ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz"

Transcripción

1 ECUACIÓN DE OSCILACIONES Tomado del texto de Ecuaciones Diferenciales de los Profesores Norman Mercado Luis Ignacio Ordoñéz Muchos de los sistemas de ingeniería están regidos por una ecuación diferencial lineal de segundo orden con coeficientes constantes, ecuación que recibe el nombre de ecuación de oscilaciones y presenta la forma general: La ecuación de oscilaciones se puede escribir en su forma normalizada, así: El amortiguamiento del sistema es: y se mide en La frecuencia natural de oscilación es: y se mide en las mismas unidades: Tal como se estudió en el capítulo anterior, la solución general de la ecuación diferencial viene dada por: Dónde: es un conjunto fundamental de soluciones de la homogénea y es una solución particular de la no homogénea. La ecuación característica de la ecuación diferencial es la siguiente: Las raíces de la ecuación característica viene dadas por: Tal como se estudió en el capítulo anterior, a partir de las raíces de la ecuación característica se presentan tres casos, así: 1. Las raíces son reales y diferentes. En este caso se dice que el sistema es sobreamortiguado y la solución general viene dada por: 2. Las raíces son reales e iguales, esto es. En este caso se dice que el sistema es críticamente amortiguado y la solución general viene dada por: Las raíces son complejas conjugadas, esto es subamortiguado y la solución general viene dada por:. En este caso se dice que el sistema es

2 La cantidad: recibe el nombre de seudofrecuencia de oscilación del sistema y se mide en. La solución se puede escribir, alternativamente, en la forma: Donde: y Un caso de especial interés es el correspondiente a, es decir, el sistema no tiene amortiguamiento. En este caso el sistema es oscilatorio puro y corresponde al conocido movimiento armónico simple. La solución general en este caso es: A partir de las condiciones iniciales se determinan las constantes: ó, si se quiere, las constantes, con lo que se obtiene la solución del problema de valor inicial. En la solución del problema de valor inicial aparecen dos partes perfectamente distinguibles, a saber: 1. La respuesta transitoria del sistema. Es la parte de la solución que depende de las condiciones iniciales del sistema, es decir, es la solución complementaria después de hallar las constantes de integración. 2. La respuesta forzada del sistema. Es la solución particular de la ecuación diferencial y recibe diferentes nombres, entre los cuales destacamos los siguientes: respuesta de estado estacionario, respuesta de régimen permanente. Respuesta al escalón de un sistema de segundo orden. Cuando la excitación del sistema es constante a partir del instante, la ecuación diferencial es:, es decir, la excitación es de la forma En tal caso, para tiempos positivos, la solución particular viene dada por: En adelante, la respuesta de estado estable la designaremos como: Para determinar la solución del problema de valor inicial, se parte de la solución general, así: Sí las condiciones iniciales son, las constantes deben satisfacer el sistema de ecuaciones: Resolviendo el sistema, resulta:

3 Cuando el sistema está inicialmente en reposo, las constantes son: Ejemplo 3.5. Resuelva el problema de valor inicial: Solución. Con base en lo estudiado, la solución general es: El Wronskiano de la ecuación diferencial es: Las constantes de integración son: En consecuencia, la solución del problema de valor inicial es: Las figuras: 3.24 y 3.25 muestran las gráficas de las variables: y para. Una gráfica de especial interés es la que relaciona a la variable dependiente: con su primera derivada con respecto al tiempo. Si denotamos por, el plano de fase es la gráfica de: p contra y. Para el sistema que nos ocupa, debemos eliminar la variable tiempo en las expresiones encontradas, así: En forma matricial, se tiene:

4 Resolviendo el sistema, resulta: Las ecuaciones anteriores se pueden escribir en la forma: Igualando las ecuaciones, se tiene: La expresión encontrada es bastante complicada de graficar, pero sí se usa un paquete graficador, tal como Mathcad, se encuentra la gráfica de la figura La interpretación del plano de fase depende del tipo de sistema. Para un sistema mecánico de traslación la variable: representa la posición de la partícula en todo instante, mientras que: representa la velocidad en todo instante; así pues, el plano de fase representa la velocidad contra la posición. Ejemplo 3.6. Resuelva el problema de valor inicial: Solución. Con base en lo estudiado, la solución general es: El Wronskiano de la ecuación diferencial es: Las constantes de integración son: La solución del problema de valor inicial es:

5 En las figuras 3.27 y 3.28 se muestran las gráficas de la función y su primera derivada, mientras que la figura 3.29 ilustra el plano de fase. Ejemplo 3.7. Resuelva el problema de valor inicial: Solución. Con base en lo estudiado, la solución general es: El Wronskiano de la ecuación diferencial es: Las constantes de integración son: La solución del problema de valor inicial es: La función: se puede expresar en la forma:

6 El ángulo de fase viene dado por: Puesto que el ángulo está en el tercer cuadrante, se tiene que: El ángulo debe expresarse en radianes, así: En consecuencia, la variable se puede expresar como: Las figuras 3.30 y 3.31 muestran las gráficas de y, mientras que el plano de fase se muestra en la figura 3.32 Al analizar la gráfica de la figura 3.30, se observa que la variable: tiende a dos en la medida que el tiempo aumenta. Precisamente, la respuesta de estado estacionario es dos. La parte transitoria de la respuesta alcanza un valor por encima de la respuesta de estado estacionario, dicho valor se conoce como sobrenivel y sólo se presenta cuando el sistema es subamortiguado, es decir, cuando el amortiguamiento del sistema es menor que la frecuencia natural de oscilación. El sobrenivel se calcula hallando el máximo de la función y restándole el valor de estado estacionario. El procedimiento, en forma general, es el siguiente: La ecuación diferencial se puede expresar en la forma: Se parte de las expresiones para y, así: Cuando el sistema está inicialmente en reposo, las constantes toman los valores:

7 Dónde, tal como se definió al principio. Sí definimos el coeficiente de amortiguamiento del sistema como, la seudo frecuencia de oscilación es: En consecuencia, la solución del problema de valor inicial es: Igualando a cero la primera derivada, se tiene el instante en el que la función alcanza su valor máximo, así: La posición máxima es: El sobrenivel, que depende únicamente del coeficiente de amortiguamiento y del nivel de estado estacionario, viene dado por: Para el ejemplo 3.7, el coeficiente de amortiguamiento es: y y el nivel de estado estacionario es. En consecuencia, el sobrenivel es. El resultado se pone de presenta en la figura Respuesta al impulso de un sistema de segundo orden. La respuesta al impulso o respuesta natural de un sistema de segundo orden, inicialmente en reposo, se calcula mediante la derivada de la respuesta al escalón unitario y la denotaremos por. De acuerdo con lo estudiado en la sección anterior, a partir de la respuesta al impulso se puede hallar la respuesta ante cualquier excitación usando la integral de convolución. Ejemplo 3.8. Un sistema lineal invariante está regido por la ecuación diferencial: a. Encuentre la respuesta al escalón unitario b. Encuentre la respuesta natural c. Encuentre la respuesta a la excitación:

8 Solución. a. La respuesta al escalón unitario se encuentra resolviendo la ecuación diferencial: Aplicando el procedimiento, se encuentra que la respuesta al escalón unitario es: b. Con base en lo anterior, la respuesta al impulso unitario es: c. La respuesta a la función exponencial se puede determinar de dos formas, así: 1. Aplicando la integral de convolución: Se observa que la respuesta de estado estacionario o solución particular es: 2. Aplicando el método del operador inverso obtenemos el mismo resultado, así: Respuesta a la sinusoide de un sistema de segundo orden. Consideremos la ecuación diferencial: La respuesta forzada del sistema, usando el método del operador inverso, viene dada por: Efectuando las operaciones, se tiene: Un caso interesante es el que se presenta cuando la frecuencia de la excitación coincide con la frecuencia natural de oscilación, es decir. El fenómeno se denomina resonancia, y la correspondiente frecuencia forzada es:

9 Obsérvese que la amplitud de la salida aumenta en la medida que decrece su amortiguamiento. Sí, por ejemplo, la frecuencia natural de oscilación es de 10 Radianes/segundo y el amortiguamiento es la unidad, la magnitud de la salida será cinco veces la amplitud de la entrada. La salida presenta una diferencia de fase de 90 grados con respecto a la señal de entrada. Ejemplo 3.9. Un sistema lineal invariante está regido por la ecuación diferencial: Encuentre la respuesta forzada del sistema ante las siguientes excitaciones: a. b. Solución. En el primer caso, la respuesta forzada es: Multiplicando por el conjugado, resulta: La respuesta se puede expresar en la forma: La amplitud de la salida, en estado estacionario, es alrededor del 16% de la amplitud de la excitación. En el segundo caso se presenta el fenómeno de resonancia, así: La respuesta se puede escribir en la forma: La amplitud de la salida, en estado estacionario, es alrededor del 32% de la amplitud de la excitación. El fenómeno de las pulsaciones. Modulación de amplitud. Consideremos un sistema sin amortiguamiento que tiene una frecuencia natural de oscilación: y se excita con una sinusoide de frecuencia, es decir, el sistema está regido por la ecuación diferencial: La solución particular, usando el método del operador inverso, es:

10 La solución general viene dada por: Cuando el sistema está inicialmente en reposo, después de calcular las constantes, resulta: La diferencia de cosenos se puede expresar en la forma: Con base en la identidad anterior, la respuesta del sistema es: Particularmente, sí, la respuesta del sistema es: La expresión anterior corresponde a una sinusoide de frecuencia 7 cuya amplitud es una sinusoide de frecuencia unitaria. Precisamente, esta señal corresponde a la salida de un modulador de amplitud. La figura 3.33 muestra la gráfica de la función y sus envolventes. Resonancia pura. La resonancia pura se presenta cuando el sistema no presenta amortiguamiento, es decir, la ecuación diferencial del sistema es de la forma: En este caso, la respuesta en estado estacionario es:

11 Efectuando la derivada y teniendo en cuenta que uno de los términos es linealmente independiente con la complementaria, la solución forzada es: La gráfica de la respuesta forzada es una sinusoide cuya amplitud aumenta linealmente con el tiempo. El fenómeno de resonancia pura se puede presentar en sistemas mecánicos, tales como puentes y estructuras y en sistemas eléctricos tales como el oscilador. La figura 3.34 muestra la gráfica de la respuesta forzada del sistema del ejemplo 3.9, con. EJERCICIOS Un sistema lineal invariante, inicialmente en reposo, está regido por la ecuación diferencial: a. Encuentre y grafique la respuesta al escalón unitario: b. Encuentre y grafique la respuesta al impulso unitario: c. Encuentre y grafique la respuesta a la excitación: d. Encuentre y grafique la respuesta a la excitación: e. Encuentre y grafique la respuesta a la excitación: 2. Repita el ejercicio anterior para un sistema que está regido por la ecuación diferencial 3. Repita el ejercicio anterior para un sistema que está regido por la ecuación diferencial 4. Repita el ejercicio anterior para un sistema que está regido por la ecuación diferencial 5. Un sistema lineal invariante, inicialmente en reposo, está regido por la ecuación diferencial:

12 Determine y grafique la respuesta forzada en los siguientes casos: 6. resuelva el problema de valor inicial y represente gráficamente: y el plano de fase. 7. resuelva el problema de valor inicial y represente gráficamente: y el plano de fase. 8. resuelva el problema de valor inicial y represente gráficamente: y el plano de fase. 9. resuelva el problema de valor inicial y represente gráficamente: y el plano de fase. 10. Un sistema sobreamortiguado parte de la posición de equilibrio con una velocidad inicial. a. Demuestre que el desplazamiento máximo ocurre en el instante: Dónde: :.Es el coeficiente de amortiguamiento del sistema. b. Demuestre que el desplazamiento máximo está dado por: Se sugiere escribir la ecuación de oscilaciones en la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

Semana 06 EDO de orden alto - Aplicaciones

Semana 06 EDO de orden alto - Aplicaciones Matemáticas Aplicadas MA101 Semana 06 EDO de orden alto - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Aplicaciones Ecuaciones diferenciales de orden

Más detalles

MT227 Sistemas Lineales. Función de transferencia. Elizabeth Villota

MT227 Sistemas Lineales. Función de transferencia. Elizabeth Villota MT227 Sistemas Lineales. Función de transferencia Elizabeth Villota 1 Sistemas Lineales Sistema no lineal, forma espacio de estados: Sea la salida correspondiente a la condición inicial y entrada escrita

Más detalles

CURSO CONTROL APLICADO- MARCELA VALLEJO VALENCIA-ITM RESPUESTA EN EL TIEMPO

CURSO CONTROL APLICADO- MARCELA VALLEJO VALENCIA-ITM RESPUESTA EN EL TIEMPO RESPUESTA EN EL TIEMPO BUENO, YA TENGO UN MODELO MATEMÁTICO. Y AHORA QUÉ? Vamos a analizar el comportamiento del sistema. ENTRADA PLANTA SALIDA NO SE COMO VA A SER. NO LO PUEDO PREDECIR. NO LA PUEDO DESCRIBIR

Más detalles

Taller No. 10: Ecuaciones Lineales de Segundo Orden El Oscilador Masa-Resorte Amortiguado

Taller No. 10: Ecuaciones Lineales de Segundo Orden El Oscilador Masa-Resorte Amortiguado Taller No. 10: Ecuaciones Lineales de Segundo Orden El Oscilador Masa-Resorte Amortiguado Objetivo Reforzar los temas que fundamentan el conocimiento de las ecuaciones diferenciales de segundo orden en

Más detalles

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

Análisis de Sistemas Lineales. Sistemas Dinámicos y Control Facultad de Ingeniería Universidad Nacional de Colombia

Análisis de Sistemas Lineales. Sistemas Dinámicos y Control Facultad de Ingeniería Universidad Nacional de Colombia Análisis de Sistemas Lineales Sistemas Dinámicos y Control 2001772 Facultad de Ingeniería Universidad Nacional de Colombia Sistemas SISO (Single Input Single Output) Los sistemas de una sola entrada y

Más detalles

Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo.

Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo. Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo. Introducción. En este documento se describe como el proceso de convolución aparece en forma natural cuando se trata

Más detalles

CIRCUITOS DE SEGUNDO ORDEN. Mg. Amancio R. Rojas Flores

CIRCUITOS DE SEGUNDO ORDEN. Mg. Amancio R. Rojas Flores CIRCUITOS DE SEGUNDO ORDEN Mg. Amancio R. Rojas Flores Un circuito de segundo orden se caracteriza por una ecuación diferencial de segundo orden. Consta de elementos R, L y C VALORES INICIALES Y FINALES

Más detalles

AMORTIGUAMIENTO, OSCILACIONES FORZADAS Y RESONANCIA

AMORTIGUAMIENTO, OSCILACIONES FORZADAS Y RESONANCIA AMORTIGUAMIENTO, OSCILACIONES FORZADAS Y RESONANCIA Las vibraciones forzadas son aquellas que se originan y mantienen mediante fuerzas aplicadas exteriormente y que no dependen de la posición ni del movimiento

Más detalles

Fecha de Elaboración Fecha de Revisión. Circuitos III HTD HTC HTA Asignatura. Básica de Ingeniería

Fecha de Elaboración Fecha de Revisión. Circuitos III HTD HTC HTA Asignatura. Básica de Ingeniería UNIVERSIDAD DISTRITAL Francisco José de Caldas Facultad de Ingeniería Ingeniería Eléctrica Elaboró Revisó Diana S. García M. con el Material de la Coordinación [Escriba aquí el nombre] Fecha de Elaboración

Más detalles

Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal

Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal Conferencia clase Al desacoplar las ecuaciones se tiene stemas de ecuaciones diferenciales lineales usando álgebra lineal Contenido. 1. stemas de ecuaciones diferenciales de primer orden. 2. Forma matricial

Más detalles

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES En esta sección se estudiaran los sistemas de ecuaciones diferenciales lineales de primer orden, así como los de orden superior, con dos o más funciones desconocidas,

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO Aplicaciones de ED de segundo orden..3 Vibraciones forzadas Los sistemas estudiados hasta ahora exhiben una dinámica que depende de ciertas constantes intrínsecas al sistema, es decir, las únicas

Más detalles

5 Estabilidad de soluciones de equilibrio

5 Estabilidad de soluciones de equilibrio Prácticas de Ecuaciones Diferenciales G. Aguilar, N. Boal, C. Clavero, F. Gaspar Estabilidad de soluciones de equilibrio Objetivos: Clasificar y analizar los puntos de equilibrio que aparecen en los sistemas

Más detalles

4.3 Problemas de aplicación 349

4.3 Problemas de aplicación 349 4. Problemas de aplicación 49 4. Problemas de aplicación Ejemplo 4.. Circuito Eléctrico. En la figura 4.., se muestra un circuito Eléctrico de mallas en el cual se manejan corrientes, una en cada malla.

