2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:
|
|
- Vicente Gómez Farías
- hace 4 años
- Vistas:
Transcripción
1 Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada s nula) qu no son d inflión. b) Tin puntos d inflión qu no son stacionarios c) Ninguna d las antriors f () =, f () = y f () =. D f () = 0 0; 0 (no tin puntos stacionarios) D f () = 0 0; 0; f ( ) 0 (tin dos puntos d inflión) La rspusta s b). En l punto = 0, f ( ) sn( ) tin: a) Un mínimo local. b) Un máimo local. c) Ninguna d las antriors. f ( ).cos( ) ; f ( 0) 0 ; f ( ).cos( ) ()()( sn( )).cos( ) sn( ) ; f ( 0) 0 ; La rspusta s a) p. (J) En l punto = 0, f ( ) tin un mínimo local: a) Si p =. b) Si p =. c) Ninguna d las antriors. p f ( ) p ; f ( 0) 0 ; p ( ) ( p p) ; f La rspusta s a) f ( 0) p (> 0, si p = ) mínimo ( ). (J0) La función f ( ) vrifica: a) Es simpr dcrcint. b) Tin un máimo y un mínimo. c) Ninguna d las antriors. La drivada s: ( ) ( ) ( ) f ( ) La drivada s anula n = ±. Si <, f () < 0 f () dcrc. Si < <, f () > 0 f () crc. Por tanto n = hay un mínimo rlativo. José María Martínz Mdiano
2 Análisis Matmático (Matmáticas Emprsarials II) Si >, f () < 0 f () dcrc. Por tanto, n = hay un máimo rlativo. La rspusta s b) 5. (J0) La función f ( ) vrifica: a) Tin un máimo y una asíntota oblicua. b) Nunca s dcrcint. c) Ninguna d las antriors. ( ) f ( ) f () 0 para todo. Por tanto nunca s dcrcint. ( ) La rspusta s b) ( ). (J) La función f ( ) vrifica: a) Tin un máimo n =. b) Es crcint n todo su dominio. c) Es dcrcint n todo su dominio. Su drivada s: ( ) ( ) ( ) f ( ) La drivada s anula n = ±. Si <, f () < 0 f () dcrc. Si < <, f () > 0 f () crc. Por tanto n = hay un mínimo rlativo. Si >, f () < 0 f () dcrc. Por tanto, n = hay un máimo rlativo. La rspusta s a) 7. (M) La cuación d la rcta tangnt a f ( ) 5 n l punto (, f()) s: a) y b) y 5 0 c) Ninguna d las antriors, su cuación s: y f ( ) f ()( ) f ( ) 5 f ( ) 5 S tin: f() =, f (0) = /. y La rspusta s c) La rcta tangnt srá: 5 y 8. (M) La drivada d f ( ) ( ) n l punto val: a) 8 9 b) c) José María Martínz Mdiano
3 Análisis Matmático (Matmáticas Emprsarials II) f ( ) ( ) ( ) ( ) f ( ) ( ) ( ) ( ) ( ) f ( ) La rspusta s c) ( ) (simplificando) 0 8 f ( ). ln( ) 9. (P) El valor d lim s: a). b) 0. c) Ninguna d las antriors, su valor s: Aplicando la rgla d L Hôpital. ln( ) ln( ) lim ( L H ) lim ( L H ) La rspusta s b) / lim (P) La función f ( ) vrifica: a) Tin una asíntota horizontal. b) Tin un punto d inflión. c) Tin un mínimo n = 8. ( ) ( 8) f ( ) f ( ) Como f ( 8) 0 y f ( 8) 0, n = 8 s tndrá un mínimo. La rspusta s c). (P) Los dominios d dfinición d las funcions son, rspctivamnt: a) Dom(f) = (, + ); Dom(g) = R {} b) Dom(f) = R {, 0}; Dom(g) = (, ) (, + ) c) Dom(f) = R {,, 0}; Dom(g) = (, + ) Sol. f ( ) no stá dfinida cuando 0 Dom(f) = R {, 0}. ( ) ln g 9 stá dfinida cuando 9 0 Dom(g) = (, ) (, + ). La rspusta s b). (P) La función f ( ) s: a) Crcint para todo >. b) Crcint para todo <. c) Ninguna d las antriors. f ( ) y g ( ) ln 9 = o = 0 < o > > 5 José María Martínz Mdiano
