Tema 8 Límite de Funciones. Continuidad

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 8 Límite de Funciones. Continuidad"

Transcripción

1 Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e Di cual es el límite de: a) lim( a b ) c) a lim e) b b lim g) lim( a b e ) c b b) lim( d e ) d) lim( d ) f) lim( b ) e a) lim( a b ) lim a limb Ahora resolveremos el problema co Wiris: 1. E primer lugar, veremos cómo platear u límite: 1. Pichamos e la pestaña Aálisis, y después pichamos e el botó para resolver u límite: Figura 1.. Cuado pichamos e este, obtedremos:

2 Matemáticas II Tema 8. Figura.. Ua vez teemos el límite plateado, lo relleamos, y pulsamos igual, obteiedo uestro resultado. Si embargo, para o cofudir las órdees, escribiremos a lo que tiede etre parétesis: Figura. *Para escribir algú carácter especial, sólo teemos que ir a la pestaña Símbolos y pulsar sobre el que queremos isertar: Figura 4. Elace co el ejercicio resuelto e la web: 1 b) lim( d e ) lim d lime ( )

3 Educado co Wiris. Solucioario de Problemas de Matemáticas para Segudo de Bachillerato Ahora resolveremos el problema co Wiris: 1. E este caso, escribiremos limite y uestros datos para obteer el resultado, ya que si lo resolvemos como e los ejercicios ateriores, Wiris o logra recoocer la orde: Figura 5. Elace co el ejercicio resuelto e la web: a lim a c) lim 0 b limb Ahora resolveremos el problema co Wiris: 1. Detro de la pestaña Aálisis, pichamos e límite, lo relleamos y obteemos el resultado pulsado el botó igual: Figura 6. Elace co el ejercicio resuelto e la web: b lim 1 b d) lim( d ) (lim ) d 0

4 Matemáticas II Tema 8. Ahora resolveremos el problema co Wiris: 1. Para resolver este límite, sólo teemos que pulsar e el botó de límite, rellearlo y obteer el resultado: Figura 7. Elace co el ejercicio resuelto e la web: b limb e) lim c limc 0 (Puede ser o ) Ahora resolveremos el problema co Wiris: 1. Igual que e el apartado aterior, plateamos el límite, pulsamos igual y obteemos el resultado: Figura 8. Elace co el ejercicio resuelto e la web: e lim 1 e f) lim( b ) (lim ) b 0 4

5 Educado co Wiris. Solucioario de Problemas de Matemáticas para Segudo de Bachillerato Ahora resolveremos el problema co Wiris: 1. Resolveremos este apartado como los ateriores, plateado el límite y pulsado igual para resolverlo: Figura 9. Elace co el ejercicio resuelto e la web: l g) lim( a b e ) lim a limb lime ( ) ( ) Ahora resolveremos el problema co Wiris: 1. Para resolver este último apartado escribiremos la palabra límite como e las figuras 5 y 8: Figura 10. Elace co el ejercicio resuelto e la web:. Defiició de límite. Eplica el sigificado de estas dos epresioes: 1 a) lim 1 b) lim 5

6 Matemáticas II Tema 8. a) lim 1 Podemos coseguir que el valor de ecesario. 1 sea ta grade como queramos si mas que tomar ta grade como sea Co más precisió: dado u úmero k, ta grade como queramos, podemos ecotrar u úmero h, ta grade como sea ecesario tal que > h, etoces: 1 k Ahora resolveremos el problema co Wiris: 1. Plateamos el límite como e el ejercicio aterior, pulsamos igual y obteemos el resultado: Figura 11. Elace co el ejercicio resuelto e la web: 1 b) lim Podemos coseguir que Co mas precisió: dado 1 sea ta próimo a como queramos dado a valores suficietemete grades. 0, podemos ecotrar u úmero h tal que si > h, etoces: 1 6

