Métodos Numéricos: Resumen y ejemplos Tema 3: Integración numérica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Métodos Numéricos: Resumen y ejemplos Tema 3: Integración numérica"

Transcripción

1 Métodos Numéricos: Resumen y ejemplos em 3: Integrción numéric Frncisco Plcios Escuel Politécnic uperior de Ingenierí de Mnres Universidd Politécnic de Ctluñ Mrzo 8, versión.4 Contenido. Fórmuls de cudrtur. Fórmuls de Newton-Cotes 3. Fórmuls compuests Fórmuls de cudrtur Objetivo Aproximr l integrl I = b f(x) dx usndo un combinción linel de vlores de f(x) en puntos del intervlo [, b], x <x < <x n b, b f(x) dx ' α f(x )+α f(x )+ + α n f(x n ). L fórmul de cudrtur es F (f) =α f(x )+α f(x )+ + α n f(x n ). Error E (f) = I F (f) = b f(x) dx [α f(x )+α f(x )+ + α n f(x n )].

2 Frncisco Plcios em 3: Integrción Numéric Ejemplo. Considermos l integrl I = x sin xdx.. Aproxim el vlor de I con l fórmul de cudrtur F (f) = b µ + b f()+4f + f(b). 6. Clcul el vlor excto de l integrl y el vlor del error.. Vlor proximdo. enemos =, b =, f(x) =x sin x, F (f) = ( + 4 (.5) sin (.5) + sin ) = Vlor excto y error. Clculmos un primitiv de f(x) x sin xdx= integrmos por prtes µ = x cos x ( cos x) dx u = x du = dx dv =sinxdx v = cos x = x cos x + cos xdx = x cos x +sinx + c El vlor excto es x sin xdx=[ xcos x +sinx] x= x= = cos + sin =. 37. Error E (f) = I F (f) = =.. L fórmul de cudrtur h producido un proximción con decimles exctos. Grdo de precisión Ddo un intervlo [, b], decimos que un fórmul de cudrtur F (f) =α f(x )+α f(x )+ + α n f(x n ) tiene grdo de precisión g si es exct pr todos los polinomios de grdo g (y no lo es pr lguno de grdo g +). Es decir, si p(x) es un polinomio de grdo g, entonces l fórmul de cudrtur es exct pr p(x) b p(x) dx = α p(x )+α p(x )+ + α n p(x n ).

3 Frncisco Plcios em 3: Integrción Numéric 3 Determinción del grdo de precisión Puede demostrrse que l fórmul de cudrtur F (f) tiene grdo de precisión g si es exct pr los polinomios p (x) =,p (x) =x, p (x) =x,...,p g (x) =x g ynoloespr p g+ (x) =x g+. Ejemplo. Considermos el intervlo [, ]. Determin el grdo de precisión de l fórmul de cudrtur F (f) = [f() + 4f() + f()]. 3 enemos que verificr l exctitud de F (f) sobre p (x) =,p (x) =x, p (x) =x,... dx =[x] = F (f) exct pr p (x) =. F () = 3 (+4+)= 6 3 = x xdx= = F (f) exct pr p (x) =x. F (x) = 3 ( + 4 +)= 6 3 = x x 3 dx = = F (f) exct pr p (x) =x. F x = 3 ( )= 8 3 x x 3 4 dx = = =4 F (f) exct pr p 3 (x) =x 3. F x 3 = 3 ( )= 3 =4 x x 4 5 dx = = F (f)no exct pr p 4 (x) =x 4. F x 4 = 3 ( ) = 3

4 Frncisco Plcios em 3: Integrción Numéric 4 L fórmul de cudrtur tiene grdo de precisión 3, y es exct pr tods ls integrles p(x) dx con p(x) polinomio de grdo 3. Por ejemplo, tomemos p(x) =x 3 x, x 3 x x 4 dx = 4 x = =4 =, F (p) = [ + 4 ( ) +(8 ) ]= 6 3 {z } {z } 3 =. p() p() Fórmuls de Newton-Cotes Ls fórmuls de Newton-Cotes se obtienen integrndo el polinomio interpoldor construido con nodos igulmente espcidos. Estrtegi. Dividimos [, b] en n subintervlos de longitud h = b n, los puntos de división son de l form x =, x = + h, x = +h,. x j = + jh,. x n = + nh = b.

