Lugar Geométrico de las Raíces

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Lugar Geométrico de las Raíces"

Transcripción

1 Lugar Geométrico de la Raíce N de práctica: 9 Tema Correpondiente: Lugar geométrico de la raíce Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Reviado por: Autorizado por: Vigente dede: Profeor 1 Ing. Benjamín Ramírez Hernández Dr. Paul Rolando Maya Ortiz 8/11/015

2 1. Seguridad en la ejecución Peligro o Fuente de energía Riego aociado 1 Ninguno Ninguno. Objetivo de aprendizaje I. Objetivo generale: Conocer qué e el Lugar Geométrico de la Raíce de una función de tranferencia en malla cerrada con un controlador PID II. Objetivo epecífico: Aprender a utilizar la herramienta con la que cuenta MATLAB para analizar y dieñar itema de control. 3. Introducción La repueta tranitoria de un itema en malla cerrada etá relacionada con la ubicación de lo polo del itema. Por lo tanto, para un correcto dieño e neceario conocer como e mueven lo eigenvalore (polo) y qué implicacione tiene el movimiento de éto conforme e varía la ganancia en el lazo de control. Coneguir ubicar la traza que decriben la raíce de un itema en malla cerrada e un problema matemático difícil, reuelto por Evan, que e reducen a un conjunto de regla encilla pero laborioa para dearrollar; ya que a medida que e varía la ganancia del itema, lo eigenvalore e mueven decribiendo cierta traza, iendo neceario calcular cada punto para un valor epecífico de la ganancia del controlador. El método preenta cómo on la raíce del itema para todo lo valore del parámetro del controlador del itema, la ganancia K. Mediante ete método e puede predecir que efecto tendrá la modificación de ete parámetro en el itema, y realizar un primer ajute para la ubicación deeada lo polo. La idea báica del método e que la magnitud de función de tranferencia en malla cerrada debe er igual a 1, con un ángulo de π radiane, lo cual e conoce como la condicione de magnitud y de

3 ángulo repectivamente, que debe atifacer la ecuación caracterítica del itema báico preentado en la Figura 1. U() + Y() G() - H() Fig. 1. Equema Báico del Sitema de Control cuya función de tranferencia etá dada por Y () G () = U () 1 + HG () () Al variar la ganancia dede cero hata infinito e puede obervar cómo contribuye cada eigenvalor y cada cero en lazo abierto a la poicione correpondiente al cerrar la malla. Se debe tener claro que ete método permite obtener reultado de dieño rápidamente, aunque no dejan de er reultado aproximado. Pueto que G()H() e un cociente de polinomio en, la ecuación caracterítica en lazo cerrado 1 + GH ( ) ( ) = 0; GH ( ) ( ) = 1+ j0 e una ecuación con funcione de variable compleja en variable compleja, que puede ecribire en forma polar donde u magnitud y u ángulo on repectivamente GH ( ) ( ) = 1 GH () () =± (k+ 1) π; k= 0,1,, K Lo valore de la variable compleja que cumplan eta do condicione erán lo eigenvalore del itema en malla cerrada. Pueto que e cuenta con un grado de libertad en el valor del parámetro de la ganancia K, la ecuación caracterítica puede ecribe como K( + z1)( + z) ( + zm) 1 + = 0 ( + p1)( + p) ( + pn) 3

4 Por lo tanto, la traza de cada eigenvalor del itema al varíar la ganancia K dede cero hata infinito e lo que e conoce como: Lugar Geométrico de la Raíce (LGR). 3.1 Cálculo del LGR de un Sitema en Forma Manual Ante de utilizar cualquier herramienta de apoyo, como lo e en ete cao MATLAB que ofrece varia opcione para trazar el LGR de una forma muy fácil, e indipenable entender lo que e etá haciendo y eto e logra al realizar lo cálculo de manera manual al eguir la regla propueta por Evan cuyo fundamento matemático no iempre e alcanzado por lo etudiante. Lo anterior permite un mejor entendimiento de la gráfica que e obtienen. De manera concia la regla de Evan e reumen en la iguiente: a) Obtención de la ecuación caracterítica: coniderando al parámetro K como una contante común en un controlador PID que e refleja como un factor multiplicativo en cacada con la planta. b) Obtener lo eigenvalore y lo cero de G()H() en el plano complejo: ubicar lo polo y cero en malla abierta. El LGR tendrá una traza por cada eigenvalor de la ecuación caracterítica. c) Determinar el LGR obre el eje real: Para contruir el LGR obre el eje real debe eleccionare un punto cualquiera del eje, i el número total de eigenvalore y cero reale a la derecha de ete punto e impar, entonce el punto pertenece al LGR. Si todo lo polo y cero en lazo abierto on reale, en la gráfica, lo egmento que pertenecen al LGR e van alternando. d) Determinación de la aíntota del LGR: Seleccionando un punto de prueba lejo del origen, obtenemo que lo ángulo de la aíntota on: donde ± (k + 1) π ángulo = ; k = 0,1,, K, n m n e el número de eigenvalore finito de H() G() m e el número de cero finito de H() G() para localizar el punto de corte de la aíntota con el eje real, al eleccionare el punto de prueba lejo del origen, la diviión entre el numerador y el denominador de la función de tranferencia en malla abierta, obtiene que 4