7 Educado co Wiris. Solucioario de Problemas de Matemáticas para Segudo de Bachillerato Ahora resolveremos el problema co Wiris: 1. Este apartado lo resolveremos de la misma maera que el aterior, pichamos e la pestaña Aálisis, luego e el icoo de límite, relleamos co los datos que teemos y pulsamos igual para obteer el límite correspodiete: Figura 1. Elace co el ejercicio resuelto e la web:. Comparació de ifiitos. Comparado los órdees de ifiito, asiga límite a estas epresioes: a ) lim b ) lim log( c ) lim 10 1) 5 d) lim log( 1) e) lim( 5 1) 5 f ) lim(10 1) g) limlog( ) 10 Resolvemos las actividades propuestas: a ) lim 10 5 Porque la fució epoecial es u ifiito de orde superior a cualquier potecia. 5 1 b ) lim 10 5 Porque el epoete del umerador es mayor que el del deomiador. log( c ) lim 10 1) 5 d) lim log( 1) Porque cualquier potecia es u ifiito de orde superior a cualquier fució logarítmica. Porque toda fució epoecial es u ifiito de orde superior a cualquier fució logarítmica. 7

8 Matemáticas II Tema 8. e) lim( 5 1) Porque las potecias so ifiitos de orde superior a los logaritmos. f ) lim(10 5 1) Porque el miuedo es de grado y el sustraedo de grado / 5. g) lim log( ) 10 Porque las potecias so ifiitos de orde superior a los logaritmos. 4. Límite de ua potecia. Calcula los siguietes límites: 4 a )lim 1 b) lim (log ) 1 1 c ) lim 1 4 a )lim 1 4 Ahora resolveremos el problema co Wiris: 1. Detro de la pestaña Aálisis, pichamos e el icoo de límite, y luego lo relleamos co uestros datos. Debemos recordar que para isertar fraccioes, debemos ir a la pestaña Operacioes y pulsar su correspodiete icoo. Cuado tegamos el límite co uestros datos, pulsamos el botó igual y obteemos el resultado: Figura 1. Elace co el ejercicio resuelto e la web: b ) lim (log ) 1 0 8

9 Educado co Wiris. Solucioario de Problemas de Matemáticas para Segudo de Bachillerato Ahora resolveremos el problema co Wiris: 1. Este apartado lo resolveremos de la misma maera que el aterior, pichamos e la pestaña Aálisis, luego e el icoo de límite, relleamos co los datos que teemos y pulsamos igual para obteer el límite correspodiete: Figura 14. *Para escribir u logaritmo, debemos escribir log y lo que queremos calcular etre parétesis. Elace co el ejercicio resuelto e la web: 1 1 c ) lim 1 (Idetermiació) 1 c) lim 1 e 1 1 lim 1 e 1 Ahora resolveremos el problema co Wiris: 1. Este apartado lo resolveremos como los ateriores. Debemos teer cuidado, de escribir bie el límite, teiedo e cueta las fraccioes y potecias. Figura 15. Elace co el ejercicio resuelto e la web: 9

10 Matemáticas II Tema /0 co radicales. Calcula: lim 1 6 lim umerador y deomiador por Esta idetermiació se resuelve simplificado la fució. Para ello, multiplicado 1 y por 6. ( ( 1 ) ( 6 ) ( 1 ) 1 ) ( 6 ) ( 1 ) ( ) ( ( ) ( 6 ) 1 ) 6 1 lim Ahora resolveremos el problema co Wiris: 1. Para resolver este ejercicio, sólo teemos que escribir el límite como e ejercicios ateriores, y pulsar el botó igual: Figura 16. *Recordamos que para isertar raíces, os teemos que situar e la pestaña Operacioes y después pichamos sobre su icoo. Elace co el ejercicio resuelto e la web: 10

