Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3"

Transcripción

1 Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se denota por R n ; así, R n := {(x 1,..., x n ) x i R, 1 i n}. Los elementos de R n también se suelen denominar vectores de orden n. Observación. (i) Geométricamente, un n-vector a = (a 1,..., a n ) es un segmento de recta dirigido que tiene por punto inicial el origen O = (0,..., 0) y punto final el punto a. En consecuencia, los elementos de R n pueden pensarse como puntos o vectores de acuerdo a lo que requiera el contexto. (ii) Dado un segmento de recta dirigido (o vector en el sentido clásico) con punto inicial P = (P 1,..., P n ) y punto final Q = (Q 1,..., Q n ), existe un n-vector u con las misma logitud y direccción que P Q: basta tomar u := P Q; en consecuencia, a todo vector arbitrario es posible siempre asociarle un vector equipolente 1 que tenga punto inicial en el origen O. (iii) En resumen, a cada n-vector es posible asociarle un segmento de recta dirigido y, recíprocamente, a cada segmento dirigido se le puede asociar uno con la misma longitud y dirección pero con punto inicial en e origen, es decir, un n-vector. Definición. Sean u = (u 1,..., u n ), v = (v 1,..., v n ) vectores en R n. Se dice que ellos son iguales si, y sólo si, u i = v i para cada 1 i n. Sobre el conjunto R n se definen las siguientes operaciones: (i) Suma Sean u = (u 1,..., u n ), v = (v 1,..., v n ) R n ; su suma se define de la siguiente forma: u + v := (u 1 + v 1,..., u n + v n ). (ii) Producto por escalar. Dados u = (u 1,..., u n ) R n y λ R un escalar, se define el producto escalar de u con λ como: λ u := (λu 1,..., λu n ). Estas operaciones satisfacen las siguientes propiedades: Teorema. Sean u, v, w R n y λ, µ R. Entonces: (i) u + v = v + u. (ii) u + (v + w) = (u + v) + w. 1 Sean P Q y RT segmentos dirigidos en R n. Se dice que ellos son equipolentes (o equivalentes) si Q P = T R. Geométricamente esto significa que ambos vectores tienen la misma longitud y dirección. 1

2 (iii) Existe un único vector O R n tal que O + u = u + O = u para todo u R n. (iv) Para cada vector u R n existe un único vector u R n tal que u+( u) = ( u)+u = O. (v) λ (u + v) = λ u + λ v. (vi) (λ + µ) u = λ u + µ u. (vii) λ (µ u) = (λµ) u y 1 u = u para todo u R n. Nota. En caso que se advierta lo contrario, dado λ y u un vector, λu denotará el producto escalar de λ con u. Definición. Sean u = (u 1,..., u n ), v = (v 1,..., v n ) vectores en R n. Se define el producto punto entre dichos vectores por: u v := u 1 v u n v n = n u i v i. La norma o longitud del vector u = (u 1,..., u n ) por su parte se define como: u := u u2 n. Finalmente, la distancia entre los puntos u = (u 1,..., u n ), v = (v 1,..., v n ) se define como la longitud del vector v u: Observación. u = u u. i=1 d(u, v) := v u = (v 1 u 1 ) (v n u n ) 2 Teorema. (Propiedades del producto punto). Sean u = (u 1,..., u n ), v = (v 1,..., v n ) y w = (w 1,..., w n ) vectores en R n y λ un escalar. Entonces, 1. u u 0 y u u = 0 u = O. 2. u v = v u. 3. (u + v) w = u w + v w. 4. (λu) v = λ(u v) = u (λv). Prposición. (Desigualdad de Cauchy-Schwarz) Si u, v son vectores en R n. Entonces, u v u v. Demostración. Nótese inicialmente que si v = O o u = O, la desigualdad es inmediata. Supóngase entonces que v O y sea λ un escalar arbitrario. Entonces, 0 (u λv) (u λv) = u u λu v λv u + λ 2 v v. 2

3 Dado que esta última desigualdad vale para todo λ, será cierta si en particular tomamos λ = u v v 2. Reemplazando tenemos: De esta desigualdad se sigue que, es decir, y en consecuencia, 0 u 2 (u v)2 2 v 2 + = u 2 (u v)2 v 2, (u v) 2 v 2 u 2, (u v) u 2 v 2 ; u v u v. (u v)2 v 4 v 2 Usaremos la desigualdad de Cauchy-Schwarz para definir el ángulo entre dos vectores no nulos de R n : sean u, v vectores no nulos de R n ; la desigualdad de Cauchy-Schwarz implica que u v u v 1, es decir, 1 u v u v 1. Examinando la gráfica de y = cos(θ) en el intervalo 0 θ π, es posible verificar que para cualquier r [ 1, 1] existe un único θ tal que r = cos(θ). Por lo tanto, existe un único θ [0, π] tal que cos(θ) = u v u v, 0 θ π. Este valor θ se denomina en ángulo entre u y v. Definición. Dos vectores u y v en R n se dicen paralelos si existe λ 0 tal que u = λv, equivalentemente si u v = u v. Se dice además que estos vectores son ortogonales si u v = 0. Proposición. (Desigualdad del triángulo) Sean u y v vectores en R n ; entonces, Demostración. En efecto, u + v u + v. u + v 2 = (u + v) (u + v) = u u + 2u v + v v u u v + v 2 = ( u + v ) 2 Por la desigualdad de Cauchy-Schwarz 3