5 K GH () () = ( 1 ) ( 1 ) n p + p + K + p m n z + z + K + zm + n m igualando a cero el denominador e encuentra el punto de corte conocido como centroide. e) Punto de ruptura y de ingreo: Dada la imetría del LGR, lo punto de ruptura e encuentran obre el eje real o en pare complejo conjugado. Partiendo de la ecuación G()+1 = 0 depejando K y derivándola con repecto a, dk / d e obtienen lo punto de ruptura, donde el dominio de K pertenece al conjunto de lo número reale poitivo. f) Determinación del ángulo de alida del LGR a partir de un eigenvalor complejo: Pueto que al movere alrededor de un polo complejo, la uma de la contribucione angulare de todo lo otro eigenvalore y cero e mantiene contante puede concluire que: El ángulo de alida dede un polo complejo e igual a π (180º) meno la uma de lo ángulo hacia el eigenvalor dede lo otro eigenvalore, má la uma de lo ángulo hacia el eigenvalor dede lo cero. El ángulo de alida dede un cero complejo e igual a π (180º) meno la uma de lo ángulo hacia el cero dede otro cero, má la uma de ángulo hacia el cero dede lo eigenvalore. g) Cruce con el eje imaginario: Para eto e utilizan do método: Criterio de etabilidad de Routh: El valor de K que iguala a cero la primera 1 columna (renglón ), y utituyendo ea K en la ecuación auxiliar uperior (renglón ), al depejar e obtienen lo punto de cruce con el eje imaginario. Si e utituye = jω en la ecuación caracterítica y e iguala a cero la parte real e imaginaria, pueden depejare K y ω, iendo ω el valor de la frecuencia cuando cruza el eje imaginario y K el valor de la ganancia en el punto de cruce. h) Determinación de lo eigenvalore en malla cerrada: Una vez obtenido el LGR, cada punto de la traza e un eigenvalor en malla cerrada i el valor de K en dicho punto atiface la condición de magnitud. 5

6 3. Material y Equipo Computadora PC y MATLAB. 4. Dearrollo Una vez comprendido el concepto de LGR y profundizado hata donde ea poible en u fundamento matemático entonce el etudiante puede apoyare de MATLAB para obtener la traza del LGR con facilidad, quedando u interpretación iempre en el uuario para u correcta aplicación en el dieño de un itema de control. MATLAB cuenta con la función rlocu(num,den), donde num e un vector en donde e incluye el polinomio del numerador de la función de tranferencia en malla abierta y den de manera imilar e un vector que repreenta al polinomio del denominador de la función mencionada. Eta función traza el LGR para todo el dominio de valore a donde pertenece K. Si e utiliza la función con argumento del lado izquierdo, de la forma [r, K] = rlocu(num, den), Se obtiene lo dato numérico en lo vectore r y K. I. Actividad 1 Un itema de control realimentado tiene la iguiente función de tranferencia en malla cerrada ( + ) ( ) KG() = K utilizando MATLAB, obtenga u LGR y muetre con la función rlocfind que el valor máximo de K para que el itema ea etable e K =

7 II. Actividad Sea el iguiente itema G p ( ) = Coniderando que cuenta con lo iguiente controladore en cacada y e cierra la malla a) GC () = K K b) GC () = 1 c) GC () = K(1 + ) II.1 Obtener el LGR del itema que e forma en cada cao utilizando MATLAB y determinar el valor de K para el cuál e atifacen la epecificacione de dieño. II. Repetir lo anterior con la planta de lo incio b) y c). II.3 En la mima gráfica colocar la repueta a ecalón unitario coniderando cada uno de lo controladore propueto en lo incio a), b) y c). II.4 A partir de la gráfica del LGR y de la repueta a ecalón unitario qué puede concluir acerca del el error de etado permanente y de la repueta tranitoria del itema? 7

8 5. Concluione 6. Bibliografía Bolton, W. INGENIERÍA DE CONTROL Editorial Alfaomega a Edición México, 006 Kuo, Benjamin C. SISTEMAS DE CONTROL AUTOMÁTICO Editorial Prentice Hall Hipanoamericana 7ª Edición México,

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES CAPITULO 3 ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES 3. INTRODUCCIÓN La etabilidad relativa y la repueta tranitoria de un itema de control en lazo cerrado etán directamente relacionada con la localización

Más detalles

DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1

DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1 DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA ÁREA: CONTROL ASIGNATURA: CONTROL II GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº Análii de Etabilidad de lo Sitema

Más detalles

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II)

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II) C8. Para el itema de la cuetión C6, Qué diría i alguien ugiriera trabajar con el itema en torno al punto de operación (U,Y b )? C9. Se deea controlar la poición del eje de un motor. Para identificar el

Más detalles

y bola riel Mg UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página 1 de 5

y bola riel Mg UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página 1 de 5 INGENIERÍA EN AUTOMATIZACIÓN Y CONTROL INDUSTRIAL Control Automático II Má Problema UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página de 5. Control de un itema de Bola Riel La Figura muetra

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Automáca Ejercicio Capítulo.Etabilidad JoéRamónLlataGarcía EtherGonáleSarabia DámaoFernándePére CarloToreFerero MaríaSandraRoblaGóme DepartamentodeTecnologíaElectrónica eingenieríadesitemayautomáca Problema

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA INGENIERÍA DE CONTROL PRACTICA N 9 ANÁLISIS DE SISTEMAS DE CONTROL POR LUGAR GEOMÉTRICO DE LAS RAÌCES OBJETIVO Hacer uo del

Más detalles

Análisis del lugar geométrico de las raíces

Análisis del lugar geométrico de las raíces Análii del lugar geométrio de la raíe La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si el itema tiene una ganania