11 Educado co Wiris. Solucioario de Problemas de Matemáticas para Segudo de Bachillerato 6. Fució cotiua. Estudia la cotiuidad de esta fució segú los valores de a: f ) ( a, a, 1 1 La fució es cotiua e 1 cualquiera que sea a, porque esta formada por dos fucioes poliómicas. Estudiémosla e el puto de abcisa 1: lim 1 f ( ) 1 a a lim 1 f ( ) 1 a 1 a Para que F tega límite e = 1, ha de ser: lim f ( ) lim 1 Si 1 1 f ( ) a a a Por tato: a, eiste lim f ( ), y este límite coicide co f ( 1), la fució es cotiua. 1 1 Si a, o eiste lim f ( ). La fució es discotiua, y tedrá u salto fiito e = 1. 1 Ahora resolveremos el problema co Wiris: 1. E primer lugar, demos calcular el límite por la izquierda de 1. Para ello, detro de la pestaña aálisis, pichamos e el icoo de límite por la izquierda, y lo relleamos como hemos hecho e ejercicios ateriores. Figura 17.. Ahora debemos hacer lo mismo, pero co el límite por la derecha de 1. Para isertarlo pichamos e el icoo que está ecima del límite por la izquierda: 11

12 Matemáticas II Tema 8. Figura 18.. Por último, igualamos ambos resultados, despejado a. Para ello, vamos a la pestaña Operacioes, y pulsamos el botó de Resolver ecuació, relleamos ambos térmios y pulsamos igual: Figura 19. Elace co el ejercicio resuelto e la web: 7. Discotiuidades. Estudia la cotiuidad de la fució siguiete: y Hallamos las raíces del deomiador. So = -1 y =. E estos putos o está defiida la fució. Estudiemos el límite de la fució e esos putos: 1

13 Educado co Wiris. Solucioario de Problemas de Matemáticas para Segudo de Bachillerato lim 1 Si Si 1 1, y, y lim 0 ( lim 1)( ) 5 0 ( 1)( ) La fució es discotiua e = -1 y e = porque o está defiida e esos putos. E = -1 tiee ua discotiuidad ifiita y, por tato, ua asítota vertical. E = tiee ua discotiuidad evitable porque eiste límite fiito e ese puto. Ahora resolveremos el problema co Wiris: 1. E primer lugar, resolvemos el primer límite (cuado tiede a -1): Figura 0.. Ahora debemos saber a qué tiede la ecuació e cada lado de -1. Para ello, calculamos el límite por la izquierda, y el límite por la derecha: 1

14 Matemáticas II Tema 8. Figura 1.. Por último, calculamos el segudo límite (cuado tiede a ): Figura. Elace co el ejercicio resuelto e la web: 14

15 Educado co Wiris. Solucioario de Problemas de Matemáticas para Segudo de Bachillerato 8. Cotiuidad e u puto. Calcula a y b para que sea cotiua la siguiete fució: a. f ( ) b, 4, 1 1 F es cotiua e 1 y cualesquiera que sea los valores de a y b, por estar defiida por fucioes cotiuas. Estudiemos los límites e = -1 y =. Cálculo del lim f ( ) : 1 lim f ( ) lim( a) 1 a 1 1 Para que sea cotiua e lim f ( ) lim b b 1, debe ser 1 a b. 1 1 Cálculo del lim f ( ) : lim f ( ) limb b Para que sea cotiua e, debe ser b 10 lim f ( ) lim( 4 10 Llevado el valorb 10 a la igualdad aterior: 1 a 10 a 9. Si a 9 y b 10, f es cotiua e 1 y e, porque lim f ( ) f ( 1) 10 1 y lim f ( ) f () 10. Ahora resolveremos el problema co Wiris: 1. Lo primero que haremos es calcular el límite cuado tiede a -1 por ambos lados: Figura. 15

16 Matemáticas II Tema 8.. Después, calculamos el límite cuado tiede a por ambos lados: Figura 4. Elace co el ejercicio resuelto e la web: 9. Teorema de Bolzao. a) Prueba que la fució: y 4 5 corta al eje OX e el itervalo (-, -1). b) Busca otro itervalo e el que eista ua solució de la ecuació y aproima su valor hasta las décimas. 4 a) La fució f ( ) 5 es cotiua e por ser poliómica, por tato, será cotiua e el itervalo, 1. Además, f ( ) Sigo de f ( 1) f () sigo de f (1). Así hemos probado que f verifica las hipótesis del teorema de Bolzao y podemos asegurar que eiste u puto 4 c (, 1), tal que f ( c) c c 5 0. E ese puto c, la fució corta al eje OX. Ahora resolveremos el problema co Wiris: 1. Para resolver este ejercicio, lo primero que debemos hacer es escribir la fució, y a cotiuació, idicar, dode debería estar la, el úmero que queremos isertar e dicha fució. De esta forma, Wiris sustituye directamete la variable por el úmero que le hemos idicado. 16

