Límites finitos cuando x: ˆ

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Límites finitos cuando x: ˆ"

Transcripción

1 . Límits latrals its al infinito 7 FIGURA La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador l dnominador: : sn : 5 Límits finitos cuando : ˆ = : s>5d# sn s>5d# 5 = 5 sn : = 5 sd = 5 Ahora s aplica la cuación () con u. El símbolo qu dsigna infinitosqd no rprsnta un númro ral. Lo usamos para dscribir l comportaminto d una función cuando los valors sobrpasan, n su dominio o rango, cualsquira cotas finitas. Por jmplo, la función f() / stá dfinida para toda Z (figura.3). Cuando s positiva s vulv mu grand, / s hac cada vz más pquña. Cuando s ngativo su magnitud s vulv cada vz más grand, nuvamnt / s hac pquña. Para rsumir stas obsrvacions, dirmos qu f() = / tin it cuando : ;q o qu s l it d f() = / al infinito, tanto positivo como ngativo. A continuación s da la dfinición acta. DEFINICIONES Límit cuando s aproima a ˆ o ˆ. Dcimos qu f() tin l it L cuando tind al infinito, scribimos ƒsd = L :q si, para cada númro P >, ist un númro M corrspondint tal qu para toda 7 M Q ƒƒsd - Lƒ 6 P.. Dcimos qu f() tin l it L cuando tind a mnos infinito, scribimos ƒsd = L :-q si, para cada númro P >, ist un númro N corrspondint tal qu para toda 6 N Q ƒƒsd - Lƒ 6 P. Intuitivamnt, : q ƒsd = L si cuando s alja cada vz más dl orign n dircción positiva, f() s acrca arbitrariamnt a L. D manra similar :- q ƒsd = L si, cuando s alja dl orign n dircción ngativa, f() s acrca arbitrariamnt a L. La stratgia para calcular its d funcions cuando : ;q s similar a la qu s plicó n la scción. para dtrminar its finitos. Ahí primro ncontramos los its d las funcions constant idntidad, = k =. Dspués tndimos los rsultados a otras funcions, mdiant la aplicación d un torma sobr its d combinacions algbraicas. Aquí harmos lo mismo, pro mpzarmos con las funcions = k = / n lugar d = k =.

2 8 Capítulo : Límits continuidad N Sin importar qué númro positivo sa la gráfica ntra n sta banda n ahí s quda M Los hchos básicos qu dbmos vrificar al aplicar la dfinición formal, son A continuación probarmos sta última afirmación, djarmos la comprobación d la primra para los jrcicios 7 7. EJEMPLO 6 Probar qu :;q k = k :;q Los its al infinito para ƒsd = =. (3) Sin importar qué númro positivo sa la gráfica ntra n sta banda n ahí s quda FIGURA.3 La gomtría dtrás dl argumnto dl jmplo 6. (a) :q Solución = (a) Sa P 7 dada. Dbmos ncontrar un númro M tal qu para toda (b) :-q =. 7 M Q ` - ` = ` ` 6 P. Esta implicación s satisfac si M = >P o a cualquir númro positivo maor (figura.3). Esto pruba qu : q s>d =. (b) Sa P 7 dada. Dbmos ncontrar un númro N tal qu para todo 6 N Q ` - ` = ` ` 6 P. Esta implicación s satisfac si N = ->P o a cualquir númro mnor qu ->P (figura.3). Esto pruba qu :- q s>d =. Los its al infinito tinn propidads similars a las d los its finitos. TEOREMA 8 Ls d los its cuando : ˆ Si L, M k son númros rals. Rgla d la suma:. Rgla d la difrncia: 3. Rgla dl producto:. Rgla dl múltiplo constant: 5. Rgla dl cocint: ƒsd = L gsd = M, ntoncs :;q :;q sƒsd + gsdd = L + M :;q :;q sƒsd # gsdd = L # M :;q sk # ƒsdd = k # L :;q :;q sƒsd - gsdd = L - M ƒsd gsd = L M, M Z 6. Rgla d la potncia: Si r s son ntros sin factors comuns, s Z, ntoncs :;q sƒsddr>s = L r>s simpr cuando L r/s sa un númro ral. (Si s s par, damos por hcho qu L > ).

