Tema 11 Cálculo de Probabilidades.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 11 Cálculo de Probabilidades."

Transcripción

1 Tema 11 Cálculo de Probabilidades Experimentos aleatorios. Espacio muestral PÁGINA 248 EJERCICIOS 1. Decide si los siguientes experimentos son aleatorios o deteministas. a) Medir apotemas de un pentágono regular de perímetro 0 cm. Determinista: tiene una medida que se puede calcular por el Teorema de Pitágoras. b) Predecir las personas que acuden a un centro comercial un día determinado. Aleatorio. c) Tiempo que hará el ganador de una maratón. Aleatorio d) Calcular el coste de una llamada de teléfono de 1 minuto de duración. Determinista. 2. Un experimento aleatorio consiste en extraer al azar una bola de una urna en la que hay 5 bolas numeradas del 1 al 5 y anotar el número de la bola que hemos extraído. Cuál es el espacio muestral asociado a este experimento? E 1, 2,, 4, 5 Cuáles son los puntos muestrales o sucesos elementales? Serían 1,2,,4,5. De una baraja española se han tomado las 12 figuras. Se considera el experimento aleatorio que consiste en extraer una carta de este grupo de cartas. Cuál es el espacio muestral asociado a este experimento? E sota oros, caballo oros, rey oros, sota copas, caballo copas, rey copas, sota bastos, caballo bastos, rey bastos, sota espadas, 11.2 Suceso aleatorio caballo espadas, rey espadas PÁGINA 249 EJERCICIOS 4 De una baraja española extraemos una carta. Obtén los elementos que forman los siguientes sucesos. a) Extraer una carta del palo de bastos. A 1 bastos, 2 bastos, bastos, 4 bastos, 5 bastos, 6 bastos, 7 bastos, sota bastos, caballo bastos, rey bastos b) Extraer una figura de oros. B sota oros, caballo oros, rey oros c) Extraer un 5 o una carta del palo de copas. C 5 oros, 5 espadas, 5 bastos, 1 copas, 2 copas, copas, 4 copas, 5 copas, 6 copas, 7 copas, sota copas, caballo copas, rey copas d) Extraer un as. D asoros, ascopas, asbastos, asespadas e) Cuántos elementos tiene el espacio de sucesos de este experimento? sucesos están asociados a este experimento aleatorio. 5 Se tiene una urna con una bola blanca, otra roja y otra verde. Se van extrayendo bolas de la urna hasta que aparece la bola verde. bola blanca bola roja bola verde 1

2 a) Determina el espacio muestral de este experimento aleatorio. E R B V, B R V, R V, B V, V Son cinco elementos. b) Obtén los elementos del suceso "no aparecer la bola verde hasta la tercera extracción" B R B V, B R V c) Obtén los elementos del suceso "aparece bola verde en la segunda extracción" C R V, B V 11. Operaciones con sucesos PÁGINA 251 EJERCICIOS 6 Se lanza un dado cúbico con sus caras numeradas del 1 al 6 y se observa la puntuación de la cara superior. Se consideran los sucesos A "salir un número par" 2, 4, 6 B "salir un múltiplo de ", 6 a) Obtén los sucesos A c, A B, A B A c "salir un número impar" 1,, 5 A A c 1, 2,, 4, 5, 6 E pero además verificándose que A A c. Por lo tanto A y A c es un sistema completo de sucesos. A B 2,, 4, 6 A B 6 b) Forman A y B un sistema completo de sucesos? No forman un sistema completo de sucesos dado que no cumplen que: A B E es A B 2,, 4, 6 faltando 1, 5, A y B no son incompatibles pues A B 6 7 Del experimento consistente en extraer una carta de una baraja española se consideran los siguientes sucesos: A "extraer un rey" B "extraer un oro" C "extraer un 5 o un 6" Indica si hay una pareja de sucesos incompatibles. A y B son incompatibles? A B rey de oros. Entonces son compatibles. A y C son incompatibles? A C. Entonces son incompatibles. b y C son incompatibles? C B cinco de oros, seis de oros. Entonces son compatibles Frecuencia y probabilidad. Ley de los grandes números. PÁGINA 25 EJERCICIOS 8 En la tabla de la derecha se recoge el número de veces que ha ocurrido el suceso I "salir impar" al lanzar un dado numerado del 1 al 6 un número creciente de veces. Estima el valor de la probabilidad de I y razona si el dado está equilibrado. Vamos a aplicar la Ley de los grandes números. 2

3 n I h n I PI lim n h n I Como esto es distinto de 0. 5, el dado no está equilibrado. Hay mas probabilidad de que salga par Definición clásica de probabilidad. Regla de Laplace. PÁGINA 254 EJERCICIOS 9 Se elige al azar un ficha del dominó. a) Obtén la probabilidad de haber elegido la blanca doble. nº casos favorables a la blanca doble Pblanca doble 1 28 nº casos favorables a la blanca doble 1 8 CR 7,2 C 721,2 C 8,2 8! 2 8 2! 2! 8 6! 7 2 6! Razonamos que tenemos siete elementos (del 0 al 6) para rellenar los dos huecos de la ficha de dominó, pudiéndose repetir pero sin influir el orden. b) Obtén la probabilidad de haber elegido una ficha doble. nº casos favorables a ficha doble Pficha doble nº de casos favorables a ficha doble 7 pues debe aparecer repetido uno de los siguientes números 0, 1, 2,, 4, 5, 6 c) Obtén la probabilidad de que los puntos de la ficha sumen 4. Psuma de puntos sea 4 nº casos favorables a suma de puntos sea 4 28 nº de casos favorables a suma de puntos sea 4 pues son las fichas 0, 0,1,,2, 2 10 Una experiencia aleatoria consiste en lanzar tres monedas al aire. Calcula la probabilidad de los siguientes sucesos. nº casos favorables a tres caras Pobtener tres caras 1 8 nº casos favorables a tres caras 1 pues las tres monedas a la vez tienen que tener su cara visible. VR 2, 2 8 pues tenemos tres monedas en cada una de las cuales puede salir cara o cruz. Pobtener dos caras y una cruz nº casos favorables a dos caras y una cruz 8 nº casos favorables a dos caras y una cruz que son CCX, CXC, XCC Pobtener dos cruces y una cara