4 Análisis Matmático (Matmáticas Emprsarials II) f ( ) f ( ). La drivada s ngativa para todo ±. En conscuncia, la función s simpr dcrcint n todo su dominio. La rspusta s c). (P) La drivada d la función f ( ) (5 ), n l punto = 0, val: a) f ( 0) 8. b) f ( 0). c) Ninguna d las antriors. f ( ) (5 ) f ( ) La rspusta s a). (P) El polinomio d Taylor d grado d la función ( ) ln f, n l punto =, s: a) P ( ) b) P( ) c) Ninguna d las antriors. f ( ) ln f() = 0 f ( ) f () = f ( ) f () = Por tanto: P ( ) P ( ). La rspusta s c) José María Martínz Mdiano
5 Análisis Matmático (Matmáticas Emprsarials II) 5 Problmas. (J) ( punto) Hallar l polinomio d Taylor d grado, n l orign, d la función f ( ) cos. Utilizar dicho polinomio para calcular cos 0,. Pud asgurars qu l rror comtido s mnor qu 0? f() = cos ; f () = sn ; f () = cos ; f () = sn ; f ( () = cos ; f (5 () = sn (5 5 P ( ) R( ) f ( c)! 5! 0, 0, 5 (5 P (0,) 0, ; R ( ) 0 f ( c) 0! 5!. Hallar l polinomio d Taylor d grado d la función f ( ), n l punto =. Utilizar dicho polinomio para calcular aproimadamnt f(,). ( punto) f ( ) f() = f ( ) ( ) f () = f ( ) ( ) ( ) f () = f ( ) ( ) ( ) f () = P ( ) f (,) P(,) 0, 0, 0,,75 Por tanto: Otros problmas d Taylor (Propustos n los ámns d Licnciatura). (S0) Hallar l polinomio d Taylor d grado, n l orign, d la función f ( ). Utilizar dicho polinomio para calcular aproimadamnt f(0,). f ( ) f(0) = 0 f ( ) ( ) f (0) = f ( ) ( ) ( ) f (0) = f ( ) ( ) ( ) f (0) = Por tanto: P( ) 0, f (0,) P(0,) 0, 0, 0, 0,0 0,0005 0,05 José María Martínz Mdiano
6 Análisis Matmático (Matmáticas Emprsarials II). (S05) El polinomio d Taylor d grado d la función a) P( ) b) P( ) c) Ninguna d las antriors. f ( ) f ( ) ( ) f ( ) ( ) ( f ( ) ( ) f ( ) ( 8 ) En = 0, toman los valors 0, 0,, y, rspctivamnt. Lugo: P( ) 0 0 P( )!!! f ( ), n = 0, s:. (S0) El polinomio d Taylor d grado d la función f ( ) sin( ) n l punto =, s: a) P ( ) b) P( ) c) Ninguna d las antriors. f ( ) sin( ) f ( ) 0; f ( ) cos( ) f () = ; f ( ) sin( ) f () = 0; f ( ) cos( ) f () =. Lugo: P ( ) ( ) ( ) P ( ). (S07) Dada la función f ( ) ln( ) : a) Halla su polinomio d Taylor d trcr grado n = 0. (0,7 puntos) b) Podría asguras qu l rror máimo qu s comt cuando s calcula f(0,5) utilizando l polinomio antrior s infrior a /? Justifica la rspusta. (0, puntos) a) f ( ) ln( ) f ( ) f ( ) f ( ) ( ) ( ) f(0) = 0, f (0) =, f (0) =, f (0) = P( ) P( )! ( b) f ( ) Cota d rror < ( ) Para = 0,5,! ( h) ( h)! ( h), con 0 < h <. ( Nota: Si ist la drivada f n ( ) n un ntorno dl punto = a, l valor d R n () vin dado por la prsión ( n f ( c) n R n ( ) ( a), dond c stá ntr a y. ( n )! José María Martínz Mdiano
7 Análisis Matmático (Matmáticas Emprsarials II) 7 5. (F09). El polinomio d Taylor d grado d la función f ( ) sin cos, n = 0, s: a) P( ) b) P( ) c) P( ) f ( ) sin cos f ( 0) f ( ) cos sin f ( 0) f ( ) sin cos f ( 0) f ( ) cos 8sin f ( 0) Por tanto, P( )!!. (J08) El polinomio d Taylor d º grado d la función f ( ) ln( ) n l punto = 0 s: ( ) ( ) ( ) a) P ( ) ( )!!! b) P( ) c) P( ) f ( ) ln( ) f ( ) ln( ) f ( ) ( ) ( f ( ) f ( ) 8 ( ) ( ) ( ) ( ) ( Lugo: f ( 0) 0 ; f ( 0) 0; f ( 0) ; f ( 0) ; f ( ) 8 Por tanto, P( ) 7. (S0) El polinomio d Taylor d grado d la función f ( ) sin( ) n l punto =, s: a) P ( ) b) P( ) c) Ninguna d las antriors. f ( ) sin( ) f ( ) 0; f ( ) cos( ) f () = ; f ( ) sin( ) f () = 0; f ( ) cos( ) f () =. Lugo: P ( ) ( ) ( ) P ( ) 8. (E) ( punto) Halla l polinomio d Taylor d grado d la función f ( ) ln( ), n l punto = 0. ( punto) f ( ) ln( ) f ( 0) 0 f ( ) ln( ) f ( 0) 0 José María Martínz Mdiano