3 . Límits latrals its al infinito 9 Estas propidads son similars a las dl torma d la scción., s utilizan d la misma manra. EJEMPLO 7 Uso dl torma 8 (a) a5 + :q b = 5 + :q :q = 5 + = 5 Rgla d la suma Límits conocidos (b) p 3 :-q = :-q p 3 # # = p 3 # :-q :-q # :-q =p 3# # = Rgla dl producto Límits conocidos Rcta NO ESTÁ A ESCALA Límits al infinito d funcions racionals Para dtrminar l it d una función racional cuando : ;q, podmos dividir l numrador l dnominador ntr la maor potncia d n l dnominador. Lo qu pas dspués dpndrá d los grados d los polinomios involucrados. EJEMPLO 8 El numrador l dnominador tinn l mismo grado FIGURA.33 La gráfica d la función dl jmplo 8. La gráfica s aproima a la rcta = 5>3 conform ƒ ƒ crc :q s8>d - s3> d = :q 3 + s> d = = 5 3 Dividir l numrador l dnominador ntr. Va la figura.33. EJEMPLO 9 El grado dl numrador s mnor qu l grado dl dnominador En la siguint scción s da un jmplo dl caso n dond l grado dl numrador s maor qu l grado dl dnominador (jmplo 8, scción.5). Asíntotas horizontals + :-q 3 - = s> d + s> 3 d :-q - s> 3 d = + - = Si la distancia ntr la gráfica d una función alguna rcta fija s aproima a cro cuando un punto d la gráfica s alja cada vz más dl orign, dcimos qu la gráfica s aproima asintóticamnt a la rcta, sa rcta s una asíntota d la gráfica. Al analizar ƒsd = > (va la figura.3), obsrvamos qu l j s una asíntota d la curva por la drcha, a qu :q = Dividir l numrador l dnominador ntr 3. Va la figura.3. FIGURA.3 La gráfica d la función dl jmplo 9. La gráfica s aproima al j conform ƒ ƒ crc. una asíntota d la curva por la izquirda, a qu :-q =.

4 Capítulo : Límits continuidad Dcimos qu l j s un asíntota horizontal d la gráfica d ƒsd = >. DEFINICIÓN Asíntota horizontal Una rcta = b s una asíntota horizontal d la gráfica d una función = f(), si s satisfac alguna d las condicions siguints ƒsd = b o ƒsd = b. :q :-q La curva ƒsd = trazada n la figura.33 (jmplo 8), tin como asíntota horizontal, tanto a la drcha como a la izquirda, la rcta = 5/3, a qu ƒsd = 5 :q 3 ƒsd = 5 :-q 3. EJEMPLO Sustitución d una nuva variabl Encontrar :q sn s>d. mos qu t: + cuando : q (va la figura.3). Por lo tanto, Solución Introducimos una nuva variabl, t = >. D acurdo con l jmplo 6, sab- :q = sn t =. + t: Otra aplicación dl torma dl sandwich El torma dl sandwich también s cumpl para its cuando : ;q. EJEMPLO Una curva pud atravsar su asíntota horizontal Usar l torma dl sandwich para ncontrar la asíntota horizontal d la curva = + sn. sn Solución Estamos intrsados n lo qu ocurra cuando : ;q. Como sn ` ` ` ` 3p p p p p 3p FIGURA.35 Una curva pud cruzar una d sus asíntotas una infinidad d vcs (jmplo ). :; q ƒ>ƒ =, d acurdo con l torma dl sandwich tnmos qu ssn d> =. En conscuncia, sn a + :;q b = + =, :; q la rcta = s una asíntota horizontal d la curva, tanto a la izquirda como a la drcha (figura.35).