Más detalles

PRÁCTICA N 2 ESTUDIO TEMPORAL Y FRECUENCIAL DE SISTEMAS DINÁMICOS DE PRIMER Y SEGUNDO ORDEN

PRÁCTICA N 2 ESTUDIO TEMPORAL Y FRECUENCIAL DE SISTEMAS DINÁMICOS DE PRIMER Y SEGUNDO ORDEN UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DPTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN DINÁMICA Y CONTROL DE PROCESOS PRÁCTICA

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Movimiento oscilatorio Física I Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 013/014 Dpto.Física Aplicada III Universidad de Sevilla Índice Introducción: movimiento

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio Tema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 9/1 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación

Más detalles

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil

Más detalles

1. Oscilador Armónico simple

1. Oscilador Armónico simple 1. Oscilador Armónico simple La ecuación de un oscilador armónico simple es una Ecuación Diferencial Ordinaria (EDO) lineal y tiene la forma: ÿ = ω 2 0 y (1) y(0) = y 0 ;ẏ(0) = v 0 (2) Donde y es la posición

Más detalles

VI. Sistemas de dos grados de libertad

VI. Sistemas de dos grados de libertad Objetivos: 1. Describir que es un sistema de dos grados de.. Deducir las ecuaciones diferenciales de movimiento para un sistema de dos grados de masa-resorte-amortiguador, con amortiguamiento viscoso y

Más detalles

MT227 Sistemas Lineales. Función de transferencia. Elizabeth Villota

MT227 Sistemas Lineales. Función de transferencia. Elizabeth Villota MT227 Sistemas Lineales. Función de transferencia Elizaeth Villota 1 Sistemas Lineales Sistema no lineal, forma espacio de estados: Sea la salida correspondiente a la condición inicial y entrada escrita

Más detalles

III. Vibración con excitación armónica

III. Vibración con excitación armónica Objetivos: 1. Definir que es vibración con excitación.. Analizar la respuesta de un sistema no amortiguado con excitación. 3. Analizar la respuesta de un sistema amortiguado con excitación. 4. Analizar

Más detalles

Movimiento Oscilatorio

Movimiento Oscilatorio Movimiento Oscilatorio 1. Introducción.. El Movimiento Armónico Simple. a) Estudio cinemático. b) Estudio dinámico. c) Estudio energético. 3. Péndulos. a) Péndulo simple. b) Péndulo físico. 4. Oscilaciones

Más detalles

4.- ANALISIS DE SISTEMAS EN TIEMPO CONTINUO

4.- ANALISIS DE SISTEMAS EN TIEMPO CONTINUO ANALISIS DE SISTEMAS EN TIEMPO CONTINUO Dinámica de Sistemas 4. 4.- ANALISIS DE SISTEMAS EN TIEMPO CONTINUO 4..- Efecto de los polos en el comportamiento del sistema. 4..- Estabilidad. 4.3.- Análisis de

Más detalles

Oscilaciones amortiguadas.

Oscilaciones amortiguadas. PROBLEMAS DE OSCILACIONES. Oscilaciones amortiguadas. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons 3.0, BY-SA (Atribución-CompartirIgual) Problema 1 Un oscilador armónico amortiguado,

Más detalles

Integral de Fourier y espectros continuos

Integral de Fourier y espectros continuos 9 2 2 2 Esta expresión se denomina forma de Angulo fase (o forma armónica) de la serie de Fourier. Integral de Fourier y espectros continuos Las series de Fourier son una herramienta útil para representar

Más detalles

Resolución de la EDO del oscilador armónico simple y amortiguado

Resolución de la EDO del oscilador armónico simple y amortiguado Álvaro García Corral Resolución de la EDO del oscilador armónico simple y amortiguado Un oscilador armónico es un sistema en el que siempre actúa una fuerza, que es recuperadora, es decir, del tipo, también

Más detalles

Respuesta completa en circuitos RLC con estímulo de corriente directa

Respuesta completa en circuitos RLC con estímulo de corriente directa Respuesta completa en circuitos RL con estímulo de corriente directa Objetivos Analizar la respuesta completa en circuitos RL con estímulo de corriente directa, utilizando la metodología de este material.

Más detalles

Unidad V Respuesta de los sistemas de control

Unidad V Respuesta de los sistemas de control Unidad V Respuesta de los sistemas de control MC Nicolás Quiroz Hernández Un controlador automático compara el valor real de la salida de una planta con la entrada de referencia (el valor deseado), determina

Más detalles

INDICE Capítulo 1. Variables del Circuito Eléctrico Capítulo 2. Elementos de Circuitos Capítulo 3. Circuitos Resistivos

INDICE Capítulo 1. Variables del Circuito Eléctrico Capítulo 2. Elementos de Circuitos Capítulo 3. Circuitos Resistivos INDICE Capítulo 1. Variables del Circuito Eléctrico 1 Introducción 1 1.1. Reto de diseño: Controlador de una válvula para tobera 2 1.2. Albores de la ciencia eléctrica 2 1.3. Circuitos eléctricos y flujo

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

Estabilidad de ecuaciones diferenciales

Estabilidad de ecuaciones diferenciales Capítulo 3 Estabilidad de ecuaciones diferenciales En este tema estudiaremos como resolver sistema de ecuaciones diferenciales lineales de coeficientes constantes utilizando la transformada de Laplace,

Más detalles

Sistemas de segundo orden: especificicaciones de diseño del régimen transitorio. Controladores P, PD y P-D