Más detalles

Lugar geométrico de las raíces

Lugar geométrico de las raíces Lugar geométrio de la raíe Análii del lugar geométrio de la raíe La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si

Más detalles

2.7 Problemas resueltos

2.7 Problemas resueltos .6 Reumen 45 Lo modelo matemático on fundamentale en lo itema de control porque no permiten hallar la repueta del itema para determinada entrada al mimo y de eta forma, predecir el comportamiento de dicho

Más detalles

1. Análisis de Sistemas Realimentados

1. Análisis de Sistemas Realimentados Análii v2.doc 1 1. Análii de Sitema Realimentado 1. Análii de Sitema Realimentado 1 1.1. INTRODUCCIÓN... 2 1.2. ESTABILIDAD... 2 1.3. ESTRUCTURAS DE REALIMENTACIÓN... 3 1.3.1. Sitema Etable e Inetable...

Más detalles

Examen ordinario de Junio. Curso

Examen ordinario de Junio. Curso Examen ordinario de Junio. uro 3-4. ' punto La eñal xtco[ω tω t] tiene: a Una componente epectral a la pulación ω ω b omponente epectrale en todo u armónico. c Do componente epectrale en la pulacione ω

Más detalles

ANÁLISIS TEMPORAL. Conceptos generales. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs

ANÁLISIS TEMPORAL. Conceptos generales. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs ANÁLISIS TEMPORAL Concepto generale 1. Régimen tranitorio y permanente. 2. Señale normalizada de entrada. 3. Repueta a ecalón de itema de tiempo continuo. 4. Relación entre la repueta temporal y la ituación

Más detalles

1. Breves Apuntes de la Transformada de Laplace

1. Breves Apuntes de la Transformada de Laplace Ingeniería de Sitema. Breve Apunte de la Tranformada de Laplace Nota: Eto apunte tomado de diferente bibliografía y apunte de clae, no utituyen la diapoitiva ni la explicación del profeor, ino que complementan

Más detalles

. (3.6) 20r log j 20 log j / p log j / p Obtener la expresión del ángulo de fase :

. (3.6) 20r log j 20 log j / p log j / p Obtener la expresión del ángulo de fase : Aj j... j z z zm G( j). (3.6) r ( j) j j... j p p p n G( j) 0log G( j) db 0 log A 0 log j/ z 0 log j/ z... 0 log j/ zm 0r log j 0 log j/ p... 0 log j/ p. 4. Obtener expreión del ángulo de fae : G( j) A(

Más detalles

Efectos del retardo en el control de lazo cerrado de plantas sobreamortiguadas

Efectos del retardo en el control de lazo cerrado de plantas sobreamortiguadas Revita de la Facultad de Ingeniería Indutrial 5(): 0-9 (0) UNMSM ISSN: 560-96 (Impreo) / ISSN: 80-9993 (Electrónico) Efecto del retardo en el control de lazo cerrado de planta obreamortiguada Recibido:

Más detalles

COLEGIO LA PROVIDENCIA

COLEGIO LA PROVIDENCIA COLEGIO LA PROVIDENCIA Hna de la Providencia y de la Inmaculada Concepción 2013 ALLER MOVIMIENO CIRCULAR UNIFORME DOCENE: Edier Saavedra Urrego Grado: décimo fecha: 16/04/2013 Realice un reumen de la lectura

Más detalles

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos. Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura

Más detalles

QUÍMICA COMÚN NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA

QUÍMICA COMÚN NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA QUÍMICA COMÚN QC- NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA REPRESENTACIÓN DE LOS ELECTRONES MEDIANTE LOS NÚMEROS CUÁNTICOS Como conecuencia del principio de indeterminación e deduce que no e puede

Más detalles

f s1 Para no entrar en ninguna banda prohibida, las nuevas especificaciones que tendremos en cuenta serán y. (+1p)

f s1 Para no entrar en ninguna banda prohibida, las nuevas especificaciones que tendremos en cuenta serán y. (+1p) . Obtenga la función de tranferencia de un filtro pao de banda que cumpla la iguiente epecificacione: a) Banda paante máximamente plana en f 45, khz con atenuación A p db. b) Banda de rechazo máximamente

Más detalles

Realizabilidad de Precompensadores en Sistemas Lineales Multivariables

Realizabilidad de Precompensadores en Sistemas Lineales Multivariables Congreo Anual 2 de la Aociación de México de Control Automático. Puerto Vallarta, Jalico, México. Realizabilidad de Precompenadore en Sitema Lineale Multivariable E. Catañeda, J. Ruiz-León CINVESTAV-IPN,

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

1. Cómo sabemos que un cuerpo se está moviendo?

1. Cómo sabemos que un cuerpo se está moviendo? EL MOVIMIENTO. CONCEPTOS INICIALES I.E.S. La Magdalena. Avilé. Aturia A la hora de etudiar el movimiento de un cuerpo el primer problema con que no encontramo etá en determinar, preciamente, i e etá moviendo

Más detalles

Análisis del Lugar Geométrico de las Raíces (LGR) o Método de Evans

Análisis del Lugar Geométrico de las Raíces (LGR) o Método de Evans Análii del Lugar Geométrio de la Raíe (LGR) o Método de Evan La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si el

Más detalles

Control Analógico II M.I. Isidro Ignacio Lázaro Castillo

Control Analógico II M.I. Isidro Ignacio Lázaro Castillo UNIDAD I Método del lugar de las raíces Control Analógico II M.I. Isidro Ignacio Lázaro Castillo Antecedentes históricos En 1948 Walter R. Evans introdujo este método que es gráfico y elegante para la

Más detalles

Tema 2. Descripción externa de sistemas

Tema 2. Descripción externa de sistemas de Sitema y Automática Tema. Decripción externa de itema Automática º Curo del Grado en Ingeniería en Tecnología Indutrial de Sitema y Automática Contenido Tema.- Decripción externa de itema:.1. Introducción.