5 . Límits latrals its al infinito Est jmplo ilustra qu una curva pud quizás varias vcs atravsar una d sus asíntotas horizontals. Asíntotas oblicuas Si l grado dl numrador d una función racional s maor n una unidad qu l grado dl dnominador, la gráfica tin una asíntota oblicua (inclinada). Encontramos una cuación para la asíntota dividindo l numrador ntr l dnominador, con l propósito d prsar f como una función linal más un rsiduo qu tind a cro cuando : ;q. Vamos un jmplo. EJEMPLO Encontrar una asíntota oblicua Encontrar la asíntota oblicua d la gráfica d ilustrada n la figura.36. ƒsd = Solución Dividindo los polinomios ncontramos 3 7 ƒsd = = a b s7 + d ('')''* ('')''* función linal gsd rsiduo A mdida qu : ;q, l rsiduo, cua magnitud rprsnta la distancia vrtical ntr las gráficas d f g, tind a cro, hacindo qu la rcta (oblicua) gsd = FIGURA.36 La gráfica dl jmplo tin una asíntota oblicua. sa una asíntota d la gráfica d f (figura.36). La rcta = g() s una asíntota tanto a la drcha como a la izquirda. En la scción siguint vrmos qu la función f() crc arbitrariamnt n valor absoluto cuando s aproima a /7, dond l dnominador s convirt n cro (figura.36). EJERCICIOS. Dtrminación gráfica d its. Cuáls d las siguints afirmacions acrca d la función = f(), cua gráfica aparc a continuación, son vrdadras cuáls falsas? f() a. ƒsd = b. :- + c. ƒsd = d. ƒsd = ƒsd - : - : : +. ƒsd ist f. ƒsd = : : g. ƒsd = h. ƒsd = : : i. ƒsd = j. ƒsd = : : - k. ƒsd no ist. l. ƒsd = - : + :- : - ƒsd =

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación

ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación LÍMITES Cálculo y rprsntación...... 7. 8. - + + - - + + - + - ( + ) - + + - - + + 9. + - +. + - + - 9. + -. + + + - +. + + +. + + + -. +. + - ASÍNTOTAS Y RAMAS INFINITAS Cálculo y rprsntación. y = - +.

Más detalles

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS Tma Límits, continuidad y asíntotas Matmáticas I º Bachillrato TEMA LÍMITES, CONTINUIDAD ASÍNTOTAS CÁLCULO GRÁFICO DE LÍMITES EJERCICIO : Sobr la gráfica d f), halla : 8 8 8 f f c) f f ) f f f c) f f )

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción ral d variabl ral s una aplicación d un subconjunto D d los númros rals n un subconjunto I d los númros

Más detalles

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos: Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular

Más detalles

LÍMITES DE FUNCIONES. CONTINUDAD

LÍMITES DE FUNCIONES. CONTINUDAD LÍMITES DE FUNCIONES. CONTINUDAD Signiicado dl it Ejrcicio nº.- Rprsnta gráicamnt y plica l gniicado d la prón: Ejrcicio nº.- Eplica l gniicado d la guint prón y rprséntalo gráicamnt: 9 Ejrcicio nº.- Escrib

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

LIMITES DE FUNCIONES EN 1D

LIMITES DE FUNCIONES EN 1D LIMITES DE FUNCIONES EN D Límits d funcions n D Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martínz Boscá (jmartinzbos@uoc.du) ESQUEMA DE CONTENIDOS Dfinición Límits latrals LÍMITE DE

Más detalles

12 Representación de funciones

12 Representación de funciones Rprsntación d funcions ACTIVIDADES INICIALES.I. Factorizando prviamnt las prsions, rsulv las siguints cuacions: a) 6 7 5 0 6 c) 0 7 b) 6 d) 0 a) 6 7 5 0 ( )(6 5) 0 5 6 5 0, b) 7 6 ( )( ) 6 6 ( ) 7 ( )

Más detalles

ANÁLISIS (Selectividad 2014) 1

ANÁLISIS (Selectividad 2014) 1 ANÁLISIS (Slctividad 4) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD EN 4 ( Obsrvación: La slcción s ha hcho dando prioridad a las custions más tóricas) Andalucía, junio 4 San

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE

Más detalles

TEMA 4. APLICACIONES DE LA DERIVADA.

TEMA 4. APLICACIONES DE LA DERIVADA. 7 Unidad 4. Funcions. Aplicacions d la drivada TEMA 4. APICACIONES DE A DERIVADA.. Monotonía. Crciminto y dcrciminto d una función. Etrmos rlativos 3. Optimización 4. Curvatura 5. Punto d Inflión 6. Propidads

Más detalles

NÚMEROS COMPLEJOS. Autor: Patrici Molinàs Mata (pmolinas@uoc.edu), José Francisco Martínez Boscá (jmartinezb@uoc.edu) NÚMEROS COMPLEJOS

NÚMEROS COMPLEJOS. Autor: Patrici Molinàs Mata (pmolinas@uoc.edu), José Francisco Martínez Boscá (jmartinezb@uoc.edu) NÚMEROS COMPLEJOS Númros complos NÚMEROS COMPLEJOS Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martín Boscá (martinb@uoc.du) MAPA CONCEPTUAL Dfinición Fórmula d Cardano NÚMEROS COMPLEJOS Rsolución d cuacions

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta.