4 nº casos favorables a dos cruces y una cara 8 nº casos favorables a dos cruces y una cara que son XXC, XCX, CXX 11 Se considera el experimento aleatorio que consiste en lanzar dos dados y anotar la suma de los puntos de las caras superiores. Halla la probabilidad de los siguientes sucesos. a) Obtener suma igual a. nº casos favorables a suma es Psuma es VR 6, pues tenemos seis elementos (1, 2,, 4, 5, 6) que tomamos de dos en dos con repetición e influyendo el orden. nº casos favorables a suma es 2 pues los casos favorables son 2, 1,1, 2 b) Obtener suma mayor que 9. Psuma mayor que Suma mayor que 9 es 10,11 y 12 lo cual podemos hacer de la siguientes formas: 10 5, 5,4, 6,6, 4 tres formas 11 6, 5,5, 6 dos formas 12 6, 6 una forma c) Obtener una suma menor o igual que 5. Psuma menor o igual que Suma menor o igual que 5 es 5, 4, y 2 lo cual podemos hacer de las siguientes formas: 5 2,,, 24, 1,1, 4 cuatro formas 4 2, 2,, 1,1, tres formas 2, 1,1, 2 dos formas 2 1, 1 una forma ATENCIÓN: la sumas de dos dados vienen dadas por la siguiente tabla: Dos personas escriben al azar una vocal, cada una en un papel. a) Obtén la probabilidad de que ambas escriban la misma vocal. Pmisma vocal 5 25 nº casos favorables a misma vocal 5 pues tenemos cinco vocales a, e, i, o, u VR 5, dado que tenemos cinco elementos distintos que tomamos de dos en dos y se pueden repetir. b) Cuál sería la probabilidad de que tres personas escribiesen, al azar, cada uno la misma vocal en un papel? Pmisma vocal nº casos favorables a misma vocal 5 pues tenemos cinco vocales a, e, i, o, u VR 5, dado que tenemos cinco elementos distintos que tomamos de tres en tres y se pueden repetir Definición axiomática de probabilidad PÁGINA 255 EJERCICIOS 1 Se lanza dos veces un dado cúbico, con sus caras numeradas del 1 al 6. Calcula: 4

5 a) La probabilidad de obtener algún 6. Palgún nº de casos favorables a algún 6 11 pues son 6, 1,1, 6,6, 2,2, 6,6,,, 6,6, 4,4, 6,6, 5,5, 6,6, 6 VR 6, tenemos seis elementos 1, 2,, 4, 5, 6 que tomamos de dos en dos con repetición. b) La probabilidad de no obetener ningún 6. Pningún 6 1 Palgún Los sucesos "sacar algún 6" y "sacar ningún 6" son contrarios, por lo que conocida la probabilidad de uno, podemos calcular la probabilidad del otro. 14 Sean A, B y C tres sucesos que forman un sistema completo de sucesos, y donde PA 0. 1, PB Calcula PC. Como son un sistema completo de sucesos se cumple que: A B C E Son incompatibles dos a dos, es decir, se cumple que: i ii iii A B B C A C Dado que A B C E, entonces PA B C PE. Como los sucesos son incompatibles dos a dos tenemos que: PA PB PC PB PC PC 1 PC Probabilidad de la unión de sucesos. Sucesos compatibles. PÁGINA 256 EJERCICIOS 15 Se extrae una carta de una baraja española. Consideramos los siguientes sucesos: A "salir una figura" B "salir un as" C "salir una carta del palo de espadas" a) Son A y B incompatibles? Calcula PA B. Se tiene que A B, pues por un lado están los ases (1 de cada palo) y por otro, las figuras (sota, caballo y rey de cada palo). Así PA B PA PB b) Son A y C compatibles? Calcula PA C. Se tiene que A C sota de espadas, caballo de espadas, rey de espadas, entonces A y C son compatibles. Así PA C PA PC PA C Se lanza un dado cúbico, con sus caras numeradas del 1 al 6, y se anota su puntuación. Se consideran los sucesos: A "salir un número par" B "salir un número que es divisor de 12" a) Son A y B sucesos incompatibles? Tenemos que A "salir un número par" 2, 4, 6 B "salir un número que es divisor de 12" 1, 2,, 4, 6 Calculamos A B 2, 4, 6 A. Entonces los sucesos son compatibles. b) Calcula la probabilidad de A B. 5

6 PA B PA PB PA B Probabilidad condicionada PÁGINA 257 EJERCICIOS 17 En un pueblo se somete a sus vecinos a votación sobre la instalación de una antena de telefonía. Los resultados vienen recogidos en la siguiente tabla: A: Varones Mujeres B: Si No Seleccionamos al azar un vecino. Halla PA, PA/B, PB, PB /A PA A "ser varón" PA PA/B A/B "ser varón supuesto que se ha votado si" PA/B Vamos a hacerlo de otra forma: PA/B PA B PB A B "ser varón y decir si" PB B "votar no" PB 57 PB /A B /A "ser varón y votar no" PB /A 22 Vamos a hacerlo de otra forma: PB /A PB A PA 22 B A "ser varón y votar no" 18 En un experimento se sabe que a) PA B PA 0. 5 PB 0. 7 PA B Calcula: 6

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Experimento determinista. Experimento aleatorio. Espacio muestral. Suceso elemental.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Experimento determinista. Experimento aleatorio. Espacio muestral. Suceso elemental. Probabilidad INTRODUCCIÓN El estudio matemático de la probabilidad surge históricamente vinculado a los juegos de azar. Actualmente la probabilidad se utiliza en muchas disciplinas unidas a la Estadística:

Más detalles

Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades

Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades Experimentos deterministas Probabilidad Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Si dejamos caer una piedra desde una ventana sabemos, sin lugar a dudas,

Más detalles

FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES

FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES EXPERIMENTO ALEATORIO: ESPACIO MUESTRAL Y SUCESOS 1) Se considera el experimento que consiste en la extracción de tres tornillos de una caja que contiene tornillos

Más detalles

Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

Son los experimentos de los que podemos predecir el resultado antes de que se realicen. PROBABILIDAD Definición de probabilidad La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias, cuáles son aleatorias? a) En una caja hay cinco bolas amarillas, sacamos una bola y anotamos su color. b) Lanzamos una

Más detalles

3.Si A y B son incompatibles, es decir A B = entonces:

3.Si A y B son incompatibles, es decir A B = entonces: Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)

Más detalles

3.Si A y B son incompatibles, es decir A B = entonces:

3.Si A y B son incompatibles, es decir A B = entonces: Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)

Más detalles

PROBABILIDAD. 1. Si A es un suceso de probabilidad 0.3, la probabilidad de su suceso contrario es: a) 0.5 b) 1.0 c) 0.7 SOLUCIÓN: es decir, c

PROBABILIDAD. 1. Si A es un suceso de probabilidad 0.3, la probabilidad de su suceso contrario es: a) 0.5 b) 1.0 c) 0.7 SOLUCIÓN: es decir, c PROBABILIDAD 1. Si A es un suceso de probabilidad 0.3, la probabilidad de su suceso contrario es: a) 0.5 b) 1.0 c) 0.7 Si A es un suceso, la probabilidad de su suceso contrario es 1 P( A), es decir, c

Más detalles

Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

Son los experimentos de los que podemos predecir el resultado antes de que se realicen. PROBABILIDAD La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio. Experimentos deterministas

Más detalles

Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS

Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 TEMA 11 CÁLCULO DE PROBABILIDADES 11.0 INTRODUCCIÓN 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS Un suceso aleatorio

Más detalles

Tema 11 Probabilidad Matemáticas B 4º ESO 1

Tema 11 Probabilidad Matemáticas B 4º ESO 1 Tema 11 Probabilidad Matemáticas B 4º ESO 1 TEMA 11 PROBABILIDAD SUCESOS EJERCICIO 1 : En una bolsa hay 8 bolas numeradas del 1 al 8. Extraemos una bola al azar y anotamos su número. a Escribe el espacio

Más detalles

UNIDAD XI Eventos probabilísticos

UNIDAD XI Eventos probabilísticos UNIDAD XI Eventos probabilísticos UNIDAD 11 EVENTOS PROBABILÍSTICOS Muchas veces ocurre que al efectuar observaciones en situaciones análogas y siguiendo procesos idénticos se logaran resultados diferentes;

Más detalles

UNIDAD II Eventos probabilísticos

UNIDAD II Eventos probabilísticos UNIDAD II Eventos probabilísticos UNIDAD 2 EVENTOS PROBABILÍSTICOS Muchas veces ocurre que al efectuar observaciones en situaciones análogas y siguiendo procesos idénticos se logaran resultados diferentes;

Más detalles

2012-2013 2º ESO APLICACIÓN DE LAS FRACCIONES Y DE LA PRORCIONALIDAD AL CÁLCULO DE LA PROBABILIDAD

2012-2013 2º ESO APLICACIÓN DE LAS FRACCIONES Y DE LA PRORCIONALIDAD AL CÁLCULO DE LA PROBABILIDAD º ESO APLICACIÓN DE LAS FRACCIONES Y DE LA PRORCIONALIDAD AL CÁLCULO DE LA PROBABILIDAD Experiencias aleatorias La lotería, las rifas, el lanzar un dado, la bola de un bingo, etc. Son hechos, acciones,

Más detalles

PROBABILIDAD. De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar.

PROBABILIDAD. De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar. PROBABILIDAD Ejercicio nº 1.- De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar. a Cuál es el espacio muestral? A "Mayor que 6" B "No obtener 6" C "Menor que 6" c Halla los

Más detalles

Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace.

Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. Álgebra lineal. Curso 2007-2008. Tema 5. Hoja 1 Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. 1. Un dado se lanza dos veces. Se pide: (a) Construir el espacio muestral.

Más detalles

Unidad 14 Probabilidad

Unidad 14 Probabilidad Unidad 4 robabilidad ÁGINA 50 SOLUCIONES Calcular variaciones.! 5! 4 a) V, 6 b) 5, 60 c),4 6 ( )! V (5 )! VR Calcular permutaciones. a)! 6 b) 5 5! 0 c) 0 0! 68 800! 9 96 800 palabras diferentes. Números

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD EJERCICIOS DE ROBABILIDAD Ejercicio nº 1.- Lanzamos dos dados sobre la mesa y anotamos los dos números obtenidos. a) Cuántos elementos tiene el espacio muestral? b) Describe los sucesos: A "Obtener al

Más detalles

MOOC UJI: La Probabilidad en las PAU

MOOC UJI: La Probabilidad en las PAU 4. Probabilidad Condicionada: Teoremas de la Probabilidad Total y de Bayes 4.1. Probabilidad Condicionada Vamos a estudiar como cambia la probabilidad de un suceso A cuando sabemos que ha ocurrido otro

Más detalles

TEMA 17: PROBABILIDAD

TEMA 17: PROBABILIDAD TEMA 17: PROBABILIDAD Probabilidad de un suceso aleatorio es un numero entre 0 y 1 (más cerca del 0, mas difícil que ocurra. Más cerca del 1 más fácil que ocurra). Suceso seguro: Su probabilidad es 1.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD POBLEMAS ESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: POBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B eserva 1, Ejercicio 3, Opción A

