta toca el piso (velocidad tangencial o lineal) d) La aceleación centípeta Solución 3 cm a) Fecuencia y peiodo: b) Velocidad angula: c) velocidad con que la llanta toca el piso (velocidad tangencial o lineal): (30) 60 cm cm V t 0,3 0,3 d) Aceleación centípeta a c Ejemplo V t (68) ,3 Una ueda de 50cm de adio, ueda sobe una supeficie de 50m de longitud. Hallemos las vueltas que debe da paa ecoe esa distancia. cm En una vuelta, la ueda ecoe: 5 cm 5 m =5000cm Las vueltas que debe da paa ecoe los 5000cm son: 4

5 MARCOSAPB CIENCIAS NAURALES FÍSICA M. CIRCULAR U N.S.Q Ejemplo 3 Hallemos: la velocidad tangencial, angula y la aceleación centípeta de la tiea Solución iea = 6378km Velocidad tangencial: (6378) 756 km 53,5 668, ad Velocidad angula: w 48,78 0,04 6 (668,9),780 km Aceleación centípeta: ac 436, Ejemplo 4 km Un ciclista gia en un velódomo cicula de 50m de adio a minutos) (evoluciones po Hallemos: a) La fecuencia y el peiodo b) La velocidad a la que gia c) La velocidad angula d) La aceleación centípeta Solución Velodomo = 5 m F = pm Las evoluciones po minutos, se efiee a las vueltas que da cada minuto; o sea, la fecuencia. Fecuencia: F n 0 evoluciones evoluciones 0, t Peiodo: 3, F 0,

6 MARCOSAPB CIENCIAS NAURALES FÍSICA M. CIRCULAR U N.S.Q Velocidad angula: 3,03 (50) ,03 3,03 w ad 0,66, 07 (33 ) 089 m Aceleación centípeta: ac 6, Ejemplo 5 Las poleas de la figua están ligadas po medio de una coea km ad Polea Polea Si la polea de adio mayo da 8 vueltas en 4, deteminemos la fecuencia de la polea de adio meno. R = cm F R = 6cm F Solución: En la polea La elación ente estas poleas es: R F R F 4 6 F () vueltas F F 6 Cuando la polea mayo da vueltas po undo, la meno da 4 en el mismo tiempo Ejemplo 6 Hallemos el peiodo, la fecuencia y la velocidad angula de cada una de las manecillas del eloj 9 H M S 3 El undeo cuando da una vuelta, ecoe 60, entonces: 6 6

7 MARCOSAPB CIENCIAS NAURALES FÍSICA M. CIRCULAR U N.S.Q El minuteo cuando da una vuelta, ecoe 60minutos, o sea una oa. 60min 60(60) F, (3,4) ad w, El oaio cuando da una vuelta, ecoe oas (3600) F, (3,4) ad w, Ejemplo 7 Las uedas de la figua están juntas Rueda R = cm w = 3 ad Rueda R = 4cm w =? Si la ueda de meno adio tiene una velocidad angula de 3 ad, entonces: a) Hallemos la velocidad angula de la ueda de mayo adio. b) Si el peiodo de la ueda es de 4, deteminemos el peiodo de la ueda Solución: a) La velocidad tangencial de las uedas es la misma, poque están unidas, esto es: V V peo : V w R y V w R w R w R luego : t t t 300 ad 30(0) w (4) w 75 4 b) eniendo en cuenta la consideación anteio, se tiene que: 4. R 0cm. R 4cm.? t V t w V t Luego : peo : y 0 w 4 V t w R de y V t donde : 8 0 0,8 w R R R w R w R R además : R 7

8 MARCOSAPB CIENCIAS NAURALES FÍSICA M. CIRCULAR U N.S.Q alle. entega:,, 6 y 7. C0mplete la siguiente tabla Ac o Ángul o ) S (ad) 4 3 iemp o vuelta s Radio t ( n (cm) Peiod o R () ) Fecuenci a V. tangencia l V. angula A. centípet a cm ad cm F ( V ) w ) a ( ) t ( ( c Fómulas n F. S R t R w F. Vt ac w R wr. Un avión descibe una tayectoia cicula de 000m de adio. Si el avión da 0 vueltas cada 5, alle: la fecuencia y el peiodo, la velocidad angula, la velocidad con que la llanta toca el piso (velocidad tangencial o lineal) y la aceleación centípeta 3. Una ueda de 80cm de adio, sale odando po una supeficie oizontal de 00m, alle el númeo de vueltas que debe da paa ecoe esa distancia. 4. Una vailla de 4m de longitud gia especto a uno de sus extemos a 30.p.m (evoluciones po minuto), alle: el peiodo, la fecuencia, la velocidad angula, la velocidad tangencia y la aceleación centípeta. 5. Una pelota está unida al extemo de una cueda de.50 m y gia en cículos con apidez constante de 8.00 m/s. Detemine: la aceleación centípeta, la velocidad angula, el peiodo y la fecuencia 8