Sistemas de segundo orden: especificicaciones de diseño del régimen transitorio. Controladores P, PD y P-D Sistemas de segundo orden: especificicaciones de diseño del régimen transitorio. Controladores P, PD y P-D Félix Monasterio-Huelin de febrero de 6 Índice Índice Índice de Figuras Índice de Tablas. Respuesta

Más detalles

Capítulo 2 Análisis espectral de señales

Capítulo 2 Análisis espectral de señales Capítulo 2 Análisis espectral de señales Objetivos 1. Se pretende que el alumno repase las herramientas necesarias para el análisis espectral de señales. 2. Que el alumno comprenda el concepto de espectro

Más detalles

Mediante este programa se persigue desarrollar las siguientes habilidades:

Mediante este programa se persigue desarrollar las siguientes habilidades: PROPÓSITO: El programa de esta asignatura está dirigido a los estudiantes del primer semestre de la Facultad de Ingeniería, con la finalidad de ofrecerles una capacitación teórica práctica en los principios

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior Práctica 2 Ecuaciones diferenciales de orden superior 2.1. Introducción Una ED de orden n es una ecuación de la forma o escrito en forma normal g(x, y, y,...,y (n) ) = 0 (2.1) y (n) = f(x, y, y,...,y (n

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio ema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 007/008 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

de diseño CAPÍTULO 4. Métodos de análisis de los circuitos resistivos 4.1. Reto de diseño: Indicación del ángulo de un potenciómetro 4.2. Circuitos el

de diseño CAPÍTULO 4. Métodos de análisis de los circuitos resistivos 4.1. Reto de diseño: Indicación del ángulo de un potenciómetro 4.2. Circuitos el CAPÍTULO 1. VARIABLES DEL CIRCUITO ELÉCTRICO 1.1. Reto de diseño: Controlador de una válvula para tobera 1.2. Albores de la ciencia eléctrica 1.3. Circuitos eléctricos y flujo de corriente 1.4. Sistemas

Más detalles

1. Qué es un circuito de corriente alterna?. 3. A qué se denomina impedancia de un circuito RLC?.

1. Qué es un circuito de corriente alterna?. 3. A qué se denomina impedancia de un circuito RLC?. Laboratorio 4 El Circuito RLC Serie 4.1 Objetivos 1. Estudiar las características de un circuito RLC serie de corriente alterna. 2. Medir los voltajes eficaces en cada uno de los elementos del circuito

Más detalles

FISICA 2º BACHILLERATO

FISICA 2º BACHILLERATO A) Definiciones Se llama movimiento periódico a aquel en que la posición, la velocidad y la aceleración del móvil se repiten a intervalos regulares de tiempo. Se llama movimiento oscilatorio o vibratorio

Más detalles

TEMA 4 SISTEMAS DE 2 GRADOS DE LIBERTAD. Sistemas de 2 Grados de Libertad

TEMA 4 SISTEMAS DE 2 GRADOS DE LIBERTAD. Sistemas de 2 Grados de Libertad TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD Sistemas de Grados de Libertad ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 4. - TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 4. - TEMA 4 SISTEMAS

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2007 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 29 OSCILACIONES AMORTIGUADAS.

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 29 OSCILACIONES AMORTIGUADAS. UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA FÍSICA II PRÁCTICA 29 OSCILACIONES AMORTIGUADAS OBJETIVOS DEL APRENDIZAJE: CONOCER LA DISMINUCIÓN DE ENERGÍA MECÁNICA CON EL TIEMPO ANALIZAR

Más detalles

TEMA 7: MATRICES. OPERACIONES.

TEMA 7: MATRICES. OPERACIONES. TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre

Más detalles

MODELOS DE SERIES DE TIEMPO 1. Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros.

MODELOS DE SERIES DE TIEMPO 1. Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros. MODELOS DE SERIES DE TIEMPO 1 Introducción Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros. Originalmente tuvieron como objetivo hacer predicciones. Descomposición

Más detalles

3. Ecuaciones Diferenciales Lineales Homogéneas de Orden Superior con Coeficientes Constantes. Ecuaciones Diferenciales de Segundo Orden

3. Ecuaciones Diferenciales Lineales Homogéneas de Orden Superior con Coeficientes Constantes. Ecuaciones Diferenciales de Segundo Orden 3. Lineales Homogéneas de de Segundo Orden Sabemos que la solución general de una ecuación diferencial lineal homogénea de segundo orden está dada por por lo que se tiene dos soluciones no triviales, en

Más detalles

PNF en Mecánica Vibraciones Mecánicas Prof. Charles Delgado

PNF en Mecánica Vibraciones Mecánicas Prof. Charles Delgado Vibraciones en máquinas LOS MOVIMIENTOS VIBRATORIOS en máquinas se presentan cuando sobre las partes elásticas actúan fuerzas variables. Generalmente, estos movimientos son indeseables, aun cuando en algunos

Más detalles

ÍNDICE Capítulo 2 La transformada de Laplace 1 Capítulo 2 Series de Fourier 49 Capítulo 3 La integral de Fourier y las transformadas de Fourier 103

ÍNDICE Capítulo 2 La transformada de Laplace 1 Capítulo 2 Series de Fourier 49 Capítulo 3 La integral de Fourier y las transformadas de Fourier 103 ÍNDICE Capítulo 2 La transformada de Laplace... 1 1.1 Definición y propiedades básicas... 1 1.2 Solución de problemas con valores iniciales usando la transformada de Laplace... 10 1.3 Teoremas de corrimiento

Más detalles

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción Señales y Clasificación de Señales Señales Periódicas y No Periódicas 6