Más detalles

16 SUCESOS ALEATORIOS. PROBABILIDAD

16 SUCESOS ALEATORIOS. PROBABILIDAD EJERCICIOS PROPUESTOS 16.1 Indica si estos experimentos son aleatorios y, en caso afirmativo, forma el espacio muestral. a) Se extrae, sin mirar, una carta de una baraja española. b) Se lanza un dado tetraédrico

Más detalles

Probabilidad Colección B.1. MasMates.com Colecciones de ejercicios

Probabilidad Colección B.1. MasMates.com Colecciones de ejercicios 1. Tenemos un dado (con sus seis caras numeradas del 1 al 6), trucado en el que es dos veces mas probable que salga un número par que un número impar. a) Calcula la probabilidad de salir par y la de salir

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 6 Unidad 6 Cara o cruz

Ámbito Científico-Tecnológico Módulo IV Bloque 6 Unidad 6 Cara o cruz Ámbito Científico-Tecnológico Módulo IV Bloque 6 Unidad 6 Cara o cruz Me tocará? No me tocará? Si jugamos al parchís, sacaré un cinco para salir de casa? No lo sabemos, todo depende de la suerte o el azar.

Más detalles

Introducción a la Probabilidad

Introducción a la Probabilidad Introducción a la Probabilidad Tema 3 Ignacio Cascos Depto. Estadística, Universidad Carlos III 1 Ignacio Cascos Depto. Estadística, Universidad Carlos III 2 Objetivos Entender el concepto de experimento

Más detalles

11 Cálculo de probabilidades

11 Cálculo de probabilidades Cálculo de probabilidades ACTIVIDADES INICIALES.I. Define por extensión o comprensión, según el caso, los siguientes conjuntos. a) A {divisores de } b) B {soluciones de la ecuación x x + 0} c) C {,,, 7,,,

Más detalles

EXPERIMENTOS ALEATORIOS ESPACIO MUESTRAL SUCESO. Probabilidad de un suceso. Ley de Laplace. Resolución de problemas

EXPERIMENTOS ALEATORIOS ESPACIO MUESTRAL SUCESO. Probabilidad de un suceso. Ley de Laplace. Resolución de problemas EXPERIMENTOS ALEATORIOS ESPACIO MUESTRAL SUCESO Tipos de sucesos Probabilidad de un suceso Frecuencia absoluta y relativa de un suceso - Imposible - Seguro - Incompatibles - Compatibles - Contrarios -

Más detalles

1º ESO TEMA 9 ESTADÍSTICA Y PROBABILIDAD

1º ESO TEMA 9 ESTADÍSTICA Y PROBABILIDAD 1º ESO TEMA 9 ESTADÍSTICA Y PROBABILIDAD 1 1.- FRECUENCIAS Para organizar y analizar una serie de datos estadísticos se utiliza una tabla de frecuencias Tabla de frecuencias Valores (xi) 0 1 2 Frecuencia

Más detalles

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES EXPERIMENTOS: EJEMPLOS Deterministas Calentar agua a 100ºC vapor Soltar objeto cae Aleatorios Lanzar un dado puntos Resultado fútbol quiniela

Más detalles

PROBABILIDAD. 1.- Halla el espacio muestral asociado al experimento de lanzar al aire un dado y observar el resultado.

PROBABILIDAD. 1.- Halla el espacio muestral asociado al experimento de lanzar al aire un dado y observar el resultado. PRBABILIDAD EXPERIMENTS ALEATRIS Experimento determinista y aleatorio Un experimento aleatorio tiene un resultado impredecible al repetirlo en condiciones similares. Un experimento determinista tiene un

Más detalles

PROBABILIDAD. Espacio muestral. El espacio muestral de un experimento aleatorio es el conjunto de todos los resultados posibles de un experimento.

PROBABILIDAD. Espacio muestral. El espacio muestral de un experimento aleatorio es el conjunto de todos los resultados posibles de un experimento. PROBABILIDAD. CONTENIDOS: Experimentos aleatorios. Espacio muestral. Sucesos. Operaciones con sucesos. Suceso contrario y sucesos incompatibles. Idea intuitiva del concepto de probabilidad. Propiedades.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción

Más detalles

Métodos estadísticos y numéricos Probabilidad 1 EJERCICIOS PROPUESTOS DE PROBABILIDAD

Métodos estadísticos y numéricos Probabilidad 1 EJERCICIOS PROPUESTOS DE PROBABILIDAD Métodos estadísticos y numéricos Probabilidad 1 EJERCICIOS PROPUESTOS DE PROBABILIDAD 1. Una bolsa contiene tres bolas (1 roja, 1 azul, 1 blanca). Se sacan dos bolas con reemplazo, es decir, se saca una

Más detalles

Hoja 2 Probabilidad. 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, Además, resolver el ejercicio 3 desde (5.a) y (5.b).

Hoja 2 Probabilidad. 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, Además, resolver el ejercicio 3 desde (5.a) y (5.b). Hoja 2 Probabilidad 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, se define A A = {B Ω : B = A C con C A}. Demostrar que A A P(A) es σ-álgebra. 2.- Sea {A n : n 1} A una sucesión

Más detalles

4.12 Ciertos teoremas fundamentales del cálculo de probabilidades

4.12 Ciertos teoremas fundamentales del cálculo de probabilidades 1 de 9 15/10/2006 05:57 a.m. Nodo Raíz: 4. Cálculo de probabilidades y variables Siguiente: 4.14 Tests diagnósticos Previo: 4.10 Probabilidad condicionada e independencia de 4.12 Ciertos teoremas fundamentales

Más detalles

Tema 4. Probabilidad Condicionada

Tema 4. Probabilidad Condicionada Tema 4. Probabilidad Condicionada Presentación y Objetivos. En este tema se dan reglas para actualizar una probabilidad determinada en situaciones en las que se dispone de información adicional. Para ello

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción

Más detalles

Problema 15.3. Observa las siguientes urnas y contesta las cuestiones que siguen:

Problema 15.3. Observa las siguientes urnas y contesta las cuestiones que siguen: 15 Probabilidad Ejercicio 15.1. Indica cuáles de los siguientes sucesos son aleatorios y cuáles no: a) Lanzar una moneda. b) Aprobar un examen de matemáticas. c) Acertar una quiniela de fútbol. d) Lanzar

Más detalles

Define los sucesos elementales, el espacio muestral y dos sucesos no elementales al extraer una carta de la baraja española.