9 MARCOSAPB CIENCIAS NAURALES FÍSICA M. CIRCULAR U N.S.Q 6. Las poleas de la figua están ligadas po medio de una coea Polea Polea R = cm F R = cm F Si la polea de adio meno da 30 vueltas en 6, detemine la fecuencia de la polea de adio mayo. 7. Las uedas de la figua están juntas Rueda R = cm w =? Rueda R = 4cm w =? Rueda 3 R 3 = cm w 3 = 4 ad Si la ueda de mayo adio tiene una velocidad angula de 3 ad, alle: a) El sentido de gio de la ueda. b) La velocidad angula de las uedas y c) Si el peiodo de la ueda es de 8, detemine el peiodo de la uedas y 3. 9

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

Guía de Ejercicios de MCU

Guía de Ejercicios de MCU Guía de Ejecicios de MCU Depatamento de Física - Escuela ORT 016 Resumen de Ecuaciones Útiles f 1 T ω π ω πf π T a c v ω T 1 f π ω v ω π T F c ma c m v ω 1 Ejecicios MCU 1. La siguiente tabla tiene ángulos

Más detalles

MOVIMIENTO CIRCULAR UNIFORME. = t

MOVIMIENTO CIRCULAR UNIFORME. = t C U S O: FÍSICA Mención MATEIAL: FM-08 MOVIMIENTO CICULA UNIFOME Una patícula se encuenta en movimiento cicula, cuando su tayectoia es una cicunfeencia, como, po ejemplo, la tayectoia descita po una pieda

Más detalles

8. Movimiento Circular Uniforme

8. Movimiento Circular Uniforme 8. Movimiento Cicula Unifome En la vida cotidiana e peentan ituacione donde un objeto gia alededo de oto cuepo con una tayectoia cicula. Un ejemplo de ello on lo planeta que gian alededo del ol en obita

Más detalles

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL EMA 3 MOIMIENO CICULA Y GAIACIÓN UNIESAL El movimiento cicula unifome (MCU) Movimiento cicula unifome es el movimiento de un cuepo que tiene po tayectoia una cicunfeencia y descibe acos iguales en tiempos

Más detalles

Problemas de dinámica de traslación.

Problemas de dinámica de traslación. Poblemas de dinámica de taslación. 1.- Un ascenso, que tanspota un pasajeo de masa m = 7 kg, se mueve con una velocidad constante y al aanca o detenese lo hace con una aceleación de 1'8 m/s. Calcula la

Más detalles

Ejemplos 1. Cinemática de una Partícula

Ejemplos 1. Cinemática de una Partícula Ejemplos 1. inemática de una atícula 1.1. Divesos Sistemas oodenadas 1.1.* La velocidad peiféica de los dientes de una hoja de siea cicula (diámeto 50mm) es de 45m/s cuando se apaga el moto y, la velocidad

Más detalles

X I OLIMPIADA NACIONAL DE FÍSICA

X I OLIMPIADA NACIONAL DE FÍSICA X I LIMPIADA NACINAL D FÍSICA FAS LCAL - UNIVSIDADS D GALICIA - 18 de Febeo de 2000 APLLIDS...NMB... CNT... PUBA BJTIVA 1) Al medi la masa de una esfea se obtuvieon los siguientes valoes (en gamos): 4,1

Más detalles

5. ROTACION; CINEMATICA Y DINAMICA

5. ROTACION; CINEMATICA Y DINAMICA 73 5. OTACION; CINEMATICA Y DINAMICA Los movimientos cuvilíneos se dan en el plano o en el espacio, son, po tanto, movimientos bi o incluso tidimensionales. Ello hace que paa expesa la posición sea necesaio

Más detalles

CATALUÑA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CATALUÑA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CATALUÑA / SEPTIEMBRE 0. LOGSE / FÍSICA / EXAMEN COMPLETO Resuelva el poblema P1 y esponde a las cuestiones C1 y C Escoge una de las opciones (A o B) y esuelva el poblema P y esponda a las cuestiones C3