8 Análisis Matmático (Matmáticas Emprsarials II) 8 f ( ) f ( 0) f ( ) ( ) ( ) ( ) f ( 0) ) f ( ) f ) (0) 8 ( ) ( ) 8 P( )!!!. 9. (S) ( punto) Dada la función f ( ), obtnr l polinomio d Taylor d grado n 0, l punto = 0. Dmostrar qu si calculamos mdiant s polinomio, l rror d stimación srá como máimo.! 5 ( f ( ) f ( ) f ( ) f ( ) f ( ) Lugo, P( ) (hasta aquí, 0,5 puntos)!! o Por tanto:, dond o s l rsto (l rror), con!!!! (0, ) 0 Para 0,, l rsto s o!, con 0 (0, 0,) = (0, /5) o! 0! 5! 5 José María Martínz Mdiano
9 Análisis Matmático (Matmáticas Emprsarials II) 9 Otras sugrncias d rpaso Dl Tma 8 (Solucions) n Tangnt a una curva 7. Halla la cuación d la rcta tangnt a cada una d las curvas siguints n los puntos qu s indica: a) f ( ) n l punto =. b) y n l punto d abscisa =. c) f ( ) n l punto d abscisa =. d) f ( ) n l punto =. ) f ( ) n l punto =. f) f ( ) ln n l punto d abscisa =. La cuación d la rcta tangnt a la curva asociada a la función y f () n l punto d abscisa = a vin dada por la prsión: y f ( a) f ( a)( a) a) La rcta tangnt a la función f ( ) n l punto d abscisa =, srá: y f () f ()( ). Como f ( ) y f ( ), s obtin: y ( ) y 9. b) y y y() = /; y () = /8. ( ) 5 y y La cuación d la tangnt s: c) f ( ) f ( ) ; f ( ) f ( ). Por tanto, la rcta tangnt s: y ( ) y. d) ( ) f ( ) f ( ) (f() = /5; f () = 8/5) ( ) y y La tangnt s: ) f ( ) () 0 0 f ; f ( ) f (). La tangnt s: y ( ) y. f) f ( ) ln f ( ) ln 0 ; f ( ) f ( ). La tangnt s: y 0 ( ) y. 8. Halla la cuación d la rcta tangnt a f ( ) n l punto (0, f(0)) s: José María Martínz Mdiano
10 Análisis Matmático (Matmáticas Emprsarials II) 0 La cuación d la rcta pdida s: y f ( 0) f (0)( 0) f ( ) f ( ) f ( 0) 0 ; f (0) =. y 0 0 y. La rcta tangnt srá: Práctica d drivadas: vr los problmas dl al dl Tma 8 (Solucions) n Rprsntación gráfica d una función: vr los problmas dl al y dl 8 al dl Tma 9 (Solucions) n la misma página: José María Martínz Mdiano
Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos
Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES
2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13
º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y
Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:
Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES.
TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bach. TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. Tasa d variación mdia. Cálculo y signiicado EJERCICIO : Considramos la unción:. Halla la tasa
TEMA 4. APLICACIONES DE LA DERIVADA.
7 Unidad 4. Funcions. Aplicacions d la drivada TEMA 4. APICACIONES DE A DERIVADA.. Monotonía. Crciminto y dcrciminto d una función. Etrmos rlativos 3. Optimización 4. Curvatura 5. Punto d Inflión 6. Propidads
REPRESENTACION GRAFICA.
REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4
ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos
Matmáticas II Prubas d Accso a la Univrsidad ANÁLISIS Junio 9.. Dada la función cos f () a b si si si a) Calcular los valors d a y b para qu la función f() sa continua n [ punto] b) Es drivabl la función
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar
PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES
PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica
Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8
Matmáticas II (Bacillrato d Cincias) Solucions d los problmas propustos Tma 8 7 TEMA 8 Drivadas Tormas Rgla d L Hôpital Problmas Rsultos Drivada d una función n un punto Utilizando la dfinición, calcula
ANÁLISIS (Selectividad 2014) 1
ANÁLISIS (Slctividad 4) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD EN 4 ( Obsrvación: La slcción s ha hcho dando prioridad a las custions más tóricas) Andalucía, junio 4 San
TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)
TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu
12 Representación de funciones
Rprsntación d funcions ACTIVIDADES INICIALES.I. Factorizando prviamnt las prsions, rsulv las siguints cuacions: a) 6 7 5 0 6 c) 0 7 b) 6 d) 0 a) 6 7 5 0 ( )(6 5) 0 5 6 5 0, b) 7 6 ( )( ) 6 6 ( ) 7 ( )
ANÁLISIS. Junio 94. cosx si x Dada la función. f(x) a 2x si 0 x 1. b si x 1 x
ANÁLISIS Junio 9.. Dada la función cos si 0 b si f() a si 0 a) [ punto] Calcular los valors d a y b para qu la función f() sa continua n b) [ punto] Es drivabl la función obtnida n = 0?. En =?. Razona
COMPUTACIÓN. Práctica nº 2
Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros
( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.
Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(
LÍMITES DE FUNCIONES.
LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x
. Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)
RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD
RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción ral d variabl ral s una aplicación d un subconjunto D d los númros rals n un subconjunto I d los númros
Opción A Ejercicio 1 opción A, modelo Septiembre 2011
IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si
Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I
Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no
ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015
ANÁLISIS (Slctividad 5) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 5 Andalucía, junio 5 Sa f la función dfinida por f( ) para a) [ punto] Estudia y calcula las asíntotas
ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación
LÍMITES Cálculo y rprsntación...... 7. 8. - + + - - + + - + - ( + ) - + + - - + + 9. + - +. + - + - 9. + -. + + + - +. + + +. + + + -. +. + - ASÍNTOTAS Y RAMAS INFINITAS Cálculo y rprsntación. y = - +.
9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO
9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y
INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL
INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE
CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden
APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta
REPRESENTACIÓN DE FUNCIONES
Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con
Tema 2 La oferta, la demanda y el mercado
Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la
GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7
VERSIÓN:.0 FECHA: 19-06-01 I.E. COLEGIO ANDRÉS BELLO PÁGINA: 1 d 9 Nombrs y Apllidos dl Estudiant: Docnt: ALEXANDRA URIBE Ára: Matmáticas Grado: UNDÉCIMO Priodo: TERCERO GUIA 7 Duración: 0 horas Asignatura:
Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin
Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,
Tema 3 La elasticidad y sus aplicaciones
Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad
LIMITES DE FUNCIONES EN 1D
LIMITES DE FUNCIONES EN D Límits d funcions n D Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martínz Boscá (jmartinzbos@uoc.du) ESQUEMA DE CONTENIDOS Dfinición Límits latrals LÍMITE DE
9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO
9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y
Problemas de Asíntotas de funciones
www.vaasoftware.com/gp 1) Determinar las asíntotas verticales de la siguiente función y estudiar la posición de la 1 + 5 ) Determinar las asíntotas verticales de la siguiente función y estudiar la posición
x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas.
f ( ) + +. Dominio D (f ) R 4. Recorrido Im( f ) [, ). Puntos de corte - Con el eje y, donde 0 y + + y P (0,) - Con el eje, donde y 0 No hay punto de corte con el eje 4. Asíntotas - Horizontales lim +
Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.
MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El
INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN
INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN El almán Gottfrid Libniz (66-76), quin, junto con su antagonista l inglés Isaac Nwton (6-77), fu l crador dl cálculo infinitsimal. MATEMÁTICAS II
Energía. Reactivos. Productos. Coordenada de reacción
CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)
Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES
Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un
= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x
Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas
DERIVACIÓN DE UNA FUNCIÓN REAL DE VARIABLE REAL
Drivación una función ral variabl ral DERIVACIÓN DE UNA FUNCIÓN REAL DE VARIABLE REAL Autor: Patrici Molinàs Mata (pmolinas@uoc.u), José Francisco Martínz Boscá (jmartinzbos@uoc.u) ESQUEMA DE CONTENIDOS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:
MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO
MTEMÁTICS II PRUEBS DE CCESO L UNIVERSIDD DE OVIEDO.- NÁLISIS ª PRTE.- Cálclo Intgral.- MODELO DE PRUEB Dada la parábola, s corta por la rcta d cación ; n los pntos d intrscción s trazan las tangnts a
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES
Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación
CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS
CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los
REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x
1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.
TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS
Tma Límits, continuidad y asíntotas Matmáticas I º Bachillrato TEMA LÍMITES, CONTINUIDAD ASÍNTOTAS CÁLCULO GRÁFICO DE LÍMITES EJERCICIO : Sobr la gráfica d f), halla : 8 8 8 f f c) f f ) f f f c) f f )
Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim
) Sea la función: f(x) = ln( x ): a) Dar su Dominio y encontrar sus asíntotas verticales, horizontales y oblicuas. b) Determinar los intervalos de crecimiento y decrecimiento, los máximos y mínimos, los
REPRESENTACIÓN DE FUNCIONES
8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción
INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES
INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE
Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones
Método d los Elmntos Finitos para Análisis Estructural Alisado d tnsions Campo d tnsions Tnsions n cualquir punto dl lmnto, sgún l MEF: = Dε= DBδ Matriz B contin las drivadas d las N: no son continuas
PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.
PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.. CONCEPTO DE DOSADO. PARÁMETROS GEOMÉTRICOS 3. PARÁMETROS INDICADOS 4. PARÁMETROS EFECTIVOS 5. PARÁMETROS DE PÉRDIDAS MECÁNICAS 6. RESUMEN DE PARÁMETROS 7. OTROS
Funciones de Variable Compleja
Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x
12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo
I. Determinar los siguientes límites, aplicando las propiedades. lim =
Ejercicios resueltos I. Determinar los siguientes límites, aplicando las propiedades ) 3 + 2 4 3 + 2 4 = (2) 3 + 2 (2) 2 - (2) - 4 Sustituir la por el 2 = 8 + 8-2 - 4 = 0 Aplicar límite a cada término
a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.
(Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto.
REPASO LÍMITES º BACH. RECORDAR: Para qu ista límit d una f() n un punto han d coincidir los límits latrals n dicho punto. A fctos dl f() no tnmos n cunta lo qu ocurr actamnt n a, sino n las a proimidads.
Ejercicios resueltos Distribuciones discretas y continuas
ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s
Límites y continuidad de funciones reales de variable real
Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones
2º BACHILLERATO CINETICA QUÍMICA
VELOCIDAD DE REACCIÓN 1.- Escrib la xprsión d la vlocidad d racción n función d la concntración d cada una d las spcis qu intrvinn n l procso d obtnción d amoniaco. N + 3 H NH 3 d 1 v = [N] = 3 d 1 [H]
TEMA 11 REPRESENTACIÓN DE FUNCIONES
Tema Representación de unciones Matemáticas II º Bachillerato TEMA REPRESENTACIÓN DE FUNCIONES EJERCICIO : Representa gráicamente la unción: Dominio R 8 respecto al origen. 8 Simetrías:. No es par ni impar:
Estudio Gráfico de Funciones
Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función
PRÁCTICAS DE FUNDAMENTOS DE REGULACIÓN AUTOMÁTICA CON MATLAB
PRÁCTICAS DE FUNDAMENTOS DE REGULACIÓN AUTOMÁTICA CON MATLAB PRÁCTICA Nº 3: RESPUESTA DE SISTEMAS 4. RESPUESTA TEMPORAL DE SISTEMAS Contnido: D las funcions d transfrncia y sistmas antriors, s prtnd obtnr
Colegio Portocarrero. Curso Departamento de matemáticas. Limites, asíntotas y continuidad
Limites, asíntotas y continuidad Problema 1: Sea la función. Determina las asíntotas si existen. Problema 2: Dada la función a) Representa gráficamente f(x) b) Estudia su continuidad. Problema 3: Un inversor
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
5 Demostrar cada una de las siguientes afirmaciones empleando la definición de
Hallar el dominio de las siguientes funciones: x 3 a) x +ln(x ) b) ln x + 6 x + c) x x d) ln x x + e) cos x + ln(x 5π) + 8π x Graficar la función sen(x π ). Hallar para que valores de x es 3 Hallar las
RADIO CRÍTICO DE AISLACIÓN
DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría
VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA
AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.