Define los sucesos elementales, el espacio muestral y dos sucesos no elementales al extraer una carta de la baraja española. Probabilidad EJERCICIOS 00 Di cuáles de los siguientes experimentos son aleatorios y cuáles son deterministas. a) Pesar dm de agua. b) Medir el lado de un cuadrado de cm. c) Preguntar un número de cifras.

Más detalles

Experimentos aleatorios. Espacio muestral

Experimentos aleatorios. Espacio muestral Experimentos aleatorios. Espacio muestral Def.- Un fenómeno o experimento decimos que es determinista si podemos conocer su resultado antes de ser realizado. Si dejamos caer un objeto desde cierta altura

Más detalles

13 Cálculo de probabilidades

13 Cálculo de probabilidades Solucionario Cálculo de probabilidades ACTIVIDADES INICIALES.I. Una marca de coches comercializa un determinado modelo en tres versiones: cinco puertas, tres puertas y familiar. El motor puede ser diésel

Más detalles

Probabilidad. Jaque mate!

Probabilidad. Jaque mate! 4 Probabilidad Jaque mate! Desde que cruzó el Canal, perseguido por la intransigencia política y religiosa que recorría la Europa continental, se le podía encontrar en aquel café: el Slaughter s Coffee

Más detalles

I.E.S. CUADERNO Nº 12 NOMBRE: FECHA: / / Probabilidad

I.E.S. CUADERNO Nº 12 NOMBRE: FECHA: / / Probabilidad Probabilidad Contenidos 1. Experimentos aleatorios Espacio muestral y sucesos Operaciones con sucesos Sucesos incompatibles 2. Probabilidad de un suceso La regla de Laplace Frecuencia y probabilidad Propiedades

Más detalles

PROBABILIDAD ELEMENTAL

PROBABILIDAD ELEMENTAL PROBABILIDAD ELEMENTAL La mayoría de estos problemas han sido propuestos en exámenes de selectividad de los distintos distritos universitarios españoles.. Una caja con una docena de huevos contiene dos

Más detalles

COMBINATORIA Y PROBABILIDAD

COMBINATORIA Y PROBABILIDAD COMBINATORIA Y PROBABILIDAD Esp. HENRY CARRASCAL C. Lic. Matemáticas y Física Esp. Informática Educativa Esp. Práctica Docente Universitaria Magíster en Práctica Pedagógica INSTITUCIÓN EDUCATIVA RAFAEL

Más detalles

Probabilidad Colección C.1. MasMates.com Colecciones de ejercicios

Probabilidad Colección C.1. MasMates.com Colecciones de ejercicios 1. Un monedero contiene 2 monedas de plata y 3 de cobre y otro contiene 4 de plata y 3 de cobre. Si se elige un monedero al azar y se extrae una moneda, cuál es la probabilidad de que sea de plata? 2.

Más detalles

Relación 1. Sucesos y probabilidad. Probabilidad condicionada.

Relación 1. Sucesos y probabilidad. Probabilidad condicionada. Relación. Sucesos y probabilidad. Probabilidad condicionada.. Sean A, B y C tres sucesos cualesquiera. Determine expresiones para los siguientes sucesos: Ocurre sólo A. Ocurren A y B pero no C. c) Ocurren

Más detalles

14Soluciones a los ejercicios y problemas

14Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 8 Pág. P RACTICA Relaciones entre sucesos En un sorteo de lotería observamos la cifra en que termina el gordo. a) Cuál es el espacio muestral? b)escribe los

Más detalles

EJEMPLOS, EJERCICIOS Y PROBLEMAS DE PROBABILIDAD

EJEMPLOS, EJERCICIOS Y PROBLEMAS DE PROBABILIDAD EJEMPLOS, EJERCICIOS Y PROBLEMAS DE PROBABILIDAD 1) Veamos un ejemplo para ver lo que son experimentos aleatorios, espacio muestral, sucesos elementales y sucesos compuestos: 2) Lanza 100 veces una moneda.

Más detalles

Tema 3: Cálculo de Probabilidades. Métodos Estadísticos

Tema 3: Cálculo de Probabilidades. Métodos Estadísticos Tema 3: Cálculo de Probabilidades Métodos Estadísticos 2 INTRODUCCIÓN Qué es la probabilidad? Es la creencia en la ocurrencia de un evento o suceso. Ejemplos de sucesos probables: Sacar cara en una moneda.