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción Señales y Clasificación de Señales Señales Periódicas y No Periódicas 6 CAPÍTULO UNO SEÑALES Y SISTEMAS 1.1 Introducción 1 1.2 Señales y Clasificación de Señales 2 1.3 Señales Periódicas y No Periódicas 6 1.4 Señales de Potencia y de Energía 8 1.5 Transformaciones de la Variable

Más detalles

TEMA 2 NOTACIÓN Y DEFINICIONES. Notación y Definiciones

TEMA 2 NOTACIÓN Y DEFINICIONES. Notación y Definiciones Notación y Definiciones ELEMENTOS DE MÁQUINAS Y VIBRACIONES -.1 - ELEMENTOS DE MÁQUINAS Y VIBRACIONES -. - ABSORBEDOR DINÁMICO DE VIBRACIONES o AMORTIGUADOR DINÁMICO: se trata de un sistema mecánico masa-resorte(-amortiguador)

Más detalles

Ecuaciones lineales de segundo orden

Ecuaciones lineales de segundo orden Ecuaciones lineales de segundo orden Considere la ecuación lineal general de segundo orden A( xy ) + Bxy ( ) + Cxy ( ) = Fx ( ) donde las funciones coeficientes A, B, C y abierto I. F son continuas en

Más detalles

REDUCCIÓN DE VIBRACIONES

REDUCCIÓN DE VIBRACIONES REDUCCIÓN DE VIBRACIONES Vibraciones Mecánicas MC-571 Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería 1) Introducción Existen situaciones donde las vibraciones mecánicas pueden ser deseables

Más detalles

TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs

TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs 1) EL PÉNDULO BALÍSTICO Se muestra un péndulo balístico,

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

MOVIMIENTO ARMÓNICO AMORTIGUADO

MOVIMIENTO ARMÓNICO AMORTIGUADO MOVIMIENTO ARMÓNICO AMORTIGUADO OBJETIVO Medida experimental de la variación exponencial decreciente de la oscilación en un sistema oscilatorio de bajo amortiguamiento. FUNDAMENTO TEÓRICO A) SISTEMA SIN

Más detalles

MATEMÁTICAS II. Práctica 3: Ecuaciones diferenciales de orden superior

MATEMÁTICAS II. Práctica 3: Ecuaciones diferenciales de orden superior MATEMÁTICAS II Práctica 3: Ecuaciones diferenciales de orden superior DEPARTAMENTO DE MATEMÁTICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEL DISEÑO UNIVERSIDAD POLITÉCNICA DE VALENCIA 1 En esta

Más detalles

Señales y Sistemas. Conceptos Introductorios Fundamentales. Profesora: Olga González

Señales y Sistemas. Conceptos Introductorios Fundamentales. Profesora: Olga González Señales y Sistemas Conceptos Introductorios Fundamentales Profesora: Olga González Señal Las señales son magnitudes físicas o variables detectables mediante las que se pueden transmitir mensajes o información.

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

Este tipo de fenómenos presenta la idea del llamado Crecimiento exponencial expresión que se usa para determinar que algo crece rápidamente.

Este tipo de fenómenos presenta la idea del llamado Crecimiento exponencial expresión que se usa para determinar que algo crece rápidamente. FUNCIÓN EXPONENCIAL. Se llama función exponencial a la función de la forma y = a x en donde a R +, a y x es una variable. Existen muchos fenómenos y situaciones que pueden describirse a partir de funciones

Más detalles

Solución por coeficientes indeterminados

Solución por coeficientes indeterminados 1.4.3. Ecuaciones no homogéneas En esta sección se parte de la una ecuación diferencial lineal no homogénea + ( 0 + ( = ( (1.342 donde ( 6= 0. Donde la solución general de la ec. (1.342 es la suma de la

Más detalles

CARRERA INGENIERÍA MECÁNICA AUTOMOTRIZ ASIGNATURA: FÍSICA APLICADA. Profesor: Dr Idalberto Tamayo Ávila.

CARRERA INGENIERÍA MECÁNICA AUTOMOTRIZ ASIGNATURA: FÍSICA APLICADA. Profesor: Dr Idalberto Tamayo Ávila. CARRERA INGENIERÍA MECÁNICA AUTOMOTRIZ ASIGNATURA: FÍSICA APLICADA Profesor: Dr Idalberto Tamayo Ávila. RESUMEN DEL TEMA 1: CENTRO DE MASAS Y MOMENTOS DE INERCIA Cómo determinar las coordenadas de la posición

Más detalles

TEMA 1 Parte I Vibraciones libres y amortiguadas

TEMA 1 Parte I Vibraciones libres y amortiguadas TEMA 1 Parte I Vibraciones libres y aortiguadas 1.1. Introducción: grados de libertad y agnitudes características VIBRACIÓN MECÁNICA: Oscilación repetida en torno a una posición de equilibrio - Vibraciones

Más detalles

ENERGÍA Y CANTIDAD DE MOVIMIENTO

ENERGÍA Y CANTIDAD DE MOVIMIENTO Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS 10:47 CUERPOS RIGIDOS ENERGÍA Y CANTIDAD DE MOVIMIENTO 2016 Hoja 1 OBJETIVOS Estudiar el método del Trabajo y la Energía Aplicar y analizar el movimiento

Más detalles

Principio de Superposición

Principio de Superposición 1 Sistemas en tiempo continuo discreto Un sistema en tiempo continuo discreto e puede ver como una transformación que se aplica a una señal de entrada en tiempo continuo discreto y produce una señal de

Más detalles

Respuesta transitoria

Respuesta transitoria Capítulo 4 Respuesta transitoria Una ves que los diagramas a bloques son desarrollados, el siguiente paso es llevar a cabo el análisis de los sistemas. Existen dos tipos de análisis: cuantitativo y cualitativo.