Más detalles

U.D. 3. I NTERACCIÓN GRAVITATORIA

U.D. 3. I NTERACCIÓN GRAVITATORIA U.D. 3. I NERACCIÓN GRAVIAORIA RESUMEN Ley de gavitación univesal: odos los cuepos se ataen con una fueza diectamente popocional al poducto de sus masas e invesamente popocional al cuadado de la distancia

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo: MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

Trabajo y Energía I. r r = [Joule]

Trabajo y Energía I. r r = [Joule] C U R S O: FÍSICA MENCIÓN MATERIAL: FM-11 Tabajo y Enegía I La enegía desempeña un papel muy impotante en el mundo actual, po lo cual se justifica que la conozcamos mejo. Iniciamos nuesto estudio pesentando

Más detalles

CAMPO MAGNÉTICO. El campo magnético B, al igual que el campo eléctrico, es un campo vectorial.

CAMPO MAGNÉTICO. El campo magnético B, al igual que el campo eléctrico, es un campo vectorial. CAMPO MAGNÉTICO Inteacciones elécticas Inteacciones magnéticas Una distibución de caga eléctica en eposo genea un campo eléctico E en el espacio cicundante. El campo eléctico ejece una fueza qe sobe cualquie

Más detalles

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los

Más detalles

Soluciones ejercicios

Soluciones ejercicios Soluciones ejecicios Capítulo 1 adie es pefecto, luego si encuenta eoes, tenga la gentileza de infomanos Ejecicio 1.1 Un cuepo descibe una óbita cicula de adio R =100 m en tono a un punto fijo con apidez

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 1 Leyes de Keple y Ley de gavitación univesal Ejecicio 1 Dos planetas de masas iguales obitan alededo de una estella de masa mucho mayo. El planeta 1 descibe una óbita cicula

Más detalles

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un

Más detalles

v L G M m =m v2 r D M S r D

v L G M m =m v2 r D M S r D Poblemas de Campo Gavitatoio 1 Calcula la velocidad media de la iea en su óbita alededo del ol y la de la luna en su óbita alededo de la iea, sabiendo que el adio medio de la óbita luna es 400 veces meno

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ Cuso Mecánica (FI-1A), Listado de ejecicios. Edito: P. Aceituno 34 Escuela de Ingenieía. Facultad de Ciencias Físicas y Matemáticas. Univesidad de Chile. D: FUERZAS CENTRALES Y MOVIMIENTOS PLANETARIOS

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVIACIÓN 1 GRAVIACIÓN INRODUCCIÓN MÉODO 1. En geneal: Se dibujan las fuezas que actúan sobe el sistema. Se calcula la esultante po el pincipio de supeposición. Se aplica la ª ley de Newton

Más detalles

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando MECNIC PLICD I. EXMEN PCIL. 17-04-99. PIME EJECICI TIEMP: 75 1. btene la expesión de la velocidad de ω V s ω V s sucesión del cento instantáneo de otación cuando =. 2 2. Indica qué afimaciones son cietas

Más detalles

CP; q v B m ; R R qb

CP; q v B m ; R R qb Campo Magnético Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos (N y S). Si acecamos

Más detalles

TEMA 2.- Campo gravitatorio

TEMA 2.- Campo gravitatorio ema.- Campo gavitatoio EMA.- Campo gavitatoio CUESIONES.- a) Una masa m se encuenta dento del campo gavitatoio ceado po ota masa M. Si se mueve espontáneamente desde un punto A hasta oto B, cuál de los

Más detalles

Potencial gravitomagnético producido por una esfera en rotación

Potencial gravitomagnético producido por una esfera en rotación 5 Potencial gavitomagnético poducido po una esfea en otación 1.5 Cálculo del potencial gavitomagnético poducido en el exteio de un cuepo esféico en otación Obtenidos los fundamentos de la teoía gavitoelectomagnética,

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1.- Halla la velocidad con que peneta un electón pependiculamente en un campo magnético de 5 x 10-6 T, si descibe una tayectoia cicula de 40 cm. Sol.: 3,5 x 10 5 m/s. 2.- Un

Más detalles

Dinámica del movimiento circular uniforme

Dinámica del movimiento circular uniforme Dinámica del moimiento cicula unifome 1 5.1 Moimiento cicula unifome Definición: el moimiento cicula unifome es el moimiento de un objeto desplazándose con apidez constante en una tayectoia cicula. 5.1

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDAD DE ALCALÁ PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (Mayoes 5 años) Cuso 009-010 MATERIA: FÍSICA INSTRUCCIONES GENERALES Y VALORACIÓN La pueba consta de dos pates: La pimea pate consiste en