17 Educado co Wiris. Solucioario de Problemas de Matemáticas para Segudo de Bachillerato Figura 5. Elace co el ejercicio resuelto e la web: b) Tateado: f ( 0) 5; f ( 1) 6; f ( ) 5; f ( ) ; como f es cotiua e, y sigo de f () sigo de f (), el teorema de Bolzao os asegura que eiste u valor c (,) tal que f ( c) 0. Para aproimar su valor, tateamos co valores del itervalo (, ): f (,) 1,5; f (,4) 0,596. Por tato,, 4 es u valor que se aproima e meos de ua décima a ua solució de la ecuació dada. Ahora resolveremos el problema co Wiris: 1. De la misma forma que e el apartado aterior, vamos tateado co distitos úmeros, para comprobar que el valor se ecuetra etre y : Figura 6. 17

18 Matemáticas II Tema 8. Elace co el ejercicio resuelto e la web: 10. Teorema de Bolzao. Prueba que las gráficas de las fucioes: f ( ) se( ) y aproimadamete. 1 g( ) se corta e algú puto y localízalo Tateado, ecotramos que: f (1) 0,84 g(1) 1 f (1) g(1) f (1) g(1) (0) f () 0,909 g(1) 0.5 f () g() f () g() (0) Como f y g so cotiuas e el itervalo1,, tambié lo es la fució f g. además, f g cumple: Sigo de [ f (1) g(1)] sigo de [ f () g()]. Segú el teorema de Bolzao, eistirá u puto c e el itervalo (1, ). Tal que f ( c) g( c) 0 f ( c) g( c). Luego f y g se corta e algú puto compredido etre 1 y. Ahora resolveremos el problema co Wiris: 1. Este ejercicio, lo resolveremos igual que el aterior. Escribiremos ambas fucioes, y luego, iremos probado co distitos úmeros hasta obteer el puto e el que se corta: Figura 7. 18

19 Educado co Wiris. Solucioario de Problemas de Matemáticas para Segudo de Bachillerato Elace co el ejercicio resuelto e la web: 11. Valor itermedio. Dada la fució f ( ) 5 prueba que eiste u valor c (1, ), tal que f ( c) 0. f, por ser ua fució poliómica, es cotiua e todo. Además, f ( 1) y f ( ) 5: 0 5. Segú el teorema de los valores itermedios, como 0 está compredido etre f (1) y f () eistirá u úmero c (1,) tal que f ( c) 0. Ahora resolveremos el problema co Wiris: 1. De uevo este ejercicio lo resolveremos escribiedo la fució y calculado el valor que sustituyédolo e esta, os devuelve 0 Figura 8. Elace co el ejercicio resuelto e la web: 19

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Unidad 10: LÍMITES DE FUNCIONES

Unidad 10: LÍMITES DE FUNCIONES Uidad 1: LÍMITES DE FUNCIONES LÍMITES 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Ua sucesió de úmeros reales es u cojuto ordeado de iiitos úmeros reales. Los úmeros reales a1, a,..., a,... se llama térmios,

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir PRECONCEPTO. LIMITES DE FUNCIONES. Ejemplo: Sea la fució F() = X, evalúe la fució para valores de X cercaos a, es decir X se acerca hacia el umero por la izquierda ( - ) X,,7,5,47,68,89,9,96,99,99,995,

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

8.- LÍMITES DE FUNCIONES

8.- LÍMITES DE FUNCIONES 8.- LÍMITES DE FUNCIONES.- DOMINIO DE DEFINICIÓN. Halla el domiio de defiició de f() = + 5+6 Solució: El domiio es -{,}. Halla el domiio de defiició de f() = 6 Solució: El domiio es (-,-] [, ).. Halla

Más detalles

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18 Los úmeros reales.. Los úmeros reales El cojuto de los úmeros reales está formado por los úmeros racioales y los irracioales. Se represeta por la letra Los úmeros racioales so los úmeros eteros, los decimales