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta. PRUEBAS DE BONDAD DE AJUSTE Estas prubas prmitn vrificar qu la población d la cual provin una mustra tin una distribución spcificada o supusta. Sa X: variabl alatoria poblacional f 0 (x) la distribución

Más detalles

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler.

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. 5. Convgncia d intgals impopias. Las funcions Γ y Β d Eul. La foma haitual d calcula una intgal impopia, po jmplo dl intgando, aplica

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x

Más detalles

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN El almán Gottfrid Libniz (66-76), quin, junto con su antagonista l inglés Isaac Nwton (6-77), fu l crador dl cálculo infinitsimal. MATEMÁTICAS II

Más detalles

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8 Matmáticas II (Bacillrato d Cincias) Solucions d los problmas propustos Tma 8 7 TEMA 8 Drivadas Tormas Rgla d L Hôpital Problmas Rsultos Drivada d una función n un punto Utilizando la dfinición, calcula

Más detalles

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS.

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Prof., Enriqu Matus Nivs Doctorano n Eucación Matmática. FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Una función ponncial s aqulla n la qu la variabl stá n l ponnt. Algunos - - -5 jmplos funcions

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

ANÁLISIS. Junio 94. cosx si x Dada la función. f(x) a 2x si 0 x 1. b si x 1 x

ANÁLISIS. Junio 94. cosx si x Dada la función. f(x) a 2x si 0 x 1. b si x 1 x ANÁLISIS Junio 9.. Dada la función cos si 0 b si f() a si 0 a) [ punto] Calcular los valors d a y b para qu la función f() sa continua n b) [ punto] Es drivabl la función obtnida n = 0?. En =?. Razona

Más detalles

Tema 5 El Mercado y el Bienestar. Las externalidades

Tema 5 El Mercado y el Bienestar. Las externalidades Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 5 El Mrcado

Más detalles

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional.

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional. Sistmas d control: Elmntos componnts, variabls, función d transfrncia y diagrama funcional. Introducción Los sistmas d control automático han jugado un papl vital n l avanc d la cincia y d la ingniría.

Más detalles

ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 ANÁLISIS (Slctividad 5) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 5 Andalucía, junio 5 Sa f la función dfinida por f( ) para a) [ punto] Estudia y calcula las asíntotas

Más detalles

Opción A Ejercicio 1 opción A, modelo Septiembre 2011

Opción A Ejercicio 1 opción A, modelo Septiembre 2011 IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7 VERSIÓN:.0 FECHA: 19-06-01 I.E. COLEGIO ANDRÉS BELLO PÁGINA: 1 d 9 Nombrs y Apllidos dl Estudiant: Docnt: ALEXANDRA URIBE Ára: Matmáticas Grado: UNDÉCIMO Priodo: TERCERO GUIA 7 Duración: 0 horas Asignatura:

Más detalles

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos Matmáticas II Prubas d Accso a la Univrsidad ANÁLISIS Junio 9.. Dada la función cos f () a b si si si a) Calcular los valors d a y b para qu la función f() sa continua n [ punto] b) Es drivabl la función

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES.

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bach. TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. Tasa d variación mdia. Cálculo y signiicado EJERCICIO : Considramos la unción:. Halla la tasa

Más detalles

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto.

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto. REPASO LÍMITES º BACH. RECORDAR: Para qu ista límit d una f() n un punto han d coincidir los límits latrals n dicho punto. A fctos dl f() no tnmos n cunta lo qu ocurr actamnt n a, sino n las a proimidads.

Más detalles

GRUPOS Y SEMIGRUPOS. Unidad 5

GRUPOS Y SEMIGRUPOS. Unidad 5 GRUPOS Y SEMIGRUPOS En sta unidad studiarmos algunas d las structuras algbraicas qu s utilizan n Toría d Codificación y también n l studio d máquinas d stado finito, como por jmplo los autómatas qu vrmos

Más detalles

3. Ecuaciones diferenciales de orden superior. ( Chema Madoz, VEGAP, Madrid 2009)

3. Ecuaciones diferenciales de orden superior. ( Chema Madoz, VEGAP, Madrid 2009) . Ecuacions difrncials d ordn suprior Chma Madoz, VEGAP, Madrid 009 Ecuacions linals: toría básica Un problma d valor inicial d n-ésimo ordn consist n rsolvr la EDO linal: a n n d d d a a a0 g n n n d