Más detalles

GUIA FISICA MOVIMIENTO CIRCULAR UNIFORME. T f V TA =V TB. F CP = m R F CP =

GUIA FISICA MOVIMIENTO CIRCULAR UNIFORME. T f V TA =V TB. F CP = m R F CP = GUIA FISICA MOVIMIENO CICULA UNIFOME NOMBE: FECHA: FÓMULAS PAA MOVIMIENO CICULA UNIFOME El periodo y la frecuencia son recíprocos Velocidad Lineal o angencial( V ) Velocidad Angular( ) elación entre Velocidad

Más detalles

r r r FÍSICA 110 CERTAMEN # 3 FORMA R 6 de diciembre 2007 IMPORTANTE: DEBE FUNDAMENTAR TODAS SUS RESPUESTAS: Formulario:

r r r FÍSICA 110 CERTAMEN # 3 FORMA R 6 de diciembre 2007 IMPORTANTE: DEBE FUNDAMENTAR TODAS SUS RESPUESTAS: Formulario: FÍSICA 11 CERTAMEN # 3 FORMA R 6 de diciembe 7 AP. PATERNO AP. MATERNO NOMBRE ROL USM - PARALELO EL CERTAMEN CONSTA DE 1 PÁGINAS CON PREGUNTAS EN TOTAL. TIEMPO: 1 MINUTOS IMPORTANTE: DEBE FUNDAMENTAR TODAS

Más detalles

Ejemplos 2. Cinemática de los Cuerpos Rígidos

Ejemplos 2. Cinemática de los Cuerpos Rígidos Ejemplos. Cinemática de los Cuepos Rígidos.1. Rotación alededo de un eje fijo.1.** El bloque ectangula ota alededo de la ecta definida po los puntos O con una velocidad angula de 6,76ad/s. Si la otación,

Más detalles

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz.

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz. Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los polos

Más detalles

TAREA DE DINAMICA Equilibrio traslacional Serway Cap. 5 Ejemplo 5.4 (Estática) 2. H Cap. 6 P24. reposo reposo Equilibrio traslacional y rotacional

TAREA DE DINAMICA Equilibrio traslacional Serway Cap. 5 Ejemplo 5.4 (Estática) 2. H Cap. 6 P24. reposo reposo Equilibrio traslacional y rotacional TAEA DE DINAMICA Equilibio taslacional. Seway Cap. 5 Ejemplo 5.4 (Estática) En la figua se muesta un semáfoo de 98 N de peso que cuelga de tes cables los cuales se ompen si la tensión en ellos excede 00N.

Más detalles

FUERZA MAGNÉTICA SOBRE UN CONDUCTOR QUE TRANSPORTA CORRIENTE

FUERZA MAGNÉTICA SOBRE UN CONDUCTOR QUE TRANSPORTA CORRIENTE UERZA MAGNÉTCA SORE UN CONDUCTOR QUE TRANSPORTA CORRENTE J v d +q J Podemos calcula la fueza magnética sobe un conducto potado de coiente a pati de la fueza qv x sobe una sola caga en movimiento. La velocidad

Más detalles

Sector Circular Longitud de Arco. Sector Circular. Und. 1 Introducción a la Trigonometría

Sector Circular Longitud de Arco. Sector Circular. Und. 1 Introducción a la Trigonometría Llamamos desaollo de una supeficie lateal al conjunto de puntos de la supeficie imaginaia que envuelve a un sólido y que es extendida sobe un plano. En pincipio toda supeficie lateal puede epesentase sobe

Más detalles

Existe la costumbre de dividir el estudio de la Mecánica en tres partes:

Existe la costumbre de dividir el estudio de la Mecánica en tres partes: U I.- T : Cinemática del Punto Mateial 3 1.- LA MECÁNICA Y SUS PARTES Existe la costumbe de dividi el estudio de la Mecánica en tes pates: + Cinemática: es una descipción geomética del movimiento + Dinámica:

Más detalles

10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 27/01/2005 Física 2ªBachiller

10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 27/01/2005 Física 2ªBachiller www.lotizdeo.tk I.E.S. Fancisco Gande Covián Campo Gavitatoio mailto:lotizdeo@hotmail.com 7/01/005 Física ªBachille 10.- Un satélite atificial descibe una óbita elíptica, con el cento de la iea en uno

Más detalles

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio. Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia

Más detalles

CANARIAS / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un punto. Poblemas OPCIÓN A.- Un satélite descibe una óbita