5 Frncisco Plcios em 3: Integrción Numéric 5. Clculmos el polinomio p n (x) que interpol f(x) en los nodos x,x,x,...,x n. 3. ommos b f(x) dx ' b p n (x) dx.. Fórmul del trpecio y de impson Fórmul del rpecio Es l fórmul de Newton-Cotes de puntos. b p (x) dx = f()+f(b) (b ). i tommos h = b F (f) = b [f()+f(b)]. F (f) = h [f(x )+f(x )], x =, x = + h, h = b. Fórmul de impson Es l fórmul de Newton-Cotes de 3 puntos. h = b, x =, x = + h, x = +h = b.

6 Frncisco Plcios em 3: Integrción Numéric 6 Puede demostrrse que b p (x) dx = b 6 f()+4f µ + b = h 3 [f(x )+4f (x )+f(x )]. + f(b) F (f) = h 3 [f(x )+4f (x )+f(x )], x =, x = + h, x = +h, h = b. Ejemplo. Considermos l integrl I = x dx. Aproxim el vlor de I usndo l fórmul del trpecio.. Aproxim el vlor de I usndo l fórmul de impson. 3. Clcul los errores.. Aproximción por trpecio. enemos =, b =, f(x) = x, F (f) = µ + = 3 = 3 4 =.75.. Aproximción por impson. enemos h = =.5, x =, x =.5, x =, F (f) =.5 µ =

7 Frncisco Plcios em 3: Integrción Numéric 7 3. Vlor excto y errores. x dx =[lnx] =ln=. 6935, E (f) = I F (f) = =.5685, E (f) = I F (f) = =. 9. Con l fórmul impson, hemos obtenido decimles exctos.. Errores Fórmul del trpecio e f(x) de clse C [, b], e cumple b x =, x = b, h = b. I = f(x) dx = h [f (x )+f (x )] h3 f () (t), t (, b). Vlor bsoluto del error E (f) = I F (f) = h3 f () (t), t (, b). Cot superior de error Fórmul de impson e f(x) de clse C 4 [, b], e cumple b E (f) h3 M, M = mx f () (x). x [,b] x =, x = + h, x = b, h = b. I = f(x) dx = h 3 [f (x )+4f (x )+f (x )] h5 9 f (4) (t), t (, b). Vlor bsoluto del error E (f) = I F (f) = h5 f (4) (t), t (, b). 9 Cot superior de error E (f) h5 9 M 4, M 4 = mx f (4) (x). x [,b]

8 Frncisco Plcios em 3: Integrción Numéric 8 Ejemplo. Considermos l integrl I = x ln xdx.. Aproxim el vlor de I usndo l fórmul del trpecio; clcul un cot superior de error.. Aproxim el vlor de I usndo l fórmul de impson; clcul un cot superior de error. 3. Clcul el vlor excto de l integrl y verific los resultdos.. Aproximción trpecio. enemos =, b =, h = =, f(x) =x ln x, F (f) = ( ln + ln ) = ln = Cot de error E (f) h3 M, M = mx f () (x). x [,] Clculmos ls derivds f (x) =lnx +, f (x) = x, f (x) es positiv si x [, ]. L función objetivo es g(x) = f () (x) = x, g (x) = x, l derivd g (x) es negtiv, por lo tnto g(x) es decreciente en el intervlo yresult M = mx f () (x) = g() =. L cot de error es x [,] E (f) h3 M = = Aproximción por impson. enemos h = =.5,