Más detalles

estar contenido estar contenido o ser igual pertenece no pertenece existe para todo < menor menor o igual > mayor mayor o igual

estar contenido estar contenido o ser igual pertenece no pertenece existe para todo < menor menor o igual > mayor mayor o igual Tema I : Fucioes reales de variable real. Límites y cotiuidad 1. La recta real : itervalos y etoros. 2. Fucioes reales de variable real. 3. Fucioes elemetales y sus gráficas. 4. Límites de fucioes reales

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

Límite de una función en un punto

Límite de una función en un punto Límite de ua ució e u puto Para apreder bie el cocepto de límite comezaremos co amiliarizaros co la siguiete termiología. c ( tiede a c por la izquierda ): toma valores cada vez más cercaos a c, pero meores

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

UNITAT 2. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

UNITAT 2. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS UNITAT. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.1.- POLINOMIOS FACTORIZACIÓN. REGLA DE RUFFINI U poliomio co idetermiada x es ua expresió de la forma: Los úmeros que acompaña a la icógita se

Más detalles

Tutorial MT-b3. Matemática Tutorial Nivel Básico. Potencia y Raíces

Tutorial MT-b3. Matemática Tutorial Nivel Básico. Potencia y Raíces 14568901456890 M ate m ática Tutorial MT-b Matemática 006 Tutorial Nivel Básico Potecia y Raíces Matemática 006 Tutorial Potecias y raíces Marco teórico: Potecias 1. Defiició: Ua potecia es el resultado

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

Apellidos y Nombre: Aproximación lineal. dy f x dx

Apellidos y Nombre: Aproximación lineal. dy f x dx INGENIERÍA DE TELECOMUNICACIÓN HOJA 0 Aproximació lieal Defiició (Diferecial).- Sea y = f ( x) ua fució derivable e u itervalo abierto que cotiee al úmero x, - La diferecial de x es igual al icremeto de

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

CÁLCULO DIFERENCIAL. 1.- Estudia la continuidad de las siguientes funciones:

CÁLCULO DIFERENCIAL. 1.- Estudia la continuidad de las siguientes funciones: ejerciciosyeamees.com CÁLCULO DIFERENCIAL.- Estudia la cotiuidad de las guietes fucioes: - + f() = ; g()= ; h()= + - ( - )(+) + - - - - - < < 0 i()= e j()= - k()= - > cos 0 = 0 + se l()= m()= = 0 = 0 Sol:

Más detalles

Series infinitas de números reales. Series convergentes

Series infinitas de números reales. Series convergentes Series ifiitas de úmeros reales. Series covergetes Series ifiitas de úmeros reales. Series covergetes Las sucesioes de úmeros reales se itrodujero co la iteció de poder cosiderar posteriormete sus sumas

Más detalles

Sucesiones. Límite de una

Sucesiones. Límite de una Capítulo 3 Sucesioes. Límite de ua sucesió 3.. Itroducció La oció de sucesió es u istrumeto importate para el estudio de u gra úmero de problemas relativos a las fucioes. Ua sucesió es, simplemete, ua

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla de itegrar que la primera.

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

Polinomio Mínimo en Campos Cuadráticos

Polinomio Mínimo en Campos Cuadráticos Poliomio Míimo e Campos cuadráticos Poliomio Míimo e Campos Cuadráticos 1. Método de solució Partiedo de que u cuerpo cuadrático es K = Q ( a + b), vamos a propoer u método o estructura para ecotrar el

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

4. Sucesiones de números reales

4. Sucesiones de números reales 4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

TEMA 25 (Oposiciones de Matemáticas)

TEMA 25 (Oposiciones de Matemáticas) TEMA 25 (Oposicioes de Matemáticas) LÍMITES DE FUNCIONES. CONTINUIDAD Y DISCONTINUIDAD. TEOREMA DE BOLZANO.. Itroducció. 2. Límites de fucioes. 2.. Límite de ua fució e u puto. 2.2. Límites laterales.