Más detalles

1. Los planetas describen órbitas elípticas planas en uno de cuyos focos está el sol.

1. Los planetas describen órbitas elípticas planas en uno de cuyos focos está el sol. LEYES DE KEPLE 1. Los planetas desciben óbitas elípticas planas en uno de cuyos focos está el sol. Esta ley esulta evidente si tenemos en cuenta que las fuezas gavitatoias son fuezas centales y que se

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. Página 68 Reconoce, nomba y descibe figuas geométicas que apaecen en esta ilustación. Respuesta libe. Po ejemplo: cilindo, otoedo, cono, pisma tiangula Recueda otas figuas geométicas que foman pate

Más detalles

BOLETÍN DE PROBLEMAS Campo Gravitatorio Segundo de Bachillerato

BOLETÍN DE PROBLEMAS Campo Gravitatorio Segundo de Bachillerato http://www.juntadeandalucia.es/aveoes/copenico/fisica.ht onda de las Huetas. Écija. e-ail: ec@tiscali.es BOLÍN D POBLMAS Capo Gavitatoio Seundo de Bachilleato POBLMAS SULOS. º Si se considea que la iea

Más detalles

( ) CIRCUNFERENCIA UNIDAD VIII VIII.1 DEFINICIÓN DE CIRCUNFERENCIA

( ) CIRCUNFERENCIA UNIDAD VIII VIII.1 DEFINICIÓN DE CIRCUNFERENCIA CIRCUNRNCIA UNIA III III. INICIÓN CIRCUNRNCIA Una cicunfeencia se define como el luga geomético de los puntos P, que equidistan de un punto fijo en el plano llamado cento. La distancia que eiste de cualquiea

Más detalles

ESTÁTICA. El Centro de Gravedad (CG) de un cuerpo es el punto donde se considera aplicado el peso.

ESTÁTICA. El Centro de Gravedad (CG) de un cuerpo es el punto donde se considera aplicado el peso. C U R S O: FÍSICA MENCIÓN MATERIAL: FM- 09 ESTÁTICA En esta unidad analizaemos el equilibio de un cuepo gande, que no puede considease como una patícula. Además, vamos a considea dicho cuepo como un cuepo

Más detalles

r r r r r µ Momento dipolar magnético

r r r r r µ Momento dipolar magnético A El valo φ180 o es una posición de equilibio inestable. Si se desplaza un poco especto a esta posición, la espia tiende a tasladase aún más de φ180 o. τ F ( b/ )sinϕ ( a)( bsinϕ) El áea de la espia es

Más detalles

2º de Bachillerato Óptica Física

2º de Bachillerato Óptica Física Física TEMA 4 º de Bacilleato Óptica Física.- Aveigua el tiempo que tadaá la luz oiginada en el Sol en llega a la Tiea si el diámeto de la óbita que ésta descibe alededo del Sol es de 99350000 Km. Y en

Más detalles

Unidad Didáctica 2 Cinemática

Unidad Didáctica 2 Cinemática Unidad Didáctica Cineática 1.- Intoducción La Cineática es la pate de la Física que descibe los oviientos de los cuepos sin aboda las causas que los poducen, las cuales son objeto de ota pate de la Física:

Más detalles

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2).

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2). GUIA 0 1 - Halla el módulo del vecto de oigen en (20,-5,8) etemo en (-4,-3,2). 2 - a) Halla las componentes catesianas de los siguientes vectoes: (i) A (ii) A = 4 A = θ = 30º 4 θ =135º A (iii) (iv) A θ

Más detalles

EJERCICIOS TEMA 9: ELEMENTOS MECÁNICOS TRANSMISORES DEL MOVIMIENTO

EJERCICIOS TEMA 9: ELEMENTOS MECÁNICOS TRANSMISORES DEL MOVIMIENTO EJECICIOS TEMA 9: ELEMENTOS MECÁNICOS TANSMISOES DEL MOVIMIENTO 1. Dos uedas de ficción gian ente sí sin deslizamiento. Sabiendo que la elación de tansmisión vale 1/5 y que la distancia ente ejes es de

Más detalles

Movimiento circular y otras aplicaciones de las leyes de Newton

Movimiento circular y otras aplicaciones de las leyes de Newton Los pasajeos en una montaña usa sepenteante expeimentan una fueza adial hacia el cento de la pista cicula y una fueza hacia abajo debida a la gavedad. (Robin Smith/Getty Images) 6.1 Segunda ley de Newton

Más detalles

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx Nombe y apellidos: Puntuación:. Las gáficas del oscilado amónico En la figua se muesta al gáfica elongacióntiempo de una patícula de,5 kg de masa que ealiza una oscilación amónica alededo del oigen de