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles

DINAMICA ESTRUCTURAL. SISTEMAS DE UN GRADO DE LIBERTAD Vibración Forzada

DINAMICA ESTRUCTURAL. SISTEMAS DE UN GRADO DE LIBERTAD Vibración Forzada DINAMICA ESTRUCTURAL SISTEMAS DE UN GRADO DE LIBERTAD Vibración Forzada Sistema sometido a cargas armónicas: Donde la carga p(t) tiene una forma senosoidal con amplitud P o y una frecuencia angular w Consideramos

Más detalles

Laboratorio de Simulación. Trimestre 08P Grupo CC03A Pablo Lonngi. Lección 4

Laboratorio de Simulación. Trimestre 08P Grupo CC03A Pablo Lonngi. Lección 4 Laboratorio de Simulación Trimestre 08P Grupo CC03A Pablo Lonngi Lección 4 Números Complejos. IIª parte. Representación polar de un complejo En la forma polar, llamada también forma trigonométrica, un

Más detalles

4.4 ED lineales homogéneas con coeficientes constantes

4.4 ED lineales homogéneas con coeficientes constantes 4.4 ED lineales homogéneas con coeficientes constantes 05 a. Verifique que, si y es una segunda solución tal que f y 1 ; y g sea linealmente independiente, entonces d y D W.y 1; y / dx y 1 y1.. Verifique

Más detalles

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular

Más detalles

En física en realidad existen muchas otras situaciones que no se pueden describir simplemente

En física en realidad existen muchas otras situaciones que no se pueden describir simplemente VECTORES El concepto de vector fue formulado matemáticamente a fines del siglo XIX por los matemáticos Grasmann (1809-1877) y Hamilton (1805-1865). Esta noción se confirmó lentamente, cuando matemáticos

Más detalles

INDICE Capitulo 1. Variables del Circuito Eléctrico Capitulo 2. Elementos del Circuito Capitulo 3. Circuitos Resistivos

INDICE Capitulo 1. Variables del Circuito Eléctrico Capitulo 2. Elementos del Circuito Capitulo 3. Circuitos Resistivos INDICE Capitulo 1. Variables del Circuito Eléctrico 1 1.1. Albores de la ciencia eléctrica 2 1.2. Circuitos eléctricos y flujo de corriente 10 1.3. Sistemas de unidades 16 1.4. Voltaje 18 1.5. Potencia

Más detalles

Los pasos que se dan son:

Los pasos que se dan son: Hasta ahora hemos admitido que podemos trabajar con la red de cores de nuestro sólido usando una aproximación clásica lo que nos ha permitido determinar los «modos normales de vibración» en el sentido

Más detalles

Universidad Simón Bolívar Departamento de Procesos y Sistemas

Universidad Simón Bolívar Departamento de Procesos y Sistemas Universidad Simón Bolívar Departamento de Procesos y Sistemas Guía de Ejercicios de Sistemas de Control I PS-3 Prof. Alexander Hoyo Junio 00 http://prof.usb.ve/ahoyo ahoyo@usb.ve ÍNDICE Pág. Modelaje Matemático

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

INGENIERÍA EN MANTENIMIENTO INDUSTRIAL

INGENIERÍA EN MANTENIMIENTO INDUSTRIAL HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. NOMBRE DE LA ASIGNATURA Ecuaciones Diferenciales Aplicadas 2. COMPETENCIAS Diseñar estrategias de mantenimiento mediante el análisis de factores

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Movimiento oscilatorio a ma t v a K U θ ma 0 A 0 ωω 2 A 0 1 2 ka2 v ma T/4 0 ωaω 0 1 0 2 ka2 a ma θ ma T/2 A 0 ω 2 A 0 1 2 ka2 v ma 1 3T/4 0 ωaω 0 0 2 ka2 a ma θ ma T A 0 ωω 2 A 0 1 2 ka2 Javier Junquera

Más detalles

GUIA DE LABORATORIO Nº5

GUIA DE LABORATORIO Nº5 Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física FI2003 - Métodos Experimentales Semestre otoño 2009 Profesores: Denise Criado, Claudio Falcón, Nicolás Mujica GUIA

Más detalles

TEMA 1 Métodos Matemáticos en Física L3. Oscilaciones en sistemas discretos

TEMA 1 Métodos Matemáticos en Física L3. Oscilaciones en sistemas discretos En parte Según Cap.1 Libro Levanuyk+Cano Antes de tratar aplicación de método Fourier para sistemas continuos http://www.youtube.com/watch?feature=endscreen&nr=1&v=no7zppqtzeg => Consideramos sistemas

Más detalles

CONTENIDO INFORMATIVO

CONTENIDO INFORMATIVO FISVIR Física virtual al alcance de todos DOCUMENTO - CONTENIDO INFORMATIVO OBJETOS VIRTUALES DE APRENDIZAJE OVA s CONTENIDO INFORMATIVO CINEMATICA DEL MOVIMIENTO ARMONICO SIMPLE. ELONGACION: Cuando el

Más detalles

EJERCICIOS PROPUESTOS SOBRE SISTEMAS DE 1er y 2do ORDEN

EJERCICIOS PROPUESTOS SOBRE SISTEMAS DE 1er y 2do ORDEN EJERCICIOS PROPUESTOS SOBRE SISTEMAS DE 1er y 2do ORDEN 1. Para la función de transferencia G(s), cuya entrada proviene de un controlador proporcional de ganancia A, y que se encuentran en lazo cerrado

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

OSCILACIONES ACOPLADAS

OSCILACIONES ACOPLADAS OSCILACIONES ACOPLADAS I. Objetivos: Analizar el movimiento conjunto de dos osciladores armónicos similares (péndulos de varilla), con frecuencia natural f 0, acoplados por medio de un péndulo bifilar.