Más detalles

Probabilidad. Objetivos. Antes de empezar

Probabilidad. Objetivos. Antes de empezar 12 Probabilidad Objetivos En esta quincena aprenderás a: Distinguir los experimentos aleatorios de los que no lo son. Hallar el espacio muestral y distintos sucesos de un experimento aleatorio. Realizar

Más detalles

Tutorial MT-m5. Matemática Tutorial Nivel Medio. Probabilidad

Tutorial MT-m5. Matemática Tutorial Nivel Medio. Probabilidad 356790356790 M ate m ática Tutorial MT-m5 Matemática 006 Tutorial Nivel Medio Probabilidad Matemática 006 Tutorial Probabilidad Marco Teórico. Probabilidad P(#). Definición: La probabilidad de ocurrencia

Más detalles

Ejercicios y problemas resueltos de probabilidad condicionada

Ejercicios y problemas resueltos de probabilidad condicionada Ejercicios y problemas resueltos de probabilidad condicionada 1.- Sean A y B dos sucesos aleatorios con p(a) = 1/2, p(b) = 1/3, p(a B)= 1/4. Determinar: 1 2 3 4 5 2.- Sean A y B dos sucesos aleatorios

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 280

13Soluciones a los ejercicios y problemas PÁGINA 280 Soluciones a los ejercicios y problemas PÁGINA 0 Pág. P RACTICA Muy probable, poco probable Tenemos muchas bolas de cada uno de los siguientes colores: negro (N), rojo (R), verde (V) y azul (A), y una

Más detalles

Bloque 5. Probabilidad y Estadística Tema 1. Probabilidad Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 1. Probabilidad Ejercicios resueltos loque 5. Probabilidad y Estadística Tema 1. Probabilidad Ejercicios resueltos 5.1-1 Se lanzan al aire tres monedas iguales, describe todos los sucesos del esacio muestral. Sean los sucesos A = sacar al

Más detalles

Probabilidad. La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento.

Probabilidad. La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento. Matemáticas segundo medio COLEGIO SSCC CONCEPCION NOMBRE: Clase Teórica Práctica Nº 30 Probabilidad Probabilidad: Introducción La probabilidad mide la frecuencia con la que aparece un resultado determinado

Más detalles

PARA EMPEZAR. a) Al lanzar dos dados, obtener como suma de sus caras superiores 8 y 4 puntos. b) Al lanzar una moneda, obtener una cara y una cruz.

PARA EMPEZAR. a) Al lanzar dos dados, obtener como suma de sus caras superiores 8 y 4 puntos. b) Al lanzar una moneda, obtener una cara y una cruz. 17 PROBABILIDAD PARA EMPEZAR 1 Se consideran las probabilidades P 1 0,167; P 0,08 y P 3 0,08 y los sucesos: Sacar, como suma, dos puntos al lanzar dos dados. Sacar, como suma, siete puntos al lanzar dos

Más detalles

Ejercicios. a) Justifica si A y B son independientes. b) Calcula P ( A/ B ) y P ( B / A ) ; A y B indican los contrarios de A y B.

Ejercicios. a) Justifica si A y B son independientes. b) Calcula P ( A/ B ) y P ( B / A ) ; A y B indican los contrarios de A y B. Ejercicios Ejercicio 1. En un instituto se ofertan tres modalidades excluyentes, A, B, C, y dos idiomas excluyentes, inglés y francés. La modalidad A es elegida por un 50% de los alumnos, la B por un 30%

Más detalles

Probabilidad. La probabilidad de un suceso es un nombre que pertenece al intervalo [0, 1]

Probabilidad. La probabilidad de un suceso es un nombre que pertenece al intervalo [0, 1] Probabilidad Un fenómeno es aleatorio si conocemos todos sus posibles resultados pero no podemos predecir cual de ellos ocurrirá. Cada uno de estos posibles resultados es un suceso elemental del fenómeno

Más detalles

Ejercicios de probabilidad

Ejercicios de probabilidad 1. Dos personas juegan con una moneda, a cara (C) o escudo (E). La que apuesta por la cara gana cuando consiga dos caras seguidas o, en su defecto, tres caras; análogamente con el escudo. El juego acaba

Más detalles

Soluciones a las actividades de cada epígrafe

Soluciones a las actividades de cada epígrafe 0 Soluciones a las actividades de cada epígrafe Pág. PÁGIA 08 En este juego hay que conseguir que no queden emparejadas dos bolas del mismo color. Por ejemplo: GAA PIERDE GAA PIERDE PIERDE uál es la probabilidad

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental álculo de probabilidades Recuerda lo fundamental Nombre y apellidos:... urso:... Fecha:... ÁLULO DE PROBABILIDADES EXPERIENIAS ALEATORIAS Experiencias aleatorias son aquellas cuyo resultado depende...

Más detalles

PROBABILIDAD. Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias cuáles son aleatorias?

PROBABILIDAD. Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias cuáles son aleatorias? PROBABILIDAD Ejercicio nº 1.- a Al lanzar un dado sacar puntuación par. b Lanzar un dado y sacar una puntuación mayor que 6. c Bajar a la planta baja en ascensor. Ejercicio nº 2 a En una caja hay cinco

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

Nombre: Fecha: Curso:

Nombre: Fecha: Curso: Begoña tiene camisetas para hacer deporte de tres colores: blancas, grises y negras. Completa la siguiente tabla de frecuencias con los datos del dibujo. Cuántas camisetas tiene en total? camiseta blanca

Más detalles

Problemas de Probabilidad(Selectividad) Ciencias Sociales

Problemas de Probabilidad(Selectividad) Ciencias Sociales Problemas de Probabilidad(Selectividad) Ciencias Sociales Problema 1 En un instituto se ofertan tres modalidades excluyetes, A, B y C, y dos idiomas excluyentes, inglés y francés. La modalidad A es elegida

Más detalles

EJERCICIOS DE CÁLCULO DE PROBABILIDADES

EJERCICIOS DE CÁLCULO DE PROBABILIDADES EJERCICIOS DE CÁLCULO DE PROBABILIDADES. Hallar la probabilidad de sacar una suma de 8 puntos al lanzar dos dados.. Hallar la probabilidad de sacar por suma o bien, o bien al lanzar dos dados.. Se escriben

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES 0 CÁLCULO DE PROBABILIDADES Página 9 REFLEXIONA Y RESUELVE Cálculo matemático de la probabilidad Calcula matemáticamente cuál es la probabilidad de que un botón de cm de diámetro no toque raya en la cuadrícula

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página PACTICA Se hace girar la flecha y se observa sobre qué número se detiene. Calcula las probabilidades de los siguientes sucesos: a) Obtener un número par. b) Obtener un número primo. c) Obtener