Más detalles

ÁNGULOS Y LONGITUDES DE ARCO

ÁNGULOS Y LONGITUDES DE ARCO I.E LEÓN XIII EL PEÑOL MATEMÁTICA GRADO: 0 TALLER Nº: EMETRE I ÁNGULO Y LONGITUDE DE ARCO REEÑA HITÓRICA Un Poblema de Ángulos en la Antigüedad. El matemático giego Eatostenes (apox 76 9 a.c.) midió la

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

El campo electrostático

El campo electrostático 1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos

Más detalles

BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION

BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION FACULTAD DE CIENCIAS CURSO DE INTRODUCCION A LA METEOROLOGIA 11 BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION 1. INTRODUCCION A LA CINEMATICA El oigen de la dinámica se emonta a los pimeos expeimentos

Más detalles

Definición 39. Circunferencia de centro en O y radio r en un plano π. Figura 141. Podemos definir este conjunto por comprensión así: C O,

Definición 39. Circunferencia de centro en O y radio r en un plano π. Figura 141. Podemos definir este conjunto por comprensión así: C O, 9.1 NOCIONES BÁSICAS Definición 9. Cicunfeencia de cento en O y adio en un plano π. Es el conjunto (luga geomético) de todos los puntos de un plano un punto dado O, llamado cento, una distancia., que equidistan

Más detalles

Actividad para el curso de Física: Mecánica del movimiento circular de un punto material.

Actividad para el curso de Física: Mecánica del movimiento circular de un punto material. Mecánica del movimiento cicula de un punto mateial. Pofeso Eduado Abaham Escácega Pliego *. Índice 1. Intoducción. 2 2. Apunte 2 2.1. Posición de un punto mateial en movimiento cicula.........................

Más detalles

LA RUEDA PELTON (Shames)

LA RUEDA PELTON (Shames) LA RUEDA PELTON (Shames) Es una tubina de impulsión. Uno o más choos de agua, que sale(n) de una tobea a velocidad alta, incide sobe un sistema de cuchaas unidas a una ueda. El odete (cuchaas y ueda) tiene

Más detalles

2º de Bachillerato Interacción Gravitatoria

2º de Bachillerato Interacción Gravitatoria Física EA º de Bacilleato Inteacción avitatoia.- Aveiua cuál seía la duación del año teeste en el caso supuesto que la iea se acecaa al Sol de manea que la distancia fuea un 0 % meno que la eal. Y si se

Más detalles

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.

Más detalles

Interacción magnética

Interacción magnética Inteacción magnética Áea Física Resultados de apendizaje Utiliza las leyes de Gauss, Biot-Savat y Ampee paa calcula campos magnéticos en difeentes poblemas. Estudia el movimiento de una patícula cagada

Más detalles

s v t r r Aceleración centrípeta Cuando una partícula se mueve con rapidez constante v en un circunferencia de Dinámica del Movimiento Circular

s v t r r Aceleración centrípeta Cuando una partícula se mueve con rapidez constante v en un circunferencia de Dinámica del Movimiento Circular Cuso: FISICA I CB 30U 0010I Pofeso: Lic. JOAQUIN SALCEDO jsalcedo@uni.edu.pe Tema: Dinámica cicula Dinámica del Moimiento Cicula Aceleación centípeta Cuando una patícula se muee con apidez constante en

Más detalles

2º de Bachillerato El Campo Magnético

2º de Bachillerato El Campo Magnético ísica TEM 7 º de Bachilleato El Campo Magnético 1.- Calcula la velocidad que debe tene una caga eléctica puntual de 5 mc paa que a una distancia de 3 cm en el vacío y en la diección pependicula a su tayectoia

Más detalles

Solución al examen de Física

Solución al examen de Física Solución al examen de Física Campos gavitatoio y eléctico 14 de diciembe de 010 1. Si se mantuviea constante la densidad de la Tiea: a) Cómo vaiaía el peso de los cuepos en su supeficie si su adio se duplicaa?

Más detalles

Unidad didáctica 8. Gravitación

Unidad didáctica 8. Gravitación Unidad didáctica 8 Gaitación .- Intoducción. Desde los tiempos más emotos, el se humano ha intentado da una explicación del Unieso que le odeaba: el día y la noche, las estaciones del año, el moimiento

Más detalles

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una

Más detalles

Campo eléctrico. 3 m. respectivamente. Calcular el campo eléctrico en el punto A (4,3). Resp.:

Campo eléctrico. 3 m. respectivamente. Calcular el campo eléctrico en el punto A (4,3). Resp.: Campo eléctico 1. Calcula el valo de la fueza de epulsión ente dos cagas Q 1 = 200 µc y Q 2 = 300 µc cuando se hallan sepaadas po una distancia de a) 1 m. b) 2 m. c) 3 m. Resp.: a) 540 N, b) 135 N, c )

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4

SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4 SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4 Ejecicio de aplicación 44 (Deivación) Se desea obtene una viga ectangula a pati de un tonco cilíndico de 6 cm de diámeto a) Demosta que la viga con

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica?