4 Tomando raíz cuadrada a ambos de la desigualdad obtenida, se tiene que u + v u + v. Definición. Un vector u en R n se dice unitario si u = 1. Si v es un vector arbitrario en R n no nulo, el vector v := 1 v v es un vector unitario en la dirección de v y se denomina la dirección de v Observación. (Ejercicio opcional) Sean u y v vectores en R n no nulos y paralelos, entonces existe λ 0 tal que u = λv. Se puede mostrar que estos vectores tienen la misma dirección si, y sólo si λ > 0 si, y sólo si, u v = u v. Proposición. Dado u R n y λ un escalar, se tiene: (i) λu = λ u. (ii) u = 0 si, y sólo si, u = O. (iii) Para u O, u = u û. Definición. Sean u, v R n. Se define la proyección ortogonal de u sobre v de la siguiente forma: (u v) Proy v (u) := v 2 v. Producto Vectorial Definición. Sean u = (u 1, u 2, u 3 ) = u 1 i + u 2 j + u 3 k, v = (v 1, v 2, v 3 ) = v 1 i + v 2 j + v 3 k vectores en R 3, donde i = (1, 0, 0), j = (0, 1, 0) y k = (0, 0, 1) son los vectores estándar (canónicos) de R 3. El producto vectorial de u con v es el vector u v definido por: u v := (u 2 v 3 u 3 v 2 )i (u 1 v 3 u 3 v 1 )j + (u 1 v 2 u 2 v 1 )k Proposición. (Propiedades del producto vectorial). Sean u, v y w vectores en R 3 y λ un escalar. Entonces, (i) u v = (v u), u u = 0. (ii) u (v + w) = u v + u w; (u + v) w = u w + v w. (iii) (λu) v = u (λv) = λ(u v). (iv) 0 u = u 0 = 0. (v) (u v) w = (w u)v (w v)u; u (v w) = (u w)v (u v)w. Ejemplo. De hecho se tiene en particular que i j = k, j k = i, k i = j. (Verificar!!!!!) Observación. (i) Dados u y v vectores en R 3, el vector u v es ortogonal tanto a u como a v; e.d., (u v) u = 0 y (u v) v = 0. (ii) Como consecuencia de (i), el vector u v será perpendicular al plano generado por los vectores u y v. Para determinar su dirección se hace uso de la regla de la mano derecha (véase 4

5 [1], página 263). (iii) Sean u, v y w vectores en R 3 ; se puede mostrar que más aún, tenemos que (u v) w = u (v w); (1) u 1 u 2 u 3 (u v) w = v 1 v 2 v 3 w 1 w 2 w 3. El producto (u v) w se conoce como el producto triple (o mixto) de los vectores u, v y w. (iv) Se puede mostrar (por favor hacerlo!!!) que los vectores u y v son paralelos 2 si, y sólo si, u v = 0. Por otra parte tenemos: u v 2 = (u v) (u v) = u (v (u v)) por (6) = u ((v v)u (v u)v) = (v v)(u u) (v u)(u v) = u 2 v 2 (u v) 2. La igualdad u v 2 = u 2 v 2 (u v) 2 se conoce como la identidad de Lagrange. Ahora, recordemos que el ángulo entre los vectores u y v (estos últimos distintos de 0), se definió como aquel número real θ [0, π] tal que cos(θ) = u v u v ; de esta igualdad se sigue que u v = cos(θ) u v. Reemplazando en la identidad de Lagrange tenemos: En consecuencia, u v 2 = u 2 v 2 cos 2 (θ) u 2 v 2 = u 2 v 2 (1 cos 2 (θ)) = u 2 v 2 sin 2 (θ). u v = u v sin(θ); sin(θ) = sin(θ) dado que sin(θ) es positiva en el intervalo [0, π]. Área de un paralelogramo Consideremos el paralelogramo determinado por los puntos P 1, P 2, P 3 y P 4 en R 3. Sea u = P 1 P 2 = P 2 P 1, v = P 1 P 3 = P 3 P 1. 2 Recordemos que dos vectores u y v en R n se dicen paralelos si existe un escalar λ 0 tal que u = λv. 5

6 Entoces, si A P de nota el área de este paralelogramo, A P = v h, pero sin(θ) = h u donde θ es el ángulo entre los vectores u y v. En consecuencia, A P = u v sin(θ) (2) = u v. (3) Nótese en particular que el área del triángulo determinado por los puntos P 1, P 2 y P 3 será 1 2 A P. Observación. Si el paralelogramo o triángulo considerado estan sobre el plano xy, basta recordar que los vectores en el plano se pueden ver como vectores en el espacio cuya última entrada es 0. Área de un paralelepípedo Sean u, v y w tres vectores que no están en el mismo plano. Ellos entonces forman los lados de un paralelepípedo (véase la figura a continuación). Calculemos entonces su volumen: la base del paralelepípedo es el paralelogramo con lados u y v. Por lo visto líneas atrás, su área está dada por u v. Recordemos ahora que el vector u v es ortogonal tanto a u como a v, y por lo tanto es ortogonal al paralelogramo determinado por u y v. Nótese que la altura del paralelepípedo es la norma de la proyección del vector w sobre u v, es decir, h = w (u v) u v. Por lo tanto, el area del paralelepípedo es precisamente: V = u v w (u v) u v (4) = w (u v). (5) Rectas en R n Definición. Sea P un punto en R y u un vector no nulo en R n. El conjunto de todos los puntos de la forma P + tu, con t recorriendo R, se denomina la recta que pasa por P y con dirección u. Denotamos esta recta por L(P, u) y escribimos: L(P, u) := {P + tu t R}. El vector u se denomina el vector director de L(P, u). 6