Más detalles

Ecuaciones diferenciales ordinarias lineales Félix Redondo Quintela, Roberto C. Redondo Melchor. Universidad de Salamanca 26 de octubre de 2014

Ecuaciones diferenciales ordinarias lineales Félix Redondo Quintela, Roberto C. Redondo Melchor. Universidad de Salamanca 26 de octubre de 2014 Ecuaciones diferenciales ordinarias lineales Félix Redondo Quintela, Roberto C. Redondo Melchor. Universidad de Salamanca 6 de octubre de 014 En el análisis de redes eléctricas y en otras partes de la

Más detalles

INDICE Capitulo 1. Variables y Leyes de Circuitos 1.1. Corriente, Voltaje y Potencia 1.2. Fuentes y Cargas (1.1) 1.3. Ley de Ohm y Resistores (1.

INDICE Capitulo 1. Variables y Leyes de Circuitos 1.1. Corriente, Voltaje y Potencia 1.2. Fuentes y Cargas (1.1) 1.3. Ley de Ohm y Resistores (1. INDICE Capitulo 1. Variables y Leyes de Circuitos 1 1.1. Corriente, Voltaje y Potencia 3 Carga y corriente * Energía y voltaje * Potencia eléctrica * Prefijos de magnitud 1.2. Fuentes y Cargas (1.1) 11

Más detalles

Mecánica y Ondas. Planteamiento y resolución de problemas tipo

Mecánica y Ondas. Planteamiento y resolución de problemas tipo Mecánica y Ondas. Planteamiento y resolución de problemas tipo Alvaro Perea Covarrubias Doctor en Ciencias Físicas Universidad Nacional de Educación a Distancia Madrid, Enero 2005 Capítulo 1. Leyes de

Más detalles

El estudio del movimiento de los cuerpos generalmente se divide en dos fases, por conveniencia: la cinemática y la dinámica.

El estudio del movimiento de los cuerpos generalmente se divide en dos fases, por conveniencia: la cinemática y la dinámica. Tema 1: Cinemática. Introducción. Describir el movimiento de objetos es una cuestión fundamental en la mecánica. Para describir el movimiento es necesario recurrir a una base de conceptos o ideas, sobre

Más detalles

UNIDAD II Ecuaciones diferenciales con variables separables

UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial

Más detalles

TRABAJO PRÁCTICO Nº 2 Herramientas Matemáticas de los Sistemas de Control

TRABAJO PRÁCTICO Nº 2 Herramientas Matemáticas de los Sistemas de Control TRABAJO PRÁCTICO Nº Herramientas Matemáticas de los Sistemas de Control PROBLEMA.1 Aplicando la definición de Transformada de Laplace encontrar la función transformada de las siguientes funciones: at a)

Más detalles

ELECTROTECNIA Circuitos de Corriente Alterna

ELECTROTECNIA Circuitos de Corriente Alterna ELECTROTECNIA Circuitos de Corriente Alterna Juan Guillermo Valenzuela Hernández (jgvalenzuela@utp.edu.co) Universidad Tecnológica de Pereira Segundo Semestre de 2014 Juan Valenzuela 1 Elementos de circuitos

Más detalles

Cálculo II 1. ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Cálculo II 1. ECUACIONES DIFERENCIALES DE PRIMER ORDEN Cálculo II Tema 1 Ecuaciones Diferenciales de Primer Orden Tema 2 Ecuaciones Diferenciales de Orden Superior Tema 3 Cálculo de Variaciones Tema 4 Sistemas de Ecuaciones Diferenciales Tema 5 Transformada

Más detalles

Temas de Física. Primer Cuatrimestre de Práctica 3: Dinámica

Temas de Física. Primer Cuatrimestre de Práctica 3: Dinámica «...a rmo que el movimiento (kineseis) es la actualización (energeia) de lo que está en potencia (dynamis), en tanto que tal», ARISTÓTELES (384 a.c.-322 a.c.) Metafísica, XI 9, 1065b16-17 Temas de Física

Más detalles

ECUACIÓN DE CAUCHY-EULER 2013

ECUACIÓN DE CAUCHY-EULER 2013 ECUACIÓN DE CAUCHY-EULER 3 LA ECUACIÓN DE CAUCHY-EULER Se trata de una ecuación con coeficientes variables cua solución general siempre se puede epresar en términos de potencias, senos, cosenos, funciones

Más detalles

Oscilaciones. José Manuel Alcaraz Pelegrina. Curso

Oscilaciones. José Manuel Alcaraz Pelegrina. Curso José Manuel Alcaraz Pelegrina Curso 007-008 1. Introducción En el presente capítulo vamos a estudiar el movimiento en torno a una posición de equilibrio estable, concretamente estudiaremos las oscilaciones

Más detalles

En esta sección, aprenderás cómo graficar y estirar las funciones de seno y coseno.

En esta sección, aprenderás cómo graficar y estirar las funciones de seno y coseno. Representación gráfica del seno En esta sección, aprenderás cómo graficar y estirar las funciones de seno y coseno. LA C O R R I E N T E A L T E R N A : Se denomina corriente alterna a la corriente eléctrica

Más detalles

3.2 Respuesta temporal de los sistemas lineales de segundo orden de tiempo continuo sin ceros

3.2 Respuesta temporal de los sistemas lineales de segundo orden de tiempo continuo sin ceros 38 Capítulo 3. Respuesta temporal 3.2 Respuesta temporal de los sistemas lineales de segundo orden de tiempo continuo sin ceros Herramienta interactiva: 3.2. t_segundo_orden Conceptos analizados en la

Más detalles