Más detalles

CÁLCULO DE PROBABILIDADES EXPERIENCIAS ALEATORIAS. SUCESOS EXPERIENCIAS DETERMINISTAS Y ALEATORIAS

CÁLCULO DE PROBABILIDADES EXPERIENCIAS ALEATORIAS. SUCESOS EXPERIENCIAS DETERMINISTAS Y ALEATORIAS CÁLCULO DE PROBABILIDADES EXPERIENCIAS ALEATORIAS. SUCESOS EXPERIENCIAS DETERMINISTAS Y ALEATORIAS Se llama experiencia determinista a aquella que conocemos el resultado antes de realizar el experimento:

Más detalles

Profesor Miguel Ángel De Carlo PROBABILIDAD. Tercer año del Profesorado de Matemática

Profesor Miguel Ángel De Carlo PROBABILIDAD. Tercer año del Profesorado de Matemática Profesor Miguel Ángel De Carlo PROBABILIDAD Tercer año del Profesorado de Matemática 2 Probabilidad 3er año M.A.D.C Cap.I Definiciones de Probabilidad 3 Introducción La probabilidad es uno de los instrumentos

Más detalles

15 PROBABILIDAD

15 PROBABILIDAD 15 PROBABILIDAD 15.1 15. EJERCICIOS PROPUESTOS En una bolsa hay 9 bolas numeradas del 1 al 9. Se saca una bola al azar y se anota su número. a) Explica si el experimento es aleatorio. b) Determina el espacio

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES 8 Unidad didáctica 8. Cálculo de probabilidades CÁLCULO DE PROBABILIDADES CONTENIDOS Experimentos aleatorios Espacio muestral. Sucesos Sucesos compatibles e incompatibles Sucesos contrarios Operaciones

Más detalles

Tema 3: Probabilidad. Teorema de Bayes.

Tema 3: Probabilidad. Teorema de Bayes. Estadística 36 Tema 3: Probabilidad. Teorema de Bayes. 1 Definiciones básicas. En Estadística se utiliza la palabra experimento para designar todo acto que proporciona unos datos. Se van a distinguir dos

Más detalles

EVALUACIÓN 11 B) 150 1 C) 2 D) 15 E) 30

EVALUACIÓN 11 B) 150 1 C) 2 D) 15 E) 30 EVALUACIÓN 1. Si la probabilidad que llueva en San Pedro en verano es 1/30 y la probabilidad que caigan 100 cc es 1/40, cuál es la probabilidad que no llueva en San Pedro y que no caigan 100 cc? A) 1/1200

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 15 Y 16

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 15 Y 16 Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas 4º E.S.O. ACTIVIDADES DE LOS TEMAS 15 Y 16 1. De una urna con 7 bolas blancas y 14 negras extraemos una. Cuál es la probabilidad de

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD EJERCICIOS DE PROBABILIDAD 1. Se extrae una carta de una baraja española, calcula la probabilidad de que: a) Sea un rey; b) Sea un oro; c) Sea el rey de oros; d) Sea un rey o un oros; e) Sea un rey o una

Más detalles

PROBABILIDAD. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán.

PROBABILIDAD. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán. PROBABILIDAD Junio 1994. El año pasado el 60% de los veraneantes de una cierta localidad

Más detalles

Probabilidad: Introducción

Probabilidad: Introducción Probabilidad: Introducción La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento. Ejemplo: tiramos un dado al aire y queremos saber cual es la

Más detalles

1.- Definiciones Básicas:

1.- Definiciones Básicas: Tema 3 PROBABILIDAD Y COMBINATORIA 1.- Definiciones Básicas: El objetivo del cálculo de probabilidades es el estudio de métodos de análisis del comportamiento de fenómenos aleatorios en lo relativo a su

Más detalles

EXPERIMENTO ALEATORIO es aquél cuyos resultados dependen del azar.

EXPERIMENTO ALEATORIO es aquél cuyos resultados dependen del azar. MATEMÀTIQUES CÁLCUL DE PROBABILITATS - 1 - EXPERIMENTO ALEATORIO es aquél cuyos resultados dependen del azar. ej: lanzar una moneda, el nº de hijos de una familia,... 1. Cita 5 ejemplos de experimentos

Más detalles

Por ejemplo, lanzar al aire un dado o una moneda son experimentos aleatorios. Los experimentos aleatorios pueden ser simples o compuestos.

Por ejemplo, lanzar al aire un dado o una moneda son experimentos aleatorios. Los experimentos aleatorios pueden ser simples o compuestos. .- CONCEPTOS BÁSICOS DE PROBABILIDAD Experimento aleatorio: Es aquel cuyo resultado depende del azar y, aunque conocemos todos los posibles resultados, no se puede predecir de antemano el resultado que

Más detalles

EL AZAR Y LA PROBABILIDAD

EL AZAR Y LA PROBABILIDAD EL AZAR Y LA PROBABILIDAD Prof. José Luis Pittamiglio Los experimentos cuya realización depende del azar, se llaman sucesos aleatorios. La teoría de las probabilidades se ocupa de medir hasta qué punto

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 2 Nombre: Probabilidad Contextualización En la sesión anterior analizamos cómo a largo plazo un fenómeno aleatorio o probabilístico posee un

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE 7 SOLUIOES A L ATIVIDADES DE ADA EPÍGRAFE Pág. Página 3 Los coches de este juego se mueven de la siguiente forma: se lanzan dos dados y avanza un casillero el coche cuyo número coincida con la suma de

Más detalles

METODOS DE CONTEO Y PROBABILIDAD

METODOS DE CONTEO Y PROBABILIDAD METODOS DE CONTEO Y PROBABILIDAD PROBABILIDAD Cuando realizamos un experimento, diremos que es: Determinista: dadas unas condiciones iniciales, el resultado es siempre el mismo. Aleatorio: dadas unas condiciones