7 Ejemplo. Dados P y Q puntos en R n, la recta que por estos puntos es L(P, Q P ) (o L(Q, Q P )). Definición. Dos rectas L(P, u) y L(Q, v) se dicen paralelas si sus vectores directores lo son, e.d., si existe λ 0 en R tal que u = λv. Análogamente, estas rectas se dicen perpendiculares (u ortogonales) si sus vectores directores los son, e.d., si u v = 0. Observación. (i) Dado u un vector no nulo en R n, L(0, u) consiste de los múltiplos escalares de u, e.d., L(0, u) = {tu t R}. (ii) Dados P punto en R n y u R n un vector, L(P, u) es la recta paralela a L(0, u) que pasa por P. Teorema. (i) Dos rectas L(P, u) y L(P, v) que pasan por el mismo punto P son iguales si, y sólo si, u y v son paralelos. (ii) Dos rectas L(P, u) y L(Q, u) con el mismo vector director u son iguales si, y sólo si, Q L(P, u), si y sólo si, P L(Q, u). (iii) Sean L(P, u) una recta en R n y Q R n un punto. Entonces, Q L(P, u) si, y sólo si P Q es paralelos a u. Demostración. Ejercicio opcional. Ejemplo. Sea P = (1, 2, 3), u = (2, 1, 5); veamos si Q = (1, 1, 4) está en L(P, u). Por (iii) del anterior teorema basta con verificar si existe algún λ R tal que P Q = λu; e.d., si existe λ tal que (0, 1, 1) = λ(2, 1, 5) = (2λ, λ, 5λ); igualando cada una de las entradas tendríamos que 2λ = 0, 1 = λ, 1 = 5λ, con lo que tendríamos λ = 0 = 1, que es claramente una contradicción. En consecuencia, Q / L(P, u). Dados P un punto en R y u un vector no nulo en R n, L(P, u) se puede representar como el conjunto de puntos X = (x 1,..., x n ) R n que satisfacen la siguiente ecuación vectorial: X = P + tu, con t un parámetro real. La anterior se denomina la ecuación vectorial paramétrica de L(P, u). Si escribimos X = (x 1,..., x n ), P = (p 1,..., p n ) y u = (u 1,..., u n ), la igualdad anterior la podemos escribir de la siguiente forma: con lo que (x 1,..., x n ) = (p 1,..., p n ) + t(u 1,..., u n ) = (p 1 + tu 1,..., p n + tu n ), x 1 = p 1 + tu 1,..., x n = p n + tu n Las anteriores ecuaciones se denominan ecuaciones escalares paramétricas de L(P, u). Si además, u i 0 para cada 1 i n, despejando de las anteriores igualdades el parámetro t obtenemos: x 1 p 1 = x 2 p 2 = = x n p n, u 1 u 2 u n 7

8 estas ecuaciones son las ecuaciones simétricas de L(P, u). Observación. (i) Sea n = 2, u = (u 1, u 2 ) R 2 tal que u i 0 para i = 1, 2; de las anteriores ecuaciones obtenemos que y p 2 = u 2 u 1 (x p 1 ) que corresponde a la forma punto pendiente de una recta en el plano. (ii) Sea L una recta en el plano y ax + by = c su ecuación en forma general, entonces ( (x, y) L (x, y) = x, c ax ) ( = 0, c ) ( + 1, a ) x b b b en consecuencia, L es una recta que pasa por el punto P = ( 0, c b) y con vector director u = ( 1, a b ) ; nótese además que (a, b) u = 0. Distancia de un punto a una recta: sea L una recta en R 3 dada por la ecuación vectorial paramétrica X = P + tu y sea Q R 3 un punto. Entonces la distancia del punto Q a la recta L está dada por dist(q, L) = P Q u ; u en efecto, considere el siguiente gráfico: sea θ = ( P Q, u), tenemos en este caso que, sen(θ) = d y por tanto, que d = P Q sen(θ). P Q Pero P Q u = P Q u sen(θ), de manera que d = P Q sen(θ) = P Q u u tal y como se quería mostrar. Planos en el espacio Definición. Sean u, v vectores en R 3 no nulos y no paralelos, y P R 3 un punto. El plano (α) que pasa por P y tiene vectores directores u y v se define como el siguiente conjunto de puntos: (α) := {P + λu + µv λ, µ R}. Los vectores u y v se denominan vectores directores del plano (α) 8

9 Observación. Nótese que si u y v son vectores paralelos, (α) sería una recta que pasa por P y con vector director u (o v). De la definición anterior se sigue que los puntos X de R 3 que están sobre el plano (α) son aquellos que satisfacen la siguiente ecuación X = P + λu + µv, (6) para ciertos escalares λ, µ en R. (6) se denomina ecuación vectorial biparamétrica de (α). Ejemplo. El plano xy consiste de los puntos (λ, µ, 0), donde λ y µ recorren todo R. Más aú, este plano tiene por ecuación vectorial biparamétrica X = (0, 0, 0) + λ(1, 0, 0) + µ(0, 1, 0) = λi + µj. Dado que el vector u v es perpendicular tanto a u como a v, él resulta ser por tanto perpendicular al plano que tienen a u y v como vectores directores. Consideremos nuevamente la ecuación vectorial no paramétrica del plano (α) que pasa por el punto P y que tiene por vectores directores a u y v. Multiplicando producto punto por u v tenemos: X u v = (P + λu + µv) u v = P u v + λu u v + µv u v = P u v. En consecuencia tenemos la siguiente ecuación (X P ) u v = 0 (7) conocida como ecuación vectorial no paramétrica de (α). En general, si n es un vector perpendicular al plano (α) (e.d., n es paralelo a u v), entonces la ecuación general no paramétrica de (α) es: En este caso se dice que n es un vector normal al plano (α). Sea n = (a, b, c), X = (x, y, z) y P = (p 1, p 2, p 3 ), entonces esto último implica que n (X P ) = 0. (8) n (X P ) = a(x p 1 ) + b(y p 2 ) + c(z p 3 ) = 0, (9) se conoce como ecuación cartesiana de (α). ax + by + cz = ap 1 + bp 2 + cp 3. (9) Ejemplo. Hallar la ecuación cartesiana del plano (α) que pasa por P = (2, 1, 1) y que es 9