Más detalles

2º BACHILLERATO CINETICA QUÍMICA

2º BACHILLERATO CINETICA QUÍMICA VELOCIDAD DE REACCIÓN 1.- Escrib la xprsión d la vlocidad d racción n función d la concntración d cada una d las spcis qu intrvinn n l procso d obtnción d amoniaco. N + 3 H NH 3 d 1 v = [N] = 3 d 1 [H]

Más detalles

EQUILIBRIO QUIMICO. aa + bb cc + Dd

EQUILIBRIO QUIMICO. aa + bb cc + Dd EQUILIBRIO QUIMICO Una racción rvrsibl s aqulla n qu los productos d la racción intractúan ntr sí y forman nuvamnt los raccionants. En la siguint rprsntación d una racción rvrsibl aa + bb cc + Dd los raccionants

Más detalles

1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas

1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas ap. Ecuacions Difrncials d Primr ordn. Introducción. Ecuacions Linals. Ecuacions d Brnoulli. Ecuacions sparabls.5 Ecuacions Homogénas.6 Ecuacions actas.7 Factor Intgrant.8 Estabilidad dinámica dl quilibrio.9

Más detalles

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO MTEMÁTICS II PRUEBS DE CCESO L UNIVERSIDD DE OVIEDO.- NÁLISIS ª PRTE.- Cálclo Intgral.- MODELO DE PRUEB Dada la parábola, s corta por la rcta d cación ; n los pntos d intrscción s trazan las tangnts a

Más detalles

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}.

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}. SECCIÓN 5. Funciones inversas 5. Funciones inversas Verificar que una función es la inversa de otra. Determinar si una función tiene una función inversa. Encontrar la derivada de una función inversa. f

Más detalles

Prueba ji-cuadrado: χ 2. Estudiar la relación entre dos variables cualitativas. Estudiar la relación entre dos variables cualitativas

Prueba ji-cuadrado: χ 2. Estudiar la relación entre dos variables cualitativas. Estudiar la relación entre dos variables cualitativas ÁNALISIS BIVARIADO Estudiar la rlación ntr dos variabls cualitativas ANALISIS DE FRECUENCIAS, INDEPENDENCIA Estudiar la rlación ntr dos variabls cuantitativas CORRELACIÓN Y REGRESIÓN LINEAL Estudiar la

Más detalles

TAMAÑO DE LA MUESTRA

TAMAÑO DE LA MUESTRA Rv. Epidm. Md. Prv. (003), : 8-4 TAMAÑO DE LA MUESTRA Enric Matu, Jordi Casal CRSA. Cntr d Rcrca n Sanitat Animal / Dp. Sanitat i Anatomia Animals, Univrsitat Autònoma d Barclona, 0893-Bllatrra, Barclona

Más detalles

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General Univrsidad Austral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 8 Mrcados Financiros y Expctativas Profsor: Carlos R. Pitta Macroconomía Gnral, Prof. Carlos R. Pitta, Univrsidad Austral

Más detalles

CALCULO CAPITULO 1 1.6 ASINTOTAS VERTICALES Y HORIZONTALES

CALCULO CAPITULO 1 1.6 ASINTOTAS VERTICALES Y HORIZONTALES 1.6 ASINTOTAS VERTICALES Y HORIZONTALES 1.6.1.- Definición. Una asíntota es una recta que se encuentra asociada a la gráfica de algunas curvas y que se comporta como un límite gráfico hacia la cual la

Más detalles

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,

Más detalles

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA CÓDIGO TÉCNICO DE LA EDIFICACIÓN ACONDICIONAMIENTO TÉRMICO E HIGROMÉTRICO: CÁLCULO SEGÚN CTE El acondicionaminto térmico higrométrico s rcog n l Documnto Básico HE Ahorro d Enrgía, cuyo índic s: HE 1 Limitación

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada. MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El

Más detalles

DERIVACIÓN DE UNA FUNCIÓN REAL DE VARIABLE REAL

DERIVACIÓN DE UNA FUNCIÓN REAL DE VARIABLE REAL Drivación una función ral variabl ral DERIVACIÓN DE UNA FUNCIÓN REAL DE VARIABLE REAL Autor: Patrici Molinàs Mata (pmolinas@uoc.u), José Francisco Martínz Boscá (jmartinzbos@uoc.u) ESQUEMA DE CONTENIDOS