Más detalles

CAPÍTULO 2 RESPUESTA EN FRECUENCIA

CAPÍTULO 2 RESPUESTA EN FRECUENCIA CAPÍTULO RESPUESTA EN FRECUENCIA.1 GENERALIDADES Introducción Para el circuito de la figura.1, e encontrarán la funcione circuitale de admitancia de entrada y de ganancia de voltaje, la cuale e definen

Más detalles

ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Universal. Actividad 1.- Define movimiento circular uniforme, radio vector y desplazamiento angular.

ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Universal. Actividad 1.- Define movimiento circular uniforme, radio vector y desplazamiento angular. ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Univeral Actividad 1.- Define movimiento circular uniforme, radio vector y deplazamiento angular. Movimiento circular uniforme (MCU) e el movimiento de

Más detalles

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Título Univeridad de Oriente Núcleo de nzoátegui Ecuela de Ingeniería y Ciencia plicada Dpto de Computación y Sitema TEM I DIRMS DE OQUES, FUJORMS Y SUS OPERCIONES Ec. De Ing. Y C. plicada Tema I: Diag

Más detalles

Filtros Activos. Filtros Pasivos

Filtros Activos. Filtros Pasivos Filtro Activo Joé Gómez Quiñone Filtro Paivo vi R k vo C n H ( w) r w c Joé Gómez Quiñone Función de Tranferencia Joé Gómez Quiñone Ventaja Filtro Paivo Barato Fácile de Implementar Repueta aproximada

Más detalles

Lugar Geométrico de las Raíces

Lugar Geométrico de las Raíces ELC-33103 Teoría de Control Lugar Geométrico de las Raíces Prof. Francisco M. Gonzalez-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/sp.htm 1. Introducción La característica básica de la

Más detalles

Comportamiento del nivel de líquido en un sistema de dos tanques en serie

Comportamiento del nivel de líquido en un sistema de dos tanques en serie Comportamiento del nivel de líquido en un itema de do tanque en erie Marcela Echavarria R., Gloria Lucía Orozco C., Alan Didier Pérez Á. Abtract Se deea conocer el comportamiento del nivel de un itema

Más detalles

Anexo 1.1 Modelación Matemática de

Anexo 1.1 Modelación Matemática de ELC-3303 Teoría de Control Anexo. Modelación Matemática de Sitema Fíico Prof. Francico M. Gonzalez-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/tic.html Modelación de Sitema Fíico Francico

Más detalles

Tema03: Circunferencia 1

Tema03: Circunferencia 1 Tema03: Circunferencia 1 3.0 Introducción 3 Circunferencia La definición de circunferencia e clara para todo el mundo. El uo de la circunferencia en la práctica y la generación de uperficie de revolución,

Más detalles

Controlador PI Digital: Lugar Geométrico de las Raíces.

Controlador PI Digital: Lugar Geométrico de las Raíces. Controlador PI Digital: Lugar Geométrico de las Raíces. N de práctica: 8 Tema: Controlador PI digital: Lugar Geométrico de las Raíces Nombre completo del alumno Firma N de brigada: Fecha de elaboración:

Más detalles

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo.

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo. C U R S O: FÍSICA MENCIÓN MATERIAL: FM-3 CINEMÁTICA II CAIDA LIBRE En cinemática, la caída libre e un movimiento dónde olamente influye la gravedad. En ete movimiento e deprecia el rozamiento del cuerpo

Más detalles

UNIVERSIDAD DE SEVILLA

UNIVERSIDAD DE SEVILLA UNIVERSIDAD DE SEVILLA Ecuela Técnica Superior de Ingeniería Informática PRÁCTICA 4: MUESTREO DE SEÑALES Y DIGITALIZACIÓN Tecnología Báica de la Comunicacione (Ingeniería Técnica Informática de Sitema

Más detalles

Transformaciones geométricas

Transformaciones geométricas Tranformacione geométrica Baado en: Capítulo 5 Del Libro: Introducción a la Graficación por Computador Fole Van Dam Feiner Hughe - Phillip Reumen del capítulo Tranformacione bidimenionale Coordenada homogénea

Más detalles

CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS

CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS En tipo de problema, y de forma general, aplicaremo la conervación del momento angular repecto al eje fijo i lo hay (la reacción del eje, por muy grande

Más detalles

Hidrodinámica. Elaborado por: Ing. Enriqueta Del Ángel Hernández. Noviembre, 2014

Hidrodinámica. Elaborado por: Ing. Enriqueta Del Ángel Hernández.  Noviembre, 2014 Hidrodinámica Elaborado por: Ing. Enriqueta Del Ángel Hernández Noviembre, 01 http://www.uaeh.edu.mx/virtual HIDRODINÁMICA Etudia el comportamiento del movimiento de lo fluido; en í la hidrodinámica e