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica? IS Menéndez Tolosa ísica y Química - º Bach ampo eléctico I Qué afima el pincipio de consevación de la caga eléctica? l pincipio indica ue la suma algebaica total de las cagas elécticas pemanece constante.

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actiidades del final de la unidad. Una patícula de masa m, situada en un punto A, se muee en línea ecta hacia oto punto B, en una egión en la que existe un campo gaitatoio ceado po una masa. Si el alo

Más detalles

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 18 Explorando la esfera-1. Fecha: Profesor: Fernando Viso

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 18 Explorando la esfera-1. Fecha: Profesor: Fernando Viso GUIA DE TRABAJO Mateia: Matemáticas. Tema: Geometía 18 Exploando la esfea-1. Fecha: Pofeso: Fenando Viso Nombe del alumno: Sección del alumno: CONDICIONES: Tabajo individual. Sin libos, ni cuadenos, ni

Más detalles

Situaciones 1: Dada una carga eléctrica puntual, determine el campo eléctrico en algún punto dado. r u r. r 2. Esmelkys Bonilla

Situaciones 1: Dada una carga eléctrica puntual, determine el campo eléctrico en algún punto dado. r u r. r 2. Esmelkys Bonilla Situaciones 1: Dada una caga eléctica puntual, detemine el campo eléctico en algún punto dado. E = k q 2 u 1.- Una caga puntual positiva, situada en el punto P, cea un campo eléctico E v en el punto, epesentado

Más detalles

IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachillerato. Tema 6: Descripción del movimiento - 1 -

IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachillerato. Tema 6: Descripción del movimiento - 1 - IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachilleato. Tema 6: Descipción del movimiento - 1 - TEMA 6: DESCRIPCIÓN DEL MOVIMIENTO DE UNA PARTÍCULA 6.1 Concepto de movimiento. Sistema de efeencia.

Más detalles

TEMA 4: El movimiento circular uniforme

TEMA 4: El movimiento circular uniforme TEMA 4: El moimiento circular uniforme Tema 4: El moimiento circular uniforme 1 ESQUEMA DE LA UNIDAD 1.- Caracterítica del moimiento circular uniforme. 2.- Epacio recorrido y ángulo barrido. 2.1.- Epacio

Más detalles

Campos eléctricos y Magnéticos

Campos eléctricos y Magnéticos Campos elécticos y Magnéticos Fueza eléctica: es la fueza de atacción ejecida ente dos o más patículas cagadas. La fueza eléctica no sólo mantiene al electón ceca del núcleo, también mantiene a los átomos

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Indica cuál de las siguientes afimaciones es falsa: a) En la época de Aistóteles ya se aceptaba que la iea ea esféica. b) La estimación del adio teeste que llevó a cabo

Más detalles

Examen de Selectividad de Física. Septiembre 2008. Soluciones.

Examen de Selectividad de Física. Septiembre 2008. Soluciones. Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE. (PLAN 2002) Junio 2004 FÍSICA.

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE. (PLAN 2002) Junio 2004 FÍSICA. . UCIA / UNIO 04. OGS / FÍSICA / XAN COPO XAN COPO PUBAS D ACCSO A A UNIVSIDAD PAA AUNOS D BACHIAO OGS. (PAN 00 unio 004 FÍSICA. OINACIONS: Comente sus planteamientos de tal modo que demueste que entiende

Más detalles

CONTINUACION UNIDAD # II: FÍSICA INTRODUCTORIA TIRO VERTICAL Y CAIDA LIBRE

CONTINUACION UNIDAD # II: FÍSICA INTRODUCTORIA TIRO VERTICAL Y CAIDA LIBRE CONTINUACION UNIDAD # II: FÍSICA INTRODUCTORIA TIRO VERTICAL Y CAIDA LIBRE OJETOS QUE CAEN LIBREMENTE En ausencia de esistencia de aie, todos los objetos que se dejan cae ceca de la supeicie de la tiea

Más detalles

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales Capitulo 9: Leyes de Keple, Gavitación y Fuezas Centales Índice. Las 3 leyes de Keple 2. Campo gavitacional 4 3. Consevación de enegía 6 4. Movimiento cicula 8 5. Difeentes tayectoias 0 6. Demosta Leyes