10 perpendicular al vector n = ( 1, 1, 3). Solución. Sea X = (x.y, z); entonces, n (X P ) = ( 1, 1, 3) (x 2, y 1, z + 1) = x + y + 3z + 4; por lo tanto, la ecuación buscada es x + y + 3z = 4. Observación. En cualquier ecuación de una recta en el plano de la forma ax + by = c, el vector (a, b) es perpendicular a la recta determinada por esta ecuación. De manera análoga se puede mostrar que en R 3, el vector (a, b, c) es perpendicular al plano determinado por la ecuación ax + by + cz = d. Ejemplo. De la anterior observación se sigue que el plano con ecuación 2x y + 3z = 5 es perpendicular al vector (2, 1, 3). Ahora, si queremos hallar su ecuación vectorial no parmétrica, basta considerar un punto sobre el plano; para ello basta considerar valores fijos para dos de las variables x, y o z; con ayuda de la ecuación hallamos el tercero. Por ejemplo, tomemos x = 1, y = 1; de la ecuación se sigue que z = 4 3, de manera que el punto (1, 1, 4 3 ) es un punto en el plano, de manera que la ecuaciónn buscada es (2, 1, 3) ((x, y, z) (1, 1, 4 3 )) = 0 Definición. Sean (α) y (β) planos en el espacio. Se dice que ellos son paralelos, si sus respectivos vectores normales son paralelos; análogamente, se dicen perpendiculares (u ortogonales) si sus respectivos vectores normales lo son. Observación. (i) Dados tres puntos P, Q y R en R 3, ellos determinan un único plano si, y sólo si, P, Q y R no están todos sobre la misma recta. En caso de tenerse esto último, los vectores directores del plano podemos construirlos de la siguiente forma: fijamos uno de los tres puntos, digamos Q, entonces u := QP y v := QR son vectores directores de este plano. (ii) Sea (α) un plano y Q R 3 un punto que no está en el plano. La distancia del punto Q al plano la determinamos de la siguiente forma: sea d(q, (α)) la distancia del punto Q al plano (α), entonces Véase la siguiente figura: d(q, (α)) = P roy n ( P Q) = ( P Q n)n n 2 = P Q n n 2 n = P Q n n 10

11 Bibliografía [1] Grossman, S., Álgebra Lineal, Quinta edición, Mc Graw Hill, [2] Lang, S., Linear algebra, Third Edition, Springer,

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 5 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 5 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 5 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

Rectas, planos e hiperplanos

Rectas, planos e hiperplanos Semestre -8, Algebra Lineal 37 Rectas, planos e hiperplanos Recta P punto de la recta L, d vector no nulo de R n (vector director de la recta) X punto de la recta L PX paralelo a d (PX = td) PX = OX OP

Más detalles

El espacio euclídeo El espacio vectorial R n. Definición. Conjunto de todas las n-uplas de números reales:

El espacio euclídeo El espacio vectorial R n. Definición. Conjunto de todas las n-uplas de números reales: Lección 1 El espacio euclídeo 1.1. El espacio vectorial R n Definición. Conjunto de todas las n-uplas de números reales: R n = {(x 1,x 2,...,x n ) : x 1,x 2,...,x n R} Nos interesan los casos n = 2 y n

Más detalles

3.1 El espacio afín R n

3.1 El espacio afín R n 3. Geometría analítica 3.1 El espacio afín R n Consideremos el conjunto R n, formado por las listas ordenadas (x 1,...,x n ) de números reales. Convengamos en llamar puntos a los elementos de R n. Pero

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice Paralelismo Ángulos Otras figuras d Triángulos

Más detalles

Puntos y Vectores. 16 de Marzo de 2012

Puntos y Vectores. 16 de Marzo de 2012 Geometría en Puntos y Vectores Universidad Autónoma Metropolitana Unidad Iztapalapa 16 de Marzo de 2012 Introducción En Geometría analítica plana las relaciones y las propiedades geométricas se expresan

Más detalles

Tema 6: Ángulos y distancias en el espacio

Tema 6: Ángulos y distancias en el espacio Tema 6: Ángulos y distancias en el espacio February, 017 1 Ángulos entre elementos del espacio Los ángulos entre elementos del espacio, es una aplicación sencilla del producto escalar. Recuerdo las condiciones

Más detalles

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07.

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07. Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander Monday, November 5, 2007 at 8:44 am (FA07.01,02) Para uso exclusivo en el salón de clase. 2007 c Julio C. Carrillo

Más detalles

Planos y Rectas. 19 de Marzo de 2012

Planos y Rectas. 19 de Marzo de 2012 el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos

Más detalles

Tema 1.b: El espacio euclídeo -dimensional Trabajaremos con el conjunto R ( N) delas -uplas ordenadas de números reales

Tema 1.b: El espacio euclídeo -dimensional Trabajaremos con el conjunto R ( N) delas -uplas ordenadas de números reales Tema 1.b: El espacio euclídeo -dimensional Trabajaremos con el conjunto R ( N) delas -uplas ordenadas de números reales R = {( 1 2 ) R para todo =1 2 } A los elementos de este conjunto los llamaremos puntos

Más detalles

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V.