Más detalles

GRAFICA DE LUGAR GEOMETRICO DE LAS RAICES

GRAFICA DE LUGAR GEOMETRICO DE LAS RAICES GRAFICA DE LUGAR GEOMETRICO DE LAS RAICES La idea básica detrás del método del lugar geométrico de las raíces es que los valores de s que hacen que la función de transferencia alrededor del lazo sea igual

Más detalles

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte christianq@uninorte.edu.co Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte Ejemplo: Considere el sistema de la figura: G(s) tiene un par de polos complejos conjugados en s = 1

Más detalles

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00 TEMA 0: ÓPTICA GEOMÉTRICA NOMBRE DEL ALUMNO: CURSO: ºBach GRUPO: ACTIVIDADES PARES DE LAS PAGINAS 320-322 2. Qué ignificado tiene la aproximación de rao paraxiale? Conite en uponer que lo rao inciden obre

Más detalles

caracterización de componentes y equipos de radiofrecuencias para la industria de telecomunicaciones

caracterización de componentes y equipos de radiofrecuencias para la industria de telecomunicaciones Aplicación de lo parámetro de diperión en la caracterización de componente y equipo de radiofrecuencia para la indutria de telecomunicacione Suana adilla Laboratorio de Analizadore de Rede padilla@cenam.mx

Más detalles

Procesamiento Digital de Señales Octubre 2012

Procesamiento Digital de Señales Octubre 2012 Proceaiento Digital de Señale Octubre 0 Método de ntitranforación PROCESMIENTO DIGITL DE SEÑLES Tranforada Z - (Parte II) Hay tre étodo de antitranforación, o Tranforación Z Invera para obtener la función

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecanimo: PROYECTO DE TEORIA DE MECANISMOS. Análii cinemático y dinámico de un mecanimo plano articulado con un grado de libertad. 6. Cálculo de la velocidade con el método de lo centro intantáneo

Más detalles

LENTE CONVERGENTE 2: Imágenes en una lente convergente

LENTE CONVERGENTE 2: Imágenes en una lente convergente LENTE CONVERGENTE : Imágene en una lente convergente Fundamento En una lente convergente delgada e conidera el eje principal como la recta perpendicular a la lente y que paa por u centro. El corte de eta

Más detalles

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte christianq@uninorte.edu.co Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte La respuesta transitoria de un sistema en lazo cerrado se relaciona estrechamente con la localización

Más detalles

Control de Lazo Cerrado

Control de Lazo Cerrado Control de Lazo Cerrado N de práctica: 3 Tema Correspondiente: Análisis del Lazo Cerrado Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Revisado por: Autorizado

Más detalles

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010 Medida de Variación o Diperión Dra. Noemí L. Ruiz 007 Derecho de Autor Reervado Reviada 010 Objetivo de la lección Conocer cuále on la medida de variación y cómo e calculan o e determinan Conocer el ignificado

Más detalles

6.1. Condición de magnitud y ángulo

6.1. Condición de magnitud y ángulo Capítulo 6 Lugar de las raíces La respuesta transitoria de un sistema en lazo cerrado, está ligada con la ubicación de los polos de lazo cerrado en el plano complejo S. Si el sistema tiene una ganancia

Más detalles

CONTROL EN CASCADA POR MÉTODOS DIFUSOS

CONTROL EN CASCADA POR MÉTODOS DIFUSOS Revita EIA, ISSN 794-37 Número 8, p. 8-93. Diciembre 007 Ecuela de Ingeniería de Antioquia, Medellín (Colombia) CONTROL EN CASCADA POR MÉTODOS DIFUSOS Joé David Grajale* Daniel Felipe López* Joaquín Emilio

Más detalles

6 La transformada de Laplace

6 La transformada de Laplace CAPÍTULO 6 La tranformada de Laplace 6. efinición de la tranformada de Laplace 6.. efinición y primera obervacione En la gran mayoría de lo itema de interé para la fíica y la ingeniería e poible (al meno

Más detalles

IE TEC. Total de Puntos: 71 Puntos obtenidos: Porcentaje: Nota:

IE TEC. Total de Puntos: 71 Puntos obtenidos: Porcentaje: Nota: IE TEC Nombre: Intituto Tecnológico de Cota Rica Ecuela de Ingeniería Electrónica EL-70 Modelo de Sitema Profeore: Dr. Pablo Alvarado Moya, Ing. Gabriela Ortiz León, M.Sc. I Semetre, 007 Examen de Suficiencia

Más detalles

LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 10

LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 10 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control 1. TEMA LABORATORIO DE SISTEMAS DE CONTROL

Más detalles

! y teniendo en cuenta que el movimiento se reduce a una dimensión

! y teniendo en cuenta que el movimiento se reduce a una dimensión Examen de Fíica-1, 1 Ingeniería Química Examen final Septiembre de 2011 Problema (Do punto por problema) Problema 1 (Primer parcial): Una lancha de maa m navega en un lago con velocidad En el intante t

Más detalles

Filtros de Elementos Conmutados

Filtros de Elementos Conmutados Filtro de Elemento onmutado Ing. A. amón arga Patrón rvarga@inictel.gob.pe INITEL Introducción En un artículo anterior dearrollamo una teoría general para el filtro activo de variable de etado. e detacó

Más detalles

Capítulo VI FRICCIÓN. s (max) f en el instante que el movimiento del cuerpo es inminente. En esa 6.1 INTRODUCCIÓN 6.2 FRICCIÓN ESTÁTICA