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física Geneal 1 Poyecto PMME - Cuso 007 Instituto de Física Facultad de Ingenieía UdelaR TITULO MÁQUINA DE ATWOOD AUTORES Calos Anza Claudia Gacía Matín Rodiguez INTRODUCCIÓN: Se nos fue planteado un ejecicio

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física Geneal Poyecto PMME - Cuso 007 Instituto de Física Facultad de Ingenieía UdelaR TITULO DINÁMICA DEL RÍGIDO. AUTORES Emiliano Gacía, Juan Manuel Galasso, Valeia Rey INTRODUCCIÓN El siguiente ejecicio,

Más detalles

Dinámica de la rotación Momento de inercia

Dinámica de la rotación Momento de inercia Laboatoi de Física I Dinámica de la otación omento de inecia Objetivo Detemina los momentos de inecia de vaios cuepos homogéneos. ateial Discos, cilindo macizo, cilindo hueco, baa hueca, cilindos ajustables

Más detalles

v r m P M G M M RP JUNIO 2012 Opción A PROBLEMA 1

v r m P M G M M RP JUNIO 2012 Opción A PROBLEMA 1 OBLA JUNIO 0 Opción A Un planeta extasola gia en tono a una estella cuya masa es igual al 30% de la masa del Sol. La masa del planeta es 3.4 veces mayo que la de la iea, y tada 877 oas en descibi una óbita

Más detalles

UNIDAD 4: CIRCUNFERENCIA CIRCULO:

UNIDAD 4: CIRCUNFERENCIA CIRCULO: UNIDD 4: CIRCUNFERENCI CIRCULO: CONTENIDO: I. CONCEPTO DE CIRCUNFERENCI: Es una cuva ceada y plana cuyos puntos equidistan de un punto llamado cento. Una cicunfeencia se denota con la expesión: O C, y

Más detalles

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es BLOQUE A A.- En el instante t = se deja cae una pieda desde un acantilado sobe un lago;,6 s más tade se lanza una segunda pieda hacia abajo con una velocidad inicial de 3 m/s. Sabiendo que ambas piedas

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física º Bachaelato Gavitación 19/01/10 DEPARAMENO DE FÍSICA E QUÍMICA Nombe: 1. Calcula la pimea velocidad obital cósmica, es deci la velocidad que tendía un satélite de óbita asante.. La masa de la Luna

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

Contenidos de Clases Dictadas. Grupo G2. Prof. F.H. Sánchez. Martes 25/03/2014

Contenidos de Clases Dictadas. Grupo G2. Prof. F.H. Sánchez. Martes 25/03/2014 Contenidos de Clases Dictadas. Gupo G. Pof. F.H. Sánchez. Mates 5/3/4 Beve intoducción a la Física. Conceptos antiguos y enacentistas. Sujeto de estudio de la Física. Ámbitos de validez de las teoías físicas.

Más detalles

SERIE # 3 CÁLCULO VECTORIAL

SERIE # 3 CÁLCULO VECTORIAL SERIE # 3 ÁLULO VETORIAL ÁLULO VETORIAL Página 1 1) Sea el campo vectoial F (x,y,)=( 3x+ y)i+( x+ y ) j ( x) k. alcula lago de la cuva : 4 5 x = + y y =, del punto A ( 3, 1, 1) al punto B ( 3, 1, -1).

Más detalles

Generalidades y ángulos en la circunferencia. II Medio 2016

Generalidades y ángulos en la circunferencia. II Medio 2016 Genealidades y ángulos en la cicunfeencia II Medio 2016 pendizajes espeados Identifica los elementos de una cicunfeencia y un cículo. Calcula áeas y peímetos del cículo, del secto cicula y del segmento

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM CAPÍTULO 1 Campo eléctico I: distibuciones discetas de caga Índice del capítulo 1 1.1 Caga eléctica. 1.2 Conductoes y aislantes.

Más detalles

Unidad 3. Objetivos. Segunda ley de Newton. Al término de la unidad, el alumno podrá: Definir la segunda ley de Newton y el concepto de masa.

Unidad 3. Objetivos. Segunda ley de Newton. Al término de la unidad, el alumno podrá: Definir la segunda ley de Newton y el concepto de masa. Unidad 3 Segunda ley de Newton Objetivos Al témino de la unidad, el alumno podá: Defini la segunda ley de Newton y el concepto de masa. Enuncia la ley de gavitación de Newton. Aplica la segunda ley de

Más detalles