9 Frncisco Plcios em 3: Integrción Numéric 9 x =, x =.5, x =. Vlor de l proximción, F (f) =.5 ( ln + 4.5ln(.5) + ln ) = Cot de error, E s (f) h5 9 M 4, M 4 = mx f (4) (x). x [,] Empezmos por determinr M 4. Clculmos ls derivds f (x) = x, f (4) (x) = x 3. L derivd f (4) (x) es positiv si x [, ], porlotnto,lfunciónobjetivo es g(x) = f (4) (x) = x 3. Clculmos l derivd de l función objetivo g (x) = 6 x 4, vemos que g (x) es negtiv y, en consecuenci, l función objetivo g(x) es decreciente M 4 = mx f (4) (x) = g() =. x [,] Cot de error pr l proximción medinte l fórmul de impson E (f) h5 9 M 4 = (.5)5 = Vemosque,enestecso,podemossegurrdecimlesexctos. 3. Vlor excto y errores. Clculmos un primitiv de f(x) x lnx dx = integrmos por prtes. u =lnx, dv = xdx, du = x dx. v = x. = x ln x = x ln x = x x x dx xdx ln x x 4 + c.

10 Frncisco Plcios em 3: Integrción Numéric El vlor excto, con cinco decimles, es x ln xdx = x = ln +/4 = Error trpecio x= x ln x =(ln ) 4 x= µ ln 4 E (f) = I F (f) = =. 5686, cot error trpecio Error impson E (f) E (f) = I F (f) = =., cot error impson E (f) Observmos que los errores son inferiores ls cots de error correspondientes. 3 Fórmuls compuests 3. rpecio compuesto Estrtegi. Dividimos el intervlo [, b] en n subintervlos de longitud h = b n, y obtenemos n +puntos x =, x = + h, x = +h,...,x n = + nh = b. Los n subintervlos son A =[x,x ],A =[x,x ],...,A j =[x j,x j ],...,A n =[x n,x n ].. Aplicmos l fórmul del trpecio cd subintervlo A =[x,x ] F () = h [f (x )+f (x )],.. A j =[x j,x j ] F (j) = h [f (x j )+f (x j )],.. A n =[x n,x n ] F (n) = h [f (x n )+f (x n )].

11 Frncisco Plcios em 3: Integrción Numéric 3. ommos como proximción globl l sum de ls proximciones sobre los subintervlos F (n) C = F () + F () + + F (j) + + F (n). Fórmul de trpecio compuesto F (n) C = h [f(x )+f (x )+ +f (x j )+ +f (x n )+f (x n )], h = b n. i grupmos términos, obtenemos C = h n [f(x X )+f (x n )] + h f (x j ), F (n) j= h = b n. Cot de error i f(x) es de clse C [, b], se cumple E (n) b C = f(x)dx F (n) C b h M, h = b n. M = mx f () (x). x [,b] Demostrción de l cot de error

12 Frncisco Plcios em 3: Integrción Numéric Dividimos el intervlo en n subintervlos y plicmos ls propieddes de ls integrles b x x xn f (x) dx = f (x) dx + f (x) dx + + f (x) dx, x x x n = f (x) dx + f (x) dx + + f (x) dx, A A A n = I + I + + I n. Definimos F (n) C = F () + F () + + F (n), donde F (j) es el vlor de l fórmul simple del trpecio sobre el intervlo A j =[x j,x j ]. Entonces se cumple E (n) b C = f (x) dx F (n) C ³ = (I + I + + I n ) F () + F () + + F (n) ³ ³ ³ = I F () + I F () + + I n F (n) I F () + I F () + + I n F (n) E () + E () + + E (n), donde E (j) represent el error del trpecio simple en el intervlo A j. Podemos cotr el error en cd subintervlo como sigue E (j) h3 M (j), M(j) =mx f () (x). x A j Entonces, result l siguiente cot pr el error globl E (n) C h3 M () + h3 M () + + h3 M (n). i tommos M = mx f () (x), x [,b] se cumple pr todos los intervlos M (j) =mx f () (x) mx f () (x) = M, x A j x [,b] por lo tnto E (n) C h3 M + h3 M + + h3 M = n h3 M = n b h n M b h M.

13 Frncisco Plcios em 3: Integrción Numéric 3 Ejemplo 3. Clcul x ln xdx con decimles exctos usndo l fórmul del trpecio compuesto.. Cálculo del número de intervlos. enemos l cotción E (n) C Hemos visto en el Ejemplo. que =,b=,f(x) =x ln x. b h M, h = b n, M = mx f () (x). x [,] M = mx x [,] f () (x) =, entonces Exigimos yresult E (n) C (n) E h. C h.5 h.5 =.6, h.6= Como h = n = n, result n n Necesitmos 5 subintervlos.. Vlor de l proximción. Con n =5, el vlor del step es = h = 5 =.. Obtenemos los nodos x =,x =., x =.4, x 3 =.6, x 4 =.8, x 5 =.