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V. Capítulo 9 Variedades lineales Al considerar los subespacios de R 2, vimos que éstos son el conjunto {(0, 0)}, el espacio R 2 y las rectas que pasan por el origen. Ahora, en algunos contextos, por ejemplo

Más detalles

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO Alonso Fernández Galián Tema 6: Geometría analítica en el plano TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO La geometría analítica es el estudio de objetos geométricos (rectas, circunferencias, ) por medio

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

GEOMETRÍA EN EL ESPACIO.

GEOMETRÍA EN EL ESPACIO. GEOMETRÍA EN EL ESPACIO.. ESPACIOS VECTORIALES VECTOR FIJO Segmento orientado. Queda determinado por Origen A(a, a, a ); extremo B(b, b, b ) Módulo: Longitud del AB ( b a) ( b a) ( b a) segmento AB Características:

Más detalles

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Luisa Martín Horcajo U.P.M. Definición: Vector libre. Operaciones Un vector fijo es una segmento orientado, que queda caracterizado por su origen A y su extremo B y se representa por

Más detalles

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio euclídeo Determinación de ángulos

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio euclídeo Determinación de ángulos Espacio euclídeo 5.1. Determinación de ángulos.... - 2-5.1.1. Ángulo determinado por dos rectas secantes.... - 2-5.1.2. Ángulo determinado por planos secantes.... - 2-5.1.3. Ángulo determinado por una

Más detalles

ALGEBRA Y GEOMETRIA ANALITICA

ALGEBRA Y GEOMETRIA ANALITICA Diplomatura en Ciencia y Tecnología ALGEBRA Y GEOMETRIA ANALITICA SEGUNDO CUATRIMESTRE DE 2009 Profesora Mariana Suarez PRACTICA N 7: SISTEMA COORDENADO TRIDIMENSIONAL. VECTORES. PRACTICA 7: Sistema coordenado

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometría del espacio: problemas de ángulos y distancias; simetrías MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Ángulos

Más detalles

VECTORES 1.2 CONCEPTOS Y DEFINICIONES FUNDAMENTALES. En este capítulo estudiaremos los vectores y su álgebra.

VECTORES 1.2 CONCEPTOS Y DEFINICIONES FUNDAMENTALES. En este capítulo estudiaremos los vectores y su álgebra. CAPITULO I CALCULO II VECTORES 1.1 INTRODUCCIÓN Los vectores son un auxiliar utilísimo para la geometría del espacio. En esta unidad partiendo de lo que ya se sabe de vectores en el plano, se contemplan

Más detalles

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática. Álgebra Geometría Analítica Prof. Gisela Saslavsk Vectores en R en R 3. Rectas planos en el espacio Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..

Más detalles

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula:

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: PROBLEMAS MÉTRICOS ÁNGULOS ÁNGULO QUE FORMAN DOS RECTAS Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: cos α = ÁNGULO QUE

Más detalles

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano ELEMENTOS DE GEOMETRÍA Eduardo P. Serrano Este Apunte de Clase está dirigido a los alumnos de la materia Elementos de Cálculo Numérico para Biólogos. Tiene por objeto exponer algunos conceptos básicos

Más detalles

ALGEBRA Y GEOMETRIA ANALITICA

ALGEBRA Y GEOMETRIA ANALITICA Diplomatura en Ciencia y Tecnología ALGEBRA Y GEOMETRIA ANALITICA SEGUNDO CUATRIMESTRE DE 009 Profesora Mariana Suarez PRACTICA N 8: RECTA EN EL ESPACIO PLANO ALGEBRA Y GEOMETRIA ANALITICA - Segundo cuatrimestre

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

Unidad 4: VECTORES EN EL ESPACIO

Unidad 4: VECTORES EN EL ESPACIO Unidad 4: VECTORES EN EL ESPACIO 4.1.- OPERACIONES CON VECTORES Las características de los vectores en el espacio, así como sus operaciones, son idénticas a las de los vectores del plano, que ya conoces

Más detalles

ECUACIONES DE RECTAS Y PLANOS

ECUACIONES DE RECTAS Y PLANOS ECUACIONES DE RECTAS Y PLANOS Una recta en el plano está determinada cuando se dan dos puntos cualesquiera de la recta, o un punto de la recta y su dirección (su pendiente o ángulo de inclinación). La

Más detalles

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta

Más detalles

Recta en en el plano

Recta en en el plano Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ciencias Exactas y Naturales Departamento de Matemática Recta en en el plano Autor: Dr. Francisco Vittone

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. octubre 2013 En esta Presentación... En esta Presentación veremos: Rectas En esta Presentación... En esta Presentación veremos:

Más detalles

Capítulo 8: Vectores

Capítulo 8: Vectores Capítulo 8: Vectores 1. Lección 30. Operaciones con vectores 1.1. Vectores El concepto de vector aparece en Física para describir magnitudes, tales como la fuerza que actúa sobre un punto, en las que no

Más detalles

Problemas de exámenes de Geometría

Problemas de exámenes de Geometría 1 Problemas de exámenes de Geometría 1. Consideramos los planos π 1 : X = P+λ 1 u 1 +λ 2 u 2 y π 2 : X = Q+µ 1 v 1 +µ 2 v 2. Cuál de las siguientes afirmaciones es incorrecta? a) Si π 1 π 2 Ø, entonces

Más detalles

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 5 1. Hallar la ecuación del plano que

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

6.14 Descomposición ortogonal y proyección ortogonal

6.14 Descomposición ortogonal y proyección ortogonal CAPÍTULO. ESPACIO EUCLÍDEO CANÓNICO IR N 282.14 Descomposición ortogonal y proyección ortogonal El resultado W W = IR n, significa que cada y IR n se puede escribir de forma única como suma de un vector

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

TEMA 11.- VECTORES EN EL ESPACIO

TEMA 11.- VECTORES EN EL ESPACIO TEMA 11.- VECTORES EN EL ESPACIO 1.- INTRODUCCIÓN Un vector fijo AB del espacio (también lo era en el plano) es un segmento orientado que tiene su origen en un punto A y su extremo en otro punto B. Estos

Más detalles

Problemas métricos. Ángulo entre rectas y planos

Problemas métricos. Ángulo entre rectas y planos Problemas métricos Ángulo entre rectas y planos Ángulo entre dos rectas El ángulo que forman dos rectas es el ángulo agudo que determinan entre sí sus vectores directores. Dos rectas son perpendiculares

Más detalles

Para poder desarrollar este tema, vamos a exponer inicialmente la teoría Recordaremos el Producto Escalar, Vectorial y Mixto. u, v, w V.