Ejercicios de Análisis propuestos en Selectividad
Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa
Tema 7.0. Repaso de números reales y de funciones
Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números
FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS.
Prof., Enriqu Matus Nivs Doctorano n Eucación Matmática. FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Una función ponncial s aqulla n la qu la variabl stá n l ponnt. Algunos - - -5 jmplos funcions
4.2. Ejemplo de aplicación.
HEB 8 Dsarrollo dl método d los dsplazamintos 45 4.. Ejmplo d aplicación. ontinuando con l pórtico dscrito n l apartado (3.8), s van a calcular las cargas y, postriormnt, sguir con l cálculo matricial,
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado
Aproximación intuitiva al concepto de límite de una función en un punto
Aproimación intuitiva al concepto de límite de una función en un punto ) Consideremos el siguiente gráfico Cuando los valores de se aproiman a 8 por la derecha, las imágenes de se acercan a 4 Cuando los
CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES
CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o
OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA
CÓDIGO TÉCNICO DE LA EDIFICACIÓN ACONDICIONAMIENTO TÉRMICO E HIGROMÉTRICO: CÁLCULO SEGÚN CTE El acondicionaminto térmico higrométrico s rcog n l Documnto Básico HE Ahorro d Enrgía, cuyo índic s: HE 1 Limitación
ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN
ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador
Análisis de funciones y representación de curvas
12 Análisis de funciones y representación de curvas 1. Análisis gráfico de una función Aplica la teoría 1. Dada la siguiente gráfica, analiza todas sus características, es decir, completa el formulario
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
3. Ecuaciones diferenciales de orden superior. ( Chema Madoz, VEGAP, Madrid 2009)
. Ecuacions difrncials d ordn suprior Chma Madoz, VEGAP, Madrid 009 Ecuacions linals: toría básica Un problma d valor inicial d n-ésimo ordn consist n rsolvr la EDO linal: a n n d d d a a a0 g n n n d
1. Encontrar el dominio de la función racional. 2. Encontrar los interceptos con x y y de la función racional.
1. Encontrar el dominio de la función racional. h(x) x 2 3x 1 (x 2 4)(x 2 + 11x + 24) Para encontrar el dominio de una función racional debemos encontrar los valores de la variable que hacen cero el denominador.
INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO
OPERCIONES UNIRIS PROF PEDRO VRGS UNEFM DPO ENERGÉIC Disponibl n: wwwopracionswordprsscom INERCMBIDORES UBO Y CRCZ: NÁLISIS ÉRMICO NÁLISIS ÉRMICO, CONSIDERCIONES GENERLES nts d scribir las cuacions qu
ECUACIONES DIFERENCIALES ORDINARIAS (EDOS)
EUAIONES DIFERENIALES ORDINARIAS EDOS.- Introducción onsidrmos los siguints roblmas. Problma uáls srán las curvas qu vrifican qu la ndint n cada uno d sus untos s igual al dobl d la suma d las coordnadas
COL LECCIÓ DE PROBLEMES RESOLTS
DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES
UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas.
UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. PROBLEMAS DE CÁLCULO INFORMÁTICA DE SISTEMAS . Cálculo diferencial. Probar que a si y sólo si a a, siendo a >. Utilizar estas desigualdades
Aplicaciones de la integral definida al cálculo de áreas
Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano
PROBLEMAS DE INTEGRALES INDEFINIDAS
PROBLEMAS DE INTEGRALES INDEFINIDAS Integración por partes. Mediante la integración por partes, hallar una primitiva de la función y = Ln (1 + x) Calcular una primitiva de una función, es hallar su
UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Maritza de Franco
UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Marita d Franco A Francisco José, Shrl, Marión, Paola, Constanc, Luis Migul Migul. AGRADECIMIENTOS Al Ing. Pdro Rangl por su comprnsión,
LÍMITES Y CONTINUIDAD (asíntotas) Tema 6. Matemáticas Aplicadas CS I 1
LÍMITES Y CONTINUIDAD (asíntotas) Tema 6 Matemáticas Aplicadas CS I 1 FUNCIONES DE PROPORCIONALIDAD INVERSA Tema * 1º BCS Matemáticas Aplicadas CS I 2 FUNCIÓN DE PROPORCIONALIDAD INVERSA LA FUNCIÓN DE
TEMAS 3-6: EJERCICIOS ADICIONALES
TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s
dada por c(x) = donde x indica el tamaño de los pedidos para renovar existencias
FUNCIONES +, si
26 EJERCICIOS de LOGARITMOS
6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.