14 Frncisco Plcios em 3: Integrción Numéric 4 L fórmul del trpecio compuesto con 5 subintervlos es F (5) C = h [f (x )+f (x 5 )] + h 4X f (x j ), en nuestro cso result F (5) C =. ( ln + ln ) + (.) (.ln.+.4ln.4+.6ln.6+.8ln.8) = = Error excto. Vlor excto con 5 decimles j= Error E (5) C I = x ln xdx= = I F (5) = =.3. C 3. Fórmul de impson compuesto Estrtegi L ide es dividir el intervlo [, b] en m subintervlos de igul longitud A,A,...,A m y plicr l regl simple de impson cd subintervlo. Pr centrr ides, expondremos el cso m =3.. Pr plicr l regl de impson, debemos tomr el punto medio de cd intervlo. Por lo tnto, l distnci entre nodos (step) es Los nodos son h = b m. x =, x = + h, x = +h,...,x n = +mh = b. i m =3, l distnci entre nodos será y tendremos m +=7nodos h = b 6

15 Frncisco Plcios em 3: Integrción Numéric 5 en este cso, los intervlos son A =[x,x ], punto medio x. A =[x,x 4 ], punto medio x 3. A 3 =[x 4,x 6 ], punto medio x 5.. Aplicmos l fórmul de impson cd subintervlo A =[x,x ] F () = h 3 [f (x )+4f (x )+f(x )]. A =[x,x 4 ] F () = h 3 [f (x )+4f (x 3 )+f(x 4 )]. A 3 =[x 4,x 6 ], F (3) = h 3 [f (x 4)+4f (x 5 )+f(x 6 )]. 3. ommos como proximción globl l sum de ls proximciones sobre los subintervlos En el cso m =3 F (m) C = F () + F () (m) + + F. F (3) C = h 3 [f (x )+4f (x )+f(x )+4f (x 3 )+f(x 4 )+4f (x 5 )+f(x 6 )]. Podemos reordenr y grupr los vlores como sigue. F (3) C = h 3 {f (x )+f(x 6 ) + [f(x {z } )+f(x 4 )] +4 [f (x {z } )+f (x 3 )+f (x 5 )]}. {z } nodos extremos nodos pres interiores nodos impres Fórmul de impson compuesto F (m) C = h 3 f(x )+f (x m )+ m X j= f (x j )+4 mx f (x j ), j= h = b m.

16 Frncisco Plcios em 3: Integrción Numéric 6 Cot de error i f(x) es de clse C 4 [, b], se cumple E (m) b C = f(x)dx F (m) C b 8 h4 M 4, h = b m. M 4 = mx f (4) (x). x [,b] Demostrción de l cot de error El procedimiento es muy precido l empledo en l demostrción de l cot de error pr l fórmul del trpecio compuesto. enemos b f (x) dx = f (x) dx + A f (x) dx + + A f (x) dx A m = I + I + + I m. F (m) C = F () + F () (m) + + F, donde F (j) es el vlor de l fórmul simple de impson sobre el intervlo A j =[x j,x j ]. Entonces E (m) b C = f (x) dx F (m) C ³ = (I + I + + I m ) F () + F () (m) + + F ³ ³ ³ = I F () + I F () + + I m F (m) I F () + I F () + + I m F (m) E () + E () + + E (m), donde E (j) represent el error de impson simple en el intervlo A j. bemos que se cumple E (j) h5 9 M (j) 4, M(j) 4 =mx f (4) (x), x A j entonces E (m) C h5 9 M () 4 + h5 9 M () h5 9 M (m) 4. i tommos M 4 = mx f (4) (x), x [,b] se cumple pr todos los intervlos M (j) 4 =mx f (4) (x) mx f (4) (x) = M 4, x A j x [,b]