Para poder desarrollar este tema, vamos a exponer inicialmente la teoría Recordaremos el Producto Escalar, Vectorial y Mixto. u, v, w V. 1. Introducción. 1.1. Producto Escalar. 1.. Norma de un Vector. 1.3. Ángulos. 1.4. Ortogonalidad. 1.5. Particularización del Producto Escalar a V 3. 1.6. Producto Vectorial de dos Vectores de V 3. 1.7.

Más detalles

en el espacio queda caracterizado por un par de puntos A y B, o bien por su módulo, dirección y sentido junto con el origen, siendo:

en el espacio queda caracterizado por un par de puntos A y B, o bien por su módulo, dirección y sentido junto con el origen, siendo: TEMA 10: VECTORES EN EL ESPACIO. 10.1 Vectores fijos y libres en el espacio vectorial. 10. Operaciones con vectores libres. Bases del espacio vectorial. 10.3 Producto escalar. Módulo y ángulo de vectores.

Más detalles

EL ESPACIO VECTORIAL EUCLIDEO

EL ESPACIO VECTORIAL EUCLIDEO EL ESPACIO VECTORIAL EUCLIDEO PRODUCTO ESCALAR Sean dos vectores del espacio V 3. Llamamos producto escalar de dichos vectores, y se denota, al número real que se obtiene al multiplicar sus módulos por

Más detalles

1. Algunas deniciones y resultados del álgebra lineal

1. Algunas deniciones y resultados del álgebra lineal . Algunas deniciones y resultados del álgebra lineal Denición. (Espacio vectorial o espacio lineal sobre R) Un espacio vectorial o espacio lineal sobre el campo de los números reales, R, es un conjunto

Más detalles

En ésta oportunidad quiero brindar la oportunidad de que aprendan VIENDO HECHO.

En ésta oportunidad quiero brindar la oportunidad de que aprendan VIENDO HECHO. SI LO OIGO LO OLVIDO. SI LO VEO LO RECUERDO. SI LO HAGO LO SE. SI LO DESCUBRO LO USO. http://.matematicaaplicada.info 1 de 40 jezapataa@unal.edu.co MATEMÁTICA APLICADA ADMINISTRACIÓN DE EMPRESAS MATEMÁTICAS

Más detalles

E E V (P, Q) v = P Q AA + AB = AB AA = 0.

E E V (P, Q) v = P Q AA + AB = AB AA = 0. Espacios afines. 1 Definición y propiedades. Definición 1.1 Sea E un conjunto no vacío. Se dice que E está dotado de estructura de espacio afín asociado a un espacio vectorial V, si existe una aplicación:

Más detalles

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3. . Producto escalar. Propiedades... Norma de un vector. Espacio normado...ortogonalidad. Ángulos..3.Producto escalar en V..4.Producto escalar en V 3.. Producto vectorial de dos vectores de V 3...Expresión

Más detalles

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO 1.- PUNTOS Y VECTORES. ESPACIO AFÍN y una base de vectores de V cualquiera {,, B = u1 u2 u} A cada punto del espacio, P, le asociamos el vector OP, que tendrá unas

Más detalles

4.2 Producto escalar.

4.2 Producto escalar. Producto escalar. 147 Este resultado tiene su recíproco, es decir, cualquier matriz cuadrada A define la forma bilineal b(x, y) =x T Ay Si b es simétrica, la matriz A es simétrica. Si b es definida positiva,

Más detalles

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes

Más detalles

Matemática 2 MAT022. Clase 7 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María. El espacio euclidiano R n

Matemática 2 MAT022. Clase 7 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María. El espacio euclidiano R n Matemática MAT0 Clase 7 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María Coordinación do sem. 07 Matemática MAT0 /5 Tabla de Contenidos El espacio euclidiano R n Coordinación

Más detalles

Ecuaciones de la recta en el espacio

Ecuaciones de la recta en el espacio Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 8-2 2 Geometría lineal en à n 2 Definiciones básicas SEMANA 4: GEOMETRÍA Sea à un cuerpo Anotaremos

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Ejercicios Selectividad Temas 6 y 7 Geometría en el espacio Mate II 2º Bach. 1 TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO EJERCICIO 1 : Julio 11-12. Optativa (3 ptos) Para los puntos A(1,0,2) y B(-1,2,4) y la

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

Problemas de geometría afín

Problemas de geometría afín Problemas de geometría afín Teóricos Problema A Para un subconjunto no vacío X de R n se cumple: X es subvariedad afín cada recta que pasa por dos puntos distintos de X está totalmente contenida en X Problema

Más detalles

Espacios vectoriales con producto escalar

Espacios vectoriales con producto escalar 147 Fundamentos de Matemáticas : Álgebra Lineal Capítulo 10 Espacios vectoriales con producto escalar 10.1 Producto escalar. Norma. Distancia Definición 71.- Un producto escalar o producto interior en

Más detalles

190. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R = ( O, OA, OB, OC ).

190. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R = ( O, OA, OB, OC ). Hoja de Problemas Geometría VIII 90. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R O, Sean: OA, OB, OC ). OG la recta determinada por los puntos

Más detalles

Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del / 26

Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del / 26 Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del 2016 1 / 26 1 Subespacios y combinaciones lineales 2 Dependencia

Más detalles

UNIDAD 2: ESPACIOS VECTORIALES

UNIDAD 2: ESPACIOS VECTORIALES UNIDAD 2: ESPACIOS VECTORIALES Introducción. Vectores. Adición de vectores. Propiedades. Multiplicación de un vector por un escalar. Propiedades. Módulo o norma de un vector. Vector unitario o versor.

Más detalles

UNIDAD 1: ELEMENTOS ALGEBRAICOS 1B : VECTORES

UNIDAD 1: ELEMENTOS ALGEBRAICOS 1B : VECTORES UNIDAD 1: ELEMENTOS ALGEBRAICOS 1B : VECTORES Conceptos A partir de la identificación de puntos de la recta con números reales, se puede avanzar relacionando puntos del plano y del espacio con pares o

Más detalles

VECTORES EN EL ESPACIO RECTAS Y PLANOS EN EL ESPACIO PROBLEMAS MÉTRICOS EJERCICIOS

VECTORES EN EL ESPACIO RECTAS Y PLANOS EN EL ESPACIO PROBLEMAS MÉTRICOS EJERCICIOS VECTORES EN EL ESPACIO RECTAS Y PLANOS EN EL ESPACIO PROBLEMAS MÉTRICOS EJERCICIOS Matemáticas 2º de Bachillerato Ciencias y Tecnología Profesor: Jorge Escribano Colegio Inmaculada Niña Granada www.coleinmaculadanina.org

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA EJERCICIOS DE GEOMETRÍA MATEMÁTICAS II LOGSE Antonio López García Juan Fernández Maese Angeles Juárez Martín GEOMETRÍA GEOMETRÍA Índice Temático.- VECTORES... 5..- VECTORES. OPERACIONES CON VECTORES...

Más detalles

TEMA 11. VECTORES EN EL ESPACIO

TEMA 11. VECTORES EN EL ESPACIO TEMA 11. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. Dos vectores son equipolentes si tienen el mismo

Más detalles

Definición 1.28 (Determinación de una recta) Una recta en el plano viene determinada por un punto y un vector libre, no nulo, r (P; u )

Definición 1.28 (Determinación de una recta) Una recta en el plano viene determinada por un punto y un vector libre, no nulo, r (P; u ) 1.3. La recta en el plano afín La recta está formada por puntos del plano en una dirección dada. La ecuación de la recta es la condición necesaria y suficiente que deben cumplir las coordenadas de un punto

Más detalles

Ejercicios de Álgebra Lineal Parcial 1

Ejercicios de Álgebra Lineal Parcial 1 Ejercicios de Álgebra Lineal Parcial 1 1. Ejercicios de respuesta corta ( ) 3 1 a) Si A = encuentre la entrada c 6 2 12 de la matriz A 2 { x 3y = 1 b) Si para k R el sistema tiene solución única, verique

Más detalles

Tema 1: Vectores y Matrices

Tema 1: Vectores y Matrices Tema 1: Vectores y Matrices Curso 2016/2017 Ruzica Jevtic Universidad San Pablo CEU Madrid Índice de contenidos Vectores y operaciones básicas Combinaciones lineales Producto escalar interior interno punto

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99)

Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99) Capítulo 1 Vectores 26 Problemas de selección - página 13 (soluciones en la página 99) 21 Problemas de desarrollo - página 22 (soluciones en la página 100) 11 1.A PROBLEMAS DE SELECCIÓN Sección 1.A Problemas

Más detalles

El espacio euclideano

El espacio euclideano Capítulo 1 El espacio euclideano 1. Definiciones básicas El espacio Euclideano, denotado por R n, está definido por el conjunto (1.1) R n = {x = (x 1, x 2,..., x n ) : x i R}. Es decir, R n es efectivamente

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. 2do. cuatrimestre de 2015 Práctica 2 - Integrales de superficie. Definición.1. Una superficie paramétrica (superficie a secas para nosotros) es un conjunto

Más detalles

5 Rectas y planos en el espacio

5 Rectas y planos en el espacio 5 Rectas planos en el espacio A B AB v A cada par de puntos A B del plano o del espacio tridimensional, hemos asociado en un vector AB como se muestra en la figura contigua; de manera que si conocemos

Más detalles

Resuelve. Unidad 4. Vectores en el espacio. BACHILLERATO Matemáticas II. Diagonal de un ortoedro y volumen de un paralelepípedo.

Resuelve. Unidad 4. Vectores en el espacio. BACHILLERATO Matemáticas II. Diagonal de un ortoedro y volumen de un paralelepípedo. Resuelve Página Diagonal de un ortoedro y volumen de un paralelepípedo. Expresa la diagonal de un ortoedro en función de sus dimensiones, a, b y c. c b a c c b b a Diagonal = a + b + c. Calcula el volumen

Más detalles

Espacios Vectoriales

Espacios Vectoriales Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido

Más detalles

R(t)=P+tV. (el nombre del parámetro es irrelevante)

R(t)=P+tV. (el nombre del parámetro es irrelevante) Rectas en el plano Parametrizaciones La recta que pasa por el punto P y tiene la dirección del vector V esta formada por los los puntos de la forma R(t)=P+tV donde t es un escalar. Esta es una parametrizacion

Más detalles

Algebra Lineal Xa: Álgebra Vectorial en R3

Algebra Lineal Xa: Álgebra Vectorial en R3 Algebra Lineal Xa: Álgebra Vectorial en R3 José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamanca.ugto.mx

Más detalles

Vectores. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo equivalente a QP.