Más detalles

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1 TEMA : Potecias y raíces Tema : Potecias y raíces ESQUEMA DE LA UNIDAD.- Cocepto de potecia..- Potecias de expoete atural..- Potecias de expoete etero egativo..- Operacioes co potecias..- Notació cietífica...-

Más detalles

Objetivos partir de su. nte de una función, Relacionar ASÍN CON CLA 11.4.

Objetivos partir de su. nte de una función, Relacionar ASÍN CON CLA 11.4. CONTENIDOS.- MAPA CONCEPTUAL DE LA UNIDAD....- CONCEPTO DE LÍMITE DE UNA FUNCIÓNN EN UN PUNTO....- LÍMITES LATERALES: CARACTERIZACIÓN....- LÍMITES Y OPERACIONES CON FUNCIONES: ÁLGEBRA DE LÍMITES... 5.-

Más detalles

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n ema 3 Series de Fourier. Hemos visto, e el tema 8, que alguas fucioes reales puede represetarse mediate su desarrollo e serie de potecias, lo que sigifica que puede aproximarse mediate poliomios. Si embargo,

Más detalles

y = c n x n : Sustituyendo en la ecuación de partida obtenemos n=0 Si escribimos todas las potencias con el mismo exponente se obtiene:

y = c n x n : Sustituyendo en la ecuación de partida obtenemos n=0 Si escribimos todas las potencias con el mismo exponente se obtiene: Ejercicio. Obteer los cuatro primeros térmios o ulos de la solució e forma de serie de potecias de x del problema de valores iiciales < (x + )y y = y() = : y () = Solució Como os pide que resolvamos u

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

1. Serie de Potencias

1. Serie de Potencias . Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada

Más detalles

Series de números reales

Series de números reales Series de úmeros reales Covergecia de series uméricas Ejercicio. series: a) ) + b) 3 3 ) c) +) Aplicar el criterio de la raíz para estudiar la posible covergecia de las siguietes Solució. a) Aplicamos

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

Números reales. Operaciones

Números reales. Operaciones Números reales. Operacioes Matemáticas I 1 Números reales. Operacioes Números racioales. Caracterizació. Recuerda que u úmero r es racioal si se puede poer e forma de fracció de úmeros eteros de la forma

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Epresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

Función Logaritmo. 1 t dt, x > 0. ln x =

Función Logaritmo. 1 t dt, x > 0. ln x = Uidad 3 Fució Logaritmo Epoecial 3. Logaritmo a través de la itegral propiedades Fució Logaritmo Deició. Deimos la fució Logaritmo Natural l : (0, + R l = t dt, > 0 Observacioes: (a l = 0 Demostració.

Más detalles

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos. CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió

Más detalles

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados Métodos Numéricos SC 854 Auste a curvas c M Valezuela 007 008 7 de marzo de 008 1 Defiició del problema E el problema de auste a curvas se desea que dada ua tabla de valores i,f i ecotrar ua curva que

Más detalles

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal)

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal) 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) 46 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) Fucioes Pares e Impares E el maejo de

Más detalles

TEMA 1 NÚMEROS REALES

TEMA 1 NÚMEROS REALES . Objetivos / Criterios de evaluació TEMA 1 NÚMEROS REALES O.1.1 Coocer e idetificar los cojutos uméricos N, Z, Q, I,R, Im O.1.2 Saber covertir úmeros racioales e fraccioes. O.1.3 Redodeo y aproximació

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

SERIES POTENCIALES. 1.- Hallar el campo de convergencia de la serie potencial: 3 2 n. n n. 2 n = = ( ) ( 1)

SERIES POTENCIALES. 1.- Hallar el campo de convergencia de la serie potencial: 3 2 n. n n. 2 n = = ( ) ( 1) Escuela de Igeieros de Bilbao Departameto Matemática Aplicada SERIES POTENCIALES.- Hallar el campo de covergecia de la serie potecial: ( + ) 3 y Realizado el cambio de variable, + 3 = y, teemos la serie:

Más detalles

Tema 2: Potencias, radicales y logaritmos

Tema 2: Potencias, radicales y logaritmos Tema 2: Potecias, radicales y logaritmos Potecias Propiedades veces a = aa aa a 0 = 1 a = 1 a 5 = 8 = 1 8 ( 20 89,98 )0 = 1 a m = m a 5 2 = 5 2 Operacioes Producto y divisió de potecias de la misma base:

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documeto es de distribució gratuita y llega gracias a Ciecia Matemática www.cieciamatematica.com El mayor portal de recursos educativos a tu servicio! Cálculo: Series Fucioales. Taylor y Fourier Atoio

Más detalles

Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA

Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA Proesora: María José Sáchez Quevedo FUNCIÓN DERIVADA. DERIVADA DE UNA FUNCIÓN EN UN PUNTO ( Siiicado eométrico). ECUACIÓN DE LA RECTA TANGENTE Y DE LA NORMAL A UNA CURVA EN UN PUNTO. FUNCIÓN DERIVADA 4.

Más detalles

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES Lecció : POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES.1.- POTENCIA DE UNA FRACCIÓN Si se tiee e cueta que las fraccioes so cocietes idicados y que la potecia de u cociete es igual al cociete de potecias, se

Más detalles

INTEGRALES DE RIEMANN

INTEGRALES DE RIEMANN NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES DE RIEMANN Ig. Jua Sacerdoti Departameto de Matemática Facultad de Igeiería Uiversidad de Bueos Aires 00 INDICE.- INTEGRAL..- INTRODUCCIÓN..-

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

CUADRATURA GAUSSIANA

CUADRATURA GAUSSIANA CUADRATURA GAUSSIANA Este método de basa e muestrear el itegrado de la fució cuya itegral se desea ecotrar, a valores que represeta raíces de poliomios ortogoales Los más populares de éstos so los poliomios

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

Práctica 3 Sucesiones y series

Práctica 3 Sucesiones y series Práctica 3 Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y Sum que os permitirá, e la

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Respuesta: como cociente para multiplicarlo por el primer numerador que.el mismo proceso hacemos para la segunda fracción:

Respuesta: como cociente para multiplicarlo por el primer numerador que.el mismo proceso hacemos para la segunda fracción: PRE EVALUACION: Resuelve la diferecia El m.c.m. de los deomiadores es el producto de ambos. tiees que dividir por cada deomiador y el factor que te queda como cociete, multiplicar por su umerador: E el

Más detalles

Hoja de Problemas Tema 3. (Sucesiones y series)

Hoja de Problemas Tema 3. (Sucesiones y series) Depto. de Matemáticas Cálculo (Ig. de Telecom.) Curso 23-24 Hoja de Problemas Tema 3 (Sucesioes y series) Sucesioes de úmeros reales. Sea {a } N, {b } N sucesioes de úmeros reales. Demostrar o refutar

Más detalles

FUNCIONES VECTORIALES DE VARIABLE ESCALAR

FUNCIONES VECTORIALES DE VARIABLE ESCALAR CAPITULO II CALCULO II Competecia FUNCIONES VECTORIALES DE VARIABLE ESCALAR Recooce y aplica satisfactoriamete las operacioes, procedimietos, reglas y métodos del cálculo itegral y diferecial e las fucioes

Más detalles

Tema 8. Derivabilidad y reglas de derivación. 8.1 Derivada de una función

Tema 8. Derivabilidad y reglas de derivación. 8.1 Derivada de una función Tema 8 Derivabilidad y reglas de derivació 8. Derivada de ua fució f : I R es derivable e a I si eiste el límite que llamaremos f 0 (a) f() f(a) lim a a Ejercicio 8.. Si f() 3 calcular f 0 () f(a + ) f(a)

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez TEMA 3. Sucesioes y series 3. Sucesioes

Más detalles

INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA. GUIA Nº 3: Sucesiones, Límite de Sucesiones y Límite de Funciones en R

INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA. GUIA Nº 3: Sucesiones, Límite de Sucesiones y Límite de Funciones en R P á g i a INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA GUIA Nº 3: Sucesioes, Límite de Sucesioes y Límite de Fucioes e R GRADO: º AREA: MATEMÁTICAS PROFESORA: Ebli Martíez M. ESTUDIANTE: PERIODO: III

Más detalles

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,...