Capítulo VI FRICCIÓN. s (max) f en el instante que el movimiento del cuerpo es inminente. En esa 6.1 INTRODUCCIÓN 6.2 FRICCIÓN ESTÁTICA RICCIÓ Capítulo VI 6.1 ITRODUCCIÓ La ricción e un enómeno que e preenta entre la upericie rugoa de do cuerpo ólido en contacto, o entre la upericie rugoa de un cuerpo ólido un luido en contacto, cuando

Más detalles

Construcción de un Circuito Controlador de Movimiento del Motor de un Transductor Sectorial Mecánico Utilizado en Ecografía, mediante Control PID

Construcción de un Circuito Controlador de Movimiento del Motor de un Transductor Sectorial Mecánico Utilizado en Ecografía, mediante Control PID Contrucción de un Circuito Controlador de Movimiento del Motor de un Tranductor Sectorial Mecánico Utilizado en Ecografía, mediante Control PID Manuel Baquerizo A. (1), Miguel Yapur A. (2) Facultad de

Más detalles

SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS

SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS SISEMAS INÁMICOS IEMº - Modelo de Sitema Mecánico PROBLEMAS P. Para lo itema mecánico de tralación motrado en la figura, e pide: a uncione de tranferencia entre la fuerza f y la velocidade de la maa. b

Más detalles

9. Análisis en frecuencia: lugar de las raíces

9. Análisis en frecuencia: lugar de las raíces Ingeniería de Control I Tema 9 Análisis en frecuencia: lugar de las raíces 1 9. Análisis en frecuencia: lugar de las raíces Introducción: Criterios de argumento y magnitud Reglas de construcción Ejemplo

Más detalles

Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9

Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9 Introducción Sitema de control 67-22 verión 2003 Página 1 de 9 Según vimo en el capítulo I, al controlador ingrean la eñale R() (et-point) y B() (medición de la variable controlada ), e comparan generando

Más detalles

2. Arreglo experimental

2. Arreglo experimental Efecto fotoeléctrico Diego Hofman y Alejandro E. García Roelli Departamento de Fíica, Laboratorio 5,Facultad de Ciencia Exacta y Naturale, Univeridad de Bueno Aire A lo largo de ete trabajo e etudió el

Más detalles

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34 SECO 2014-II Félix Monaterio-Huelin y Álvaro Gutiérre 6 de maro de 2014 Índice Índice 33 Índice de Figura 33 Índice de Tabla 34 12.Muetreador ideal y relación entre y 35 13.Muetreo de Sitema en erie 38

Más detalles

Práctica 1: Dobladora de tubos

Práctica 1: Dobladora de tubos Práctica : Dobladora de tubo Una máquina dobladora de tubo utiliza un cilindro hidráulico para doblar tubo de acero de groor coniderable. La fuerza necearia para doblar lo tubo e de 0.000 N en lo 00 mm

Más detalles

Descripción Diagramas de bloques originales CONMUTATIVA PARA LA SUMA. Diagramas de bloques equivalentes MOVIMIENTO A LA IZQUIERDA DE UN

Descripción Diagramas de bloques originales CONMUTATIVA PARA LA SUMA. Diagramas de bloques equivalentes MOVIMIENTO A LA IZQUIERDA DE UN Decripción Diagrama de bloue originale ONMUTATIVA AA A SUMA Diagrama de bloue euivalente 8 MOVIMIENTO A A IZUIEDA DE UN UNTO DE BIFUAIÓN DISTIBUTIVA A A SUMA 9 MOVIMIENTO A A DEEA DE UN UNTO DE BIFUAIÓN

Más detalles

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas Automáca Ejercicio Capítulo.DiagramadeBloqueyFlujograma JoéRamónlataarcía EtheronzálezSarabia DámaoFernándezPérez CarlooreFerero MaríaSandraRoblaómez DepartamentodeecnologíaElectrónica eingenieríadesitemayautomáca

Más detalles

Se comprime aire, inicialmente a 17ºC, en un proceso isentrópico a través de una razón de

Se comprime aire, inicialmente a 17ºC, en un proceso isentrópico a través de una razón de Ejemplo 6-9 Se comprime aire, inicialmente a 7ºC, en un proceo ientrópico a travé de una razón de preión de 8:. Encuentre la temperatura final uponiendo calore epecífico contante y calore epecífico variable,

Más detalles

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide Faore La enoide e exprean fácilmente en término de faore, e má cómodo trabajar que con la funcione eno y coeno. Un faor e un numero complejo que repreenta la amplitud y la fae de una enoide Lo faore brinda

Más detalles

TEMA 4: El movimiento circular uniforme

TEMA 4: El movimiento circular uniforme TEMA 4: El moimiento circular uniforme Tema 4: El moimiento circular uniforme 1 ESQUEMA DE LA UNIDAD 1.- Caracterítica del moimiento circular uniforme. 2.- Epacio recorrido y ángulo barrido. 2.1.- Epacio

Más detalles

El método del lugar de las raíces.

El método del lugar de las raíces. El método del lugar de las raíces. Las características de un sistema de lazo cerrado son determinadas por los polos de lazo cerrado. Los polos de lazo cerrado son las raíces de la ecuación característica.