Más detalles

Tema 3 La elasticidad y sus aplicaciones

Tema 3 La elasticidad y sus aplicaciones Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad

Más detalles

Luis G. Cabral Rosetti. El Enigma del Radio de Carga del Neutrino p.1

Luis G. Cabral Rosetti. El Enigma del Radio de Carga del Neutrino p.1 E Enigma d Radio d Carga d Nutrino Luis G. Cabra Rostti Dpartamnto d Física d Atas Enrgías, ICNUNAM. E Enigma d Radio d Carga d Nutrino p.1 Pan d a Chara: 1. Introducción 2. Factors d forma d Nutrino 3.

Más detalles

UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Maritza de Franco

UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Maritza de Franco UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Marita d Franco A Francisco José, Shrl, Marión, Paola, Constanc, Luis Migul Migul. AGRADECIMIENTOS Al Ing. Pdro Rangl por su comprnsión,

Más detalles

I. Determinar los siguientes límites, aplicando las propiedades. lim =

I. Determinar los siguientes límites, aplicando las propiedades. lim = Ejercicios resueltos I. Determinar los siguientes límites, aplicando las propiedades ) 3 + 2 4 3 + 2 4 = (2) 3 + 2 (2) 2 - (2) - 4 Sustituir la por el 2 = 8 + 8-2 - 4 = 0 Aplicar límite a cada término

Más detalles

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ Capítulo Nº 8: La rntabilidad n monda nacional d una invrsión n monda xtranjra Marco Antonio Plaza Vidaurr APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2.

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2. Tm Límits Mtmátics II º Bchillrto TEMA LIMITES CÁLCULO DE LÍMITES EJERCICIO : D un dinición pr sts prons y rprséntls gráicmnt: ) ) 9 6 c) ) ) Cundo s proim, l unción s hc muy grnd ) Cundo s proim, l unción

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático Análisis Matemático Unidad 4 - Límite de una función en un punto Límite de una función en un punto El límite de una función para un valor de x es el valor al que la función tiende en los alrededores de

Más detalles

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS (EDOS)

ECUACIONES DIFERENCIALES ORDINARIAS (EDOS) EUAIONES DIFERENIALES ORDINARIAS EDOS.- Introducción onsidrmos los siguints roblmas. Problma uáls srán las curvas qu vrifican qu la ndint n cada uno d sus untos s igual al dobl d la suma d las coordnadas

Más detalles

El Verdadero Cálculo de la Devaluación

El Verdadero Cálculo de la Devaluación El vrdadro alulo d la Dvaluaión El Vrdadro Cálulo d la Dvaluaión Riardo Botro G. rbgstoks@hotmail.om Casi a diario nontramos n la prnsa onómia inormaión omo sta El día d ayr la tasa rprsntativa dl mrado

Más detalles

Tema 8. Limite de funciones. Continuidad

Tema 8. Limite de funciones. Continuidad . Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito asítota horizotal... 8.

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

La integral Indefinida MOISES VILLENA MUÑOZ

La integral Indefinida MOISES VILLENA MUÑOZ . DEFINIIÓN. TÉNIAS DE INTEGRAIÓN.. FORMULAS.. PROPIEDADES.. INTEGRAIÓN DIRETA.. INTEGRAIÓN POR SUSTITUIÓN.. INTEGRAIÓN POR PARTES..6 INTEGRALES DE FUNIONES TRIGONOMÉTRIAS..7 INTEGRAIÓN POR SUSTITUIÓN

Más detalles

PRÁCTICAS DE FUNDAMENTOS DE REGULACIÓN AUTOMÁTICA CON MATLAB

PRÁCTICAS DE FUNDAMENTOS DE REGULACIÓN AUTOMÁTICA CON MATLAB PRÁCTICAS DE FUNDAMENTOS DE REGULACIÓN AUTOMÁTICA CON MATLAB PRÁCTICA Nº 3: RESPUESTA DE SISTEMAS 4. RESPUESTA TEMPORAL DE SISTEMAS Contnido: D las funcions d transfrncia y sistmas antriors, s prtnd obtnr

Más detalles

núm. 56 lunes, 23 de marzo de 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS

núm. 56 lunes, 23 de marzo de 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS núm. 56 luns, 23 d marzo d 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR C.V.E.: BOPBUR-2015-01880 SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS Convocatoria pública d la Diputación Provincial d Burgos