Más detalles

Probabilidad Números reales

Probabilidad Números reales Solucionario Probabilidad Números reales LITERATURA Y MATEMÁTICAS El jugador [Un joven, el narrador de esta historia, y una señora mayor, apostando al cero en la ruleta de un casino, acaban de ganar una

Más detalles

14 Probabilidad. 1. Experimentos aleatorios

14 Probabilidad. 1. Experimentos aleatorios Probabilidad. Eperimentos aleatorios Ordena las siguientes epresiones de menos probable a más probable: casi seguro, poco probable, seguro, casi imposible, probable, imposible, bastante probable. Imposible,

Más detalles

EJ:LANZAMIENTO DE UNA MONEDA AL AIRE : S { } { } ESPACIO MUESTRAL:CONJUNTO DE TODOS LOS SUCESOS ELEMENTALES DE UN EXPERIMENTO ALEATORIO.

EJ:LANZAMIENTO DE UNA MONEDA AL AIRE : S { } { } ESPACIO MUESTRAL:CONJUNTO DE TODOS LOS SUCESOS ELEMENTALES DE UN EXPERIMENTO ALEATORIO. GUIA DE EJERCICIOS. TEMA: ESPACIO MUESTRAL-PROBABILIDADES-LEY DE LOS GRANDES NUMEROS. MONTOYA.- CONCEPTOS PREVIOS. EQUIPROBABILIDAD: CUANDO DOS O MAS EVENTOS TIENEN LA MISMA PROBABILIDAD DE OCURRIR. SUCESO

Más detalles

P R O B A B I L I D A D

P R O B A B I L I D A D P R O B A B I L I D A D INTRODUCCIÓN: El nacimiento del cálculo de probabilidades estuvo ligado a los juegos de azar. Cardano (que tenía una afición desordenada por el ajedrez y los dados, según reconoce

Más detalles

1.- Hallar la probabilidad de obtener al menos una cara al tirar n veces una moneda.

1.- Hallar la probabilidad de obtener al menos una cara al tirar n veces una moneda. .- Hallar la probabilidad de obtener al menos una cara al tirar n veces una moneda. Si A sacar al menos una cara en n lanzamientos entonces A no sacar ninguna cara en n lanzamientos. Si A i sacar cara

Más detalles

JUNIO Opción A

JUNIO Opción A Junio 010 (Prueba Específica) JUNIO 010 Opción A 1.- Discute y resuelve según los distintos valores del parámetro a el siguiente sistema de ecuaciones: a x + a y + az 1 x + a y + z 0.- Una panadería se

Más detalles

Probabilidades. Universidad de las Américas Instituto de Matemática, Física y Estadística. Centro de Aprendizaje Matemático - CAM

Probabilidades. Universidad de las Américas Instituto de Matemática, Física y Estadística. Centro de Aprendizaje Matemático - CAM Universidad de las Américas Instituto de Matemática, Física y Estadística. Centro de Aprendizaje Matemático - CAM Probabilidades P(A) = Casos favorables Casos posibles Objetivos: Definir el concepto de

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de ntonio Francisco Roldán López de Hierro * Convocatoria de 2007 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

CAPÍTULO 5. Probabilidad. 5.1 Álgebra de sucesos. 1. Experimento lanzar un dado y anotar la cara que sale:

CAPÍTULO 5. Probabilidad. 5.1 Álgebra de sucesos. 1. Experimento lanzar un dado y anotar la cara que sale: CAPÍTULO 5 Probabilidad 5.1 Álgebra de sucesos 5.1.1 Fenómenos determinísticos y aleatorios En la naturaleza se producen dos tipos de fenómenos: Determinísticos: Son los fenómenos que siempre que se efectúen

Más detalles

1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en

1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en 1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en las sucesivas tiradas, se repite el experimento en condiciones similares

Más detalles

PROBABILIDAD. P B = y P ( A B) 0.55 P( A B) P( B ) = y 4. B indica el. P B = y A B) = y. A B. Se sabe que P ( A B) 0.18. Página 1

PROBABILIDAD. P B = y P ( A B) 0.55 P( A B) P( B ) = y 4. B indica el. P B = y A B) = y. A B. Se sabe que P ( A B) 0.18. Página 1 ) Sean A y B dos sucesos tales que contrario de B. a) Son independientes A y B? b) alcule P ( A / B ). PROBABILIDAD P ( A) = = 0.4, P( B ) = 0.7 y P( A B) 0.6, donde B es el suceso 2) Sean A y B dos sucesos

Más detalles

TEMA 11: LA PROBABILIDAD

TEMA 11: LA PROBABILIDAD TEMA 11: LA PROBABILIDAD 1-T 11--2ºESO 1.- Experimentos Aleatorios y Deterministas. Nuestro entorno está lleno de vida, y en todo momento estamos rodeados de lo que se llaman fenómenos sociales colectivos,

Más detalles

17 CÁLCULO DE PROBABILIDADES

17 CÁLCULO DE PROBABILIDADES 17 ÁLULO DE PROBABILIDADES EJERIIOS PROPUESTOS 17.1 Se arroja un dado cúbico con las caras numeradas del 1 al 6 y se apunta el resultado de la cara superior. a) Es aleatorio este experimento? b) Determina

Más detalles

37. E l 20% de l os em pleados de un a em presa s on in genieros y otro 20% s on econom istas. El 7 5% d e los in gen ieros ocup an un puesto

37. E l 20% de l os em pleados de un a em presa s on in genieros y otro 20% s on econom istas. El 7 5% d e los in gen ieros ocup an un puesto 37. E l 20% de l os em pleados de un a em presa s on in genieros y otro 20% s on econom istas. El 7 5% d e los in gen ieros ocup an un puesto directivo y e l 50% d e los econ om istas tam bién, m ientras

Más detalles