Vectores. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo equivalente a QP. Wilson Herrera 1 Vectores 1. Dados los puntos P (1, 2), Q( 2, 2) y R(1, 6): a) Representarlos en el plano XOY. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO UNIDAD VECTORES EN EL ESPACIO Página 13 Problema 1 Halla el área de este paralelogramo en función del ángulo α: cm Área = 8 sen α = 40 sen α cm α 8 cm Halla el área de este triángulo en función del ángulo

Más detalles

Geometría Analítica Espacios Vectoriales VECTORES EN EL PLANO

Geometría Analítica Espacios Vectoriales VECTORES EN EL PLANO VECTORES EN EL PLANO 1 ESPACIO VECTORIAL Un vector fijo es una pareja ordenada de puntos en el plano (origen y extremo) Si A y B son dichos puntos, representaremos el vector por AB Gráficamente, lo representamos

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

Tema 11: Problemas Métricos

Tema 11: Problemas Métricos ..- Distancia entre dos puntos : Tema : Problemas Métricos B AB A d( A, B) AB La distancia entre dos puntos Aa (, a, a) Bbb (,, b ) es el módulo del vector que une dichos puntos: d( A, B) AB b a b a b

Más detalles

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL.

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL. UNIDAD V: TRANSFORMACIÓN LINEAL (v). La transformada lineal es una función vectorial de variable vectorial w = f Donde: El espacio vectorial v es la variable independiente El espacio vectorial w es la

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

El haz de planos paralelos queda determinado por un vector normal, n A, B,

El haz de planos paralelos queda determinado por un vector normal, n A, B, HAZ DE PLANOS HAZ DE PLANOS PARALELOS Dado un plano, por ejemplo, π :3x4y2z1 cuyo vector normal es n 3, 4, 2, cualquier otro plano que tenga el mismo vector normal será un plano paralelo a. El plano π

Más detalles

a) Como mucho puede haber 3 vectores linealmente independientes. 1 2 = 3 x = 1, y = 2 3 No tiene solución, luego no se puede.

a) Como mucho puede haber 3 vectores linealmente independientes. 1 2 = 3 x = 1, y = 2 3 No tiene solución, luego no se puede. Ejercicios y problemas propuestos Página Para practicar Dependencia e independencia lineal. Base y coordenadas Dados estos vectores: u(,, ), v (,, ), w (,, ), z (,, ) a) Cuántos de ellos son linealmente

Más detalles

VECTORES en R n. Capítulo 2. Martínez Héctor Jairo Sanabria Ana María Semestre 02, Introducción. 2.2.

VECTORES en R n. Capítulo 2. Martínez Héctor Jairo Sanabria Ana María Semestre 02, Introducción. 2.2. Capítulo VECTORES en R n Martínez Héctor Jairo Sanabria Ana María Semestre,.7.. Introducción Una vez tenemos claro lo que es un Sistema de Ecuaciones Lineales y su representación matricial, el significado

Más detalles

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4.

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4. 1 Tema 2. Sección 1. Espacio vectorial de Minkowski. Manuel Gutiérrez. Departamento de Álgebra, Geometría y Topología. Universidad de Málaga. 29071-Málaga. Spain. Abril de 2010. En este capítulo se recordará

Más detalles

Tema 3: Espacios eucĺıdeos

Tema 3: Espacios eucĺıdeos Marisa Serrano, Zulima Fernández Universidad de Oviedo 25 de noviembre de 2009 email: mlserrano@uniovi.es Índice 1 2 3.1 V, R espacio vectorial, la aplicación : V V R ( v, u) v u a) v 1, v 2, u V α, β

Más detalles

2.1 Proyección ortogonal sobre un subespacio. El teorema de la proyección ortogonal

2.1 Proyección ortogonal sobre un subespacio. El teorema de la proyección ortogonal Tema 2- Proyecciones, simetrías y giros ÍNDICE 21 Proyección ortogonal sobre un subespacio El teorema de la proyección ortogonal 22 Simétría ortogonal respecto de un subespacio 23 Matrices de Householder

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO

. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO . Universidad Tecnológica Nacional - Facultad Regional Rosario Álgebra y Geometría Analítica EL PLANO Autores: Lic. Martha Fascella Ing. Ricardo F. Sagristá 0 Contenido EL PLANO... 3.- Definición del plano

Más detalles

Tema 4. Vectores en el espacio (Productos escalar, vectorial y mixto)

Tema 4. Vectores en el espacio (Productos escalar, vectorial y mixto) Matemáticas II (Bachillerato de Ciencias) Geometría del espacio: Vectores 75 Espacios vectoriales Tema 4 Vectores en el espacio (Productos escalar, vectorial y mixto) Definición de espacio vectorial Un

Más detalles

Unidad 7 Geometría analítica en el plano

Unidad 7 Geometría analítica en el plano Unidad 7 Geometría analítica en el plano PÁGINA 153 SOLUCIONES 1. La ecuación de la recta que pasa por A y B es: x+ y 9=. El punto C no pertenece a la recta pues no verifica la ecuación. Por tanto A, B

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Función lineal y cuadrática. Curvas de primer y segundo grado.

Función lineal y cuadrática. Curvas de primer y segundo grado. Tema 5 Función lineal y cuadrática. Curvas de primer y segundo grado. 5.0.1 Ecuaciones en dos variables. Una linea del plano es el conjunto de puntos (x, y), cuyas coordenadas satisfacen la ecuación F

Más detalles