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía Ecuación para cirquitons n ínas d transmisión con carga éctrica discrta. K. J. Candía Dpartamnto d Ectrónica, Univrsidad d Tarapacá, Arica, Chi Emai: kchandia@uta.c Rsumn En sta Chara s mustra un mcanismo

Más detalles

Coeficiente de correlación parcial

Coeficiente de correlación parcial Coficint d corrlación parcial.- Introducción....- Corrlación parcial mdiant l rcurso d diagramas d Vnn.... 3 3.- Corrlación parcial como corrlación ntr rsiduals... 6 4.- Coficint d rgrsión múltipl y coficint

Más detalles

FUNCIÓN RACIONAL. 1 es racional x. es racional. es racional. es racional. es racional. El dominio de toda función racional es igual al conjunto ( ) 0

FUNCIÓN RACIONAL. 1 es racional x. es racional. es racional. es racional. es racional. El dominio de toda función racional es igual al conjunto ( ) 0 FUNCIÓN RACIONAL Función Racional. Dados polinomios p( ) q( ) tales que no tienen actores comunes, se deine la unción racional como la unción ormada por el cociente de los polinomios Ejemplos de unciones

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A. PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.. CONCEPTO DE DOSADO. PARÁMETROS GEOMÉTRICOS 3. PARÁMETROS INDICADOS 4. PARÁMETROS EFECTIVOS 5. PARÁMETROS DE PÉRDIDAS MECÁNICAS 6. RESUMEN DE PARÁMETROS 7. OTROS

Más detalles

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r. (Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar

Más detalles

SECRETARIA DE ENERGIA

SECRETARIA DE ENERGIA Juvs 8 d octubr d 0 DIARIO OFICIAL (Primra Scción) 8 SECRETARIA DE ENERGIA NORMA Oficial Mxicana NOM-04-ENER-0, Caractrísticas térmicas y ópticas dl vidrio y sistmas vidriados para dificacions. Etiqutado

Más detalles

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO OPERCIONES UNIRIS PROF PEDRO VRGS UNEFM DPO ENERGÉIC Disponibl n: wwwopracionswordprsscom INERCMBIDORES UBO Y CRCZ: NÁLISIS ÉRMICO NÁLISIS ÉRMICO, CONSIDERCIONES GENERLES nts d scribir las cuacions qu

Más detalles

VI. JUSTICIA. i. - JUSTICIA CRIMINAL.

VI. JUSTICIA. i. - JUSTICIA CRIMINAL. VI. JUSTICIA. i. - JUSTICIA CRIMINAL. Utilizando la d la Administración d Justicia n l o años di 883, i 884 y i 885, publicada por l Ministrio d Graci a minto d lo prvnido n cl Ral dcrto d 18 d marzo d

Más detalles

Aplicaciones de la distribución weibull en ingeniería

Aplicaciones de la distribución weibull en ingeniería COLMEME UAN Aplicacions d la distribución wibull n ingniría Raqul Salazar Morno 1 Abraham Rojano Aguilar 2 Esthr Figuroa Hrnándz Francisco Pérz Soto 1. INTRODUCCIÓN la salud n la vida d una prsona. La

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios

Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl ilar Osorno dl Rosal Olga María Rodríguz Rodríguz http://bit.ly/8l8u

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA DISPERSIÓN - ESPECTRÓMETRO DE PRISMA OBJETIVOS Invstigación d la rgión visibl dl spctro dl átomo d Hidrógno y dtrminación d la constant d Ridbrg. Calibración d la scala dl spctrómtro d prisma. Dtrminación

Más detalles

LA INFLACIÓN Y SU APLICACIÓN EN EL CÁLCULO FINANCIERO

LA INFLACIÓN Y SU APLICACIÓN EN EL CÁLCULO FINANCIERO Mg. Marco Antonio Plaza Vidaurr 1 LA INFLACIÓN Y SU APLICACIÓN EN EL CÁLCULO FINANCIERO La Inflación La inflación s l aumnto d los prcios d los bins y srvicios d la conomía durant varios priodos sguidos.

Más detalles

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones Método d los Elmntos Finitos para Análisis Estructural Alisado d tnsions Campo d tnsions Tnsions n cualquir punto dl lmnto, sgún l MEF: = Dε= DBδ Matriz B contin las drivadas d las N: no son continuas

Más detalles