Más detalles

SECO 2014-V ([1, 2, 3, 4])

SECO 2014-V ([1, 2, 3, 4]) SECO 214-V ([1, 2, 3, 4]) Félix Monasterio-Huelin y Álvaro Gutiérrez 2 de mayo de 214 Índice Índice 19 Índice de Figuras 19 Índice de Tablas 11 26.Lugar de Raíces: Introducción 111 26.1. Ejemplo de semiasíntotas

Más detalles

EFECTO DE LA TEMPERATURA DEL FLUIDO DE TRABAJO EN EL TRABAJO NETO Y LA EFICIENCIA TÉRMICA DE UNA TURBINA DE GAS

EFECTO DE LA TEMPERATURA DEL FLUIDO DE TRABAJO EN EL TRABAJO NETO Y LA EFICIENCIA TÉRMICA DE UNA TURBINA DE GAS EFECTO DE LA TEMERATURA DEL FLUIDO DE TRABAJO EN EL TRABAJO NETO Y LA EFICIENCIA TÉRMICA DE UNA TURBINA DE GAS Jeú Alberto Cortez Hernández (1), Francico Javier Ortega Herrera () Alfono Lozano Luna (3)

Más detalles

Fuente de Alimentación de Tensión

Fuente de Alimentación de Tensión 14/05/014 Fuente de Alimentación de Tenión Fuente de alimentación: dipoitivo que convierte la tenión alterna de la red de uminitro (0 ), en una o varia tenione, prácticamente continua, que alimentan a

Más detalles

APUNTES DE LA ASIGNATURA SISTEMAS ELECTRÓNICOS DE CONTROL CURSO 2008/2009

APUNTES DE LA ASIGNATURA SISTEMAS ELECTRÓNICOS DE CONTROL CURSO 2008/2009 APUNTES DE LA ASIGNATURA SISTEMAS ELECTRÓNICOS DE CONTROL CURSO 8/9 CURSO 3º INGENIERÍA TÉCNICA DE TELECOMUNCICACIÓN SISTEMAS ELECTRÓNICOS JOSÉ CANDAU PÉREZ FCO. JAVIER GARCÍA RUIZ EDUARDO J. MOYA DE LA

Más detalles

El núcleo y sus radiaciones Clase 15 Curso 2011 Página 1. Departamento de Física Fac. Ciencias Exactas - UNLP. Paridad

El núcleo y sus radiaciones Clase 15 Curso 2011 Página 1. Departamento de Física Fac. Ciencias Exactas - UNLP. Paridad Paridad Curo 0 Página Eta propiedad nuclear etá aociada a la paridad de la función de onda nuclear. La paridad de un itema ailado e una contante de movimiento y no puede cambiare por un proceo interno.

Más detalles

2. Estabilidad en Sistemas Lineales Invariantes en el Tiempo.

2. Estabilidad en Sistemas Lineales Invariantes en el Tiempo. Capítulo 3 2. Estabilidad en Sistemas Lineales Invariantes en el Tiempo. 3.1 Introducción Un sistema estable se define como aquel que tiene una respuesta limitada. Es decir, un sistema es estable si estando

Más detalles

Serie 10 ESTABILIDAD

Serie 10 ESTABILIDAD Serie 0 ESTABILIDAD Condición de estabilidad U u Gu U R r + + - Gc Gv Gp C G V G P + c C H G( G (. G (. G (. H ( C V P + G( 0 G( G φ 80 Localización de las raíces Plano s E S T A B L E I N E S T A B L

Más detalles

05/04/2011 Diana Cobos

05/04/2011 Diana Cobos Diana Cobo a cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad o auto en un autolavado 2 En general, a nadie le guta eperar. Cuando

Más detalles

Solución: a) A dicha distancia la fuerza centrífuga iguala a la fuerza de rozamiento, por lo que se cumple: ω r= m mg 0, 4 9,8.

Solución: a) A dicha distancia la fuerza centrífuga iguala a la fuerza de rozamiento, por lo que se cumple: ω r= m mg 0, 4 9,8. C.- Una plataforma gira alrededor de un eje vertical a razón de una vuelta por egundo. Colocamo obre ella un cuerpo cuyo coeficiente etático de rozamiento e 0,4. a) Calcular la ditancia máxima al eje de

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

Examen de Sistemas Automáticos Agosto 2013

Examen de Sistemas Automáticos Agosto 2013 Examen de Sitema Automático Agoto 203 Ej. Ej. 2 Ej. 3 Ej. 4 Total Apellido, Nombre: Sección: Fecha: 20 de agoto de 203 Atención: el enunciado conta de tre ejercicio práctico y un tet de repueta múltiple

Más detalles

Función Longitud de Arco

Función Longitud de Arco Función Longitud de Arco Si al extremo final de la curva Lt = t f t dt e deja variable entonce el límite uperior de la a integral depende del parámetro t y e tiene que la longitud de arco de una curva

Más detalles

Herramientas Matemáticas Computacionales aplicadas en la enseñanza de la Física

Herramientas Matemáticas Computacionales aplicadas en la enseñanza de la Física Herramienta Matemática Computacionale aplicada en la eneñanza de la Fíica Zambrano, Juan C. 1 Sanabria Irma Z. 2 1 jzambra@unet.edu.ve (Principal), 2 irmaa66@hotmail.com Decanato de Invetigación. Univeridad

Más detalles

BLOQUES BÁSICOS ACTIVOS

BLOQUES BÁSICOS ACTIVOS Análii y Síntei de Circuito APENDICE Fig.4.6 Schauman (a) (b) Figura A.: Ilutración de la imulación de (a) un inductor a tierra y (b) un inductor flotante mediante circuito C-activo. A. Dieño de funcione

Más detalles

DISEÑO, CONSTRUCCIÓN Y CALIBRACIÓN DE UN PSICRÓMETRO DIGITAL ASPIRADO

DISEÑO, CONSTRUCCIÓN Y CALIBRACIÓN DE UN PSICRÓMETRO DIGITAL ASPIRADO Simpoio de Metrología 200 DISEÑO, CONSTRUCCIÓN Y CALIBRACIÓN DE UN PSICRÓMETRO DIGITAL ASPIRADO Jeú Alfredo Dávila, Enrique Martíne López Centro Nacional de Metrología, Diviión de Termometría Km.,5 Carretera

Más detalles

Método aproximado para conocer la localización de las raíces de la ecuación característica con respecto a los semiplanos izquierdo y derecho. (12.