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,... SUCESIONES Y SERIES. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto

Más detalles

Construcción de los números reales.

Construcción de los números reales. B Costrucció de los úmeros reales. E el cojuto C de las sucesioes de Cauchy de úmeros racioales defiimos la relació siguiete: si (x ) =1 e (y ) =1 so dos sucesioes de C etoces (x ) =1 (y ) =1, si lím (x

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras. Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como

Más detalles

Números racionales. Caracterización.

Números racionales. Caracterización. Números reales Matemáticas I Aplicadas a las Ciecias Sociales 1 Números racioales. Caracterizació. ecuerda que u úmero r es racioal si se puede poer e forma de fracció de úmeros eteros de la forma a b

Más detalles

FM Programa Focalizado. Potencias y Raíces. Básico 3

FM Programa Focalizado. Potencias y Raíces. Básico 3 FM11-0 Programa Focalizado Potecias y Raíces Básico Programa Focalizado Matemática 008 Estimado alumo o Estimada aluma: INTRODUCCIÓN Como parte de la preparació y formació itegral para la PSU de Matemática,

Más detalles

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas.

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas. Matemáticas Sesió No. 6 Nombre: Fucioes expoeciales y logarítmicas y el uso de las progresioes aritméticas y geométricas. Cotextualizació Las fucioes expoeciales y logarítmicas se les cooce como trascedetes,

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Como una breve introducción presentamos un pequeño problema de células ideales, resuelto afortunadamente. El cual dice lo siguiente:

Como una breve introducción presentamos un pequeño problema de células ideales, resuelto afortunadamente. El cual dice lo siguiente: Límite de ua sucesió umérica. Como ua breve itroducció presetamos u pequeño problema de células ideales, resuelto afortuadamete. El cual dice lo siguiete: Demostrar que al año habrá () células, sabiedo

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

Criterios de Convergencia

Criterios de Convergencia Semaa - Clase 3 0/0/0 Tema : Series Criterios de Covergecia La preguta que os plateamos es la siguite: Si hacemos que N etoces la suma N k= a k, tiee u límite? Existe alguas formas de averiguarlo, a pesar

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Álgebra I Práctica 2 - Números naturales e inducción

Álgebra I Práctica 2 - Números naturales e inducción FCEyN - UBA - Segudo Cuatrimestre 203 Álgebra I Práctica 2 - Números aturales e iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria (a) + 2 + 3 + 4 + + 00, (b) + 2 + 4 + 8

Más detalles

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:...

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:... EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:CURSO: CORRIGIÓ:REVISÓ: 4 5 NOTA Todas sus respuestas debe ser justificadas

Más detalles

Fracciones parciales

Fracciones parciales Fraccioes parciales Ua fució racioal puede ser llevada a otra equivalete depediedo del divisor 0de la misma, de tal modo que el divisor puede presetar térmios que permita factorizarlo atediedo a : a) Factores

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

SUCESIONES Y SERIES DE FUNCIONES

SUCESIONES Y SERIES DE FUNCIONES CAPÍTULO XV. SUCESIONES Y SERIES DE FUNCIONES SECCIONES A. Campo de covergecia. Covergecia uiforme. B. Series de potecias. Itervalos de covergecia. C. Desarrollo de fucioes e series de potecias. D. Aplicacioes

Más detalles

Problemas de Matemáticas (2016/2017). 1. Preliminares.

Problemas de Matemáticas (2016/2017). 1. Preliminares. Problemas de Matemáticas (6/7.. Prelimiares... Comprobar visualmete co diagramas de Ve las siguietes igualdades etre cojutos: a A B = (A B (B A (A B b A (B C = (A B (A C.. Sea f : L L la fució defiida

Más detalles

Sumatoria, Progresiones y Teorema del Binomio

Sumatoria, Progresiones y Teorema del Binomio Capítulo Sumatoria, Progresioes y Teorema del Biomio.. Símbolo Sumatorio Es u símbolo muy útil y coveiete que permite escribir sumas e forma abreviada. Este símbolo se represeta mediate la letra griega

Más detalles