Método aproximado para conocer la localización de las raíces de la ecuación característica con respecto a los semiplanos izquierdo y derecho. (12. 1. Criterio de estabilidad de Nyquist 1.1 Gráfica de Nyquist Gráfica de L(jω) G(jω)H(jω) en coordenadas polares de Im[L(jω)], Re[L(jω)] con ω variando desde hasta 0. Características: provee información

Más detalles

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos eunión de Grupo de Invetigación en Ingeniería Eléctrica. Santander Modelo de generadore aíncrono para la evaluación de perturbacione emitida por parque eólico A. Feijóo, J. Cidrá y C. Carrillo Univeridade

Más detalles

Título de la ponencia: PARA QUÉ SE LEE EN LAS UNIVERSIDADES DE COLOMBIA? 1

Título de la ponencia: PARA QUÉ SE LEE EN LAS UNIVERSIDADES DE COLOMBIA? 1 Título de la ponencia: PARA QUÉ SE LEE EN LAS UNIVERSIDADES DE COLOMBIA? 1 Autora: Violeta Molina Natera Pontificia Univeridad Javeriana, Cali, Colombia RESUMEN Eta ponencia muetra lo reultado de encueta

Más detalles

INTRODUCCIÓN TIPOS DE CONSULTA UNIDAD 4. Consultas. Consulta de selección

INTRODUCCIÓN TIPOS DE CONSULTA UNIDAD 4. Consultas. Consulta de selección Curo Báico 2003 UNIDAD 4 Conulta INTRODUCCIÓN Una conulta e una pregunta que le realizamo a una bae de dato para que no dé información concreta obre lo dato que contiene. No permiten: Etablecer criterio

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC

El estudio teórico de la práctica se realiza en el problema PTC PRÁCTICA LTC-1: REFLEXIONES EN UN PAR TRENZADO 1.- Decripción de la práctica a) Excitar un cable de pare de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

Movimiento rectilíneo uniformemente variado (parte 2)

Movimiento rectilíneo uniformemente variado (parte 2) Semana (parte 1) 9 Semana 8 (parte ) Empecemo! Apreciado participante, neceitamo que tenga una actitud de éxito y dipoición de llegar hata el final, aún en medio de la dificultade, por ello perevera iempre!

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Fíica General Proyecto PMME - Curo 008 Intituto de Fíica Facultad de Ingeniería UdelaR TITULO Dinámica de la partícula AUTORES Aniella Bertellotti y Gimena Ortiz. ITRODUCCIÓ En nuetro proyecto utilizamo

Más detalles

SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA

SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA * Análii de Sitema en el Dominio del Tiempo. * I. NOMBRE : Análii de Sitema en el Dominio del Tiempo. II. OBJETIVOS : El etudiante conocerá y aplicará un oftware

Más detalles

Capítulo 2. Principios del control directo del par (DTC)

Capítulo 2. Principios del control directo del par (DTC) Capítulo Principio del control directo del par (DTC). Introducción Debido a u robutez, la máquina eléctrica de inducción on en la actualidad uno de lo elemento má importante en lo accionamiento eléctrico

Más detalles

PARA MEJORAR CARACTERÍSTICAS DE DISEÑO EN FILTROS BICUADRÁTICOS

PARA MEJORAR CARACTERÍSTICAS DE DISEÑO EN FILTROS BICUADRÁTICOS EL USO DE LOS SFG PARA MEJORAR ARATERÍSTIAS DE DISEÑO EN FILTROS BIUADRÁTIOS - Lui Abraham Sánchez Gapariano, Joé Joel García Delgado, Arturo Prieto Fuenlabrada 3, Alejandro Díaz Sánchez,3 Intituto Nacional

Más detalles

E s t r u c t u r a s

E s t r u c t u r a s t r u c t u r a epartamento de tructura de dificación cuela Técnica Superior de Arquitectura de adrid iagrama de efuerzo de una viga quebrada uo: 4,5 k/m I AA 15/16 12-4-2016 jemplo peo propio: 4,5 k/m

Más detalles

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A.

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A. Cinemática 9 TEST.- La velocidade v de tre partícula:, y 3 en función del tiempo t, on motrada en la figura. La razón entre la aceleracione mayor y menor e: a) 8 b) / c) 0 d) e) 3.- De la gráfica: a) d)

Más detalles

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones GEOMETRÍA ANALÍTICA 8. ECUACIONES DE UNA RECTA Para determinar una recta neceitamo una de eta do condicione 1. Un punto P(x, y ) y un vector V = (a,b). Do punto P(x, y ), Q(x 1, y 1 ) Un punto P(x, y )

Más detalles

Errores y Tipo de Sistema

Errores y Tipo de Sistema rrore y Tipo de Sitema rror dinámico: e la diferencia entre la eñale de entrada y alida durante el período tranitorio, e decir el tiempo que tarda la eñal de repueta en etablecere. La repueta de un itema

Más detalles