17 Frncisco Plcios em 3: Integrción Numéric 7 por lo tnto E (m) C Ejemplo 3. Clcul h5 9 M 4 + h5 9 M h5 9 M 4 h 4 m h5 9 M 4 = m b m 9 M 4 b 8 h4 M 4. x ln xdx con 4 decimles exctos usndo l fórmul de impson compuesto.. Cálculo del número de intervlos. enemos l cotción E (m) C Hemos visto en el Ejemplo. que entonces Exigimos =,b=,f(x) =x ln x. b 8 h4 M 4, h = b m, M 4 = mx f (4) (x). x [,b] M 4 = mx x [,] f (4) (x) =, (m) E C 8 h4. 8 h4.5 4, h =. 45, h =. 59. Como h = m = m, result m. 59 m = Necesitmos tomr m =. e trt de impson doble, con m =4subintervlos.

18 Frncisco Plcios em 3: Integrción Numéric 8. Vlor de l proximción. Con m =, result h = 4 =.5. Los nodos son x =,x =.5, x =.5, x 3 =.75, x 4 =. L fórmul de impson doble es en concreto F () C = h 3 f (x )+f (x 4 )+ X f (x j )+4 j= X f (x j ) j= = h 3 {f (x )+f (x 4 )+f(x )+4[f(x )+f(x 3 )]}, F () C =.5 [(ln+ln)+(.5ln.5) + 4 (.5 ln ln.75)] 3 = = Error excto. E () C I = x ln xdx= = I F () = = C

E.T.S. Minas: Métodos Matemáticos

E.T.S. Minas: Métodos Matemáticos E... Mins: Métodos Mtemáticos Resumen y ejemplos em 6: Integrción numéric Frncisco Plcios Escuel Politécnic uperior de Ingenierí de Mnres Universidd Politécnic de Ctluñ Octubre 8, Versión.5 Contenido.

Más detalles

5.5 Integración numérica

5.5 Integración numérica 88 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.5 Integrción numéric Métodos de Newton-Côtes De cr clculr l integrl definid: f(x) dx se llmn Métodos de Newton-Côtes los que se bsn en integrr, en lugr de l

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Integral de Riemann. Introducción a la integración numérica.

Integral de Riemann. Introducción a la integración numérica. Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

7.1. Definición de la Integral de Riemann

7.1. Definición de la Integral de Riemann Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo

Más detalles

La Integral de Riemann

La Integral de Riemann Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función

Más detalles

Introducción a la integración numérica

Introducción a la integración numérica Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica. Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,

Más detalles

Regla del Trapecio Para comenzar, sólo dos puntos (a, f(a)) y (b, f(b)) e interpolación lineal resulta

Regla del Trapecio Para comenzar, sólo dos puntos (a, f(a)) y (b, f(b)) e interpolación lineal resulta Cpítulo IV Integrción Numéric IV.1. Cudrturs: Regls Simples L fórmuls de cudrtur o regls simples se obtienen por medio de interpolción polinomil: l función integrr se muestre, es decir, se tomn puntos

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

INTEGRACIÓN NUMÉRICA

INTEGRACIÓN NUMÉRICA INTEGRACIÓN NUMÉRICA El principio de los métodos de integrción numeric, bsdos en ls fórmuls de Newton- Cotes, consiste en justr un un polinomio un conjunto de puntos y luego integrrlo. Al relizr dichs

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

Notas de Integral de Riemann-Stieltjes

Notas de Integral de Riemann-Stieltjes Nots de Integrl de Riemnn-Stieltjes 1. Definición y propieddes Dds funciones g, F : [, b] R que cumpln ciertos requisitos, definiremos l expresión g(x)df(x) de tl mner que cundo consideremos el cso prticulr

Más detalles

6.1 Sumas de Riemann e integral definida

6.1 Sumas de Riemann e integral definida Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje

Más detalles

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

Cálculo integral. Beatriz Campos Sancho Cristina Chiralt Monleon. Departament de matemàtiques. Codi d assignatura 305. Cálculo integral - UJI

Cálculo integral. Beatriz Campos Sancho Cristina Chiralt Monleon. Departament de matemàtiques. Codi d assignatura 305. Cálculo integral - UJI Cálculo integrl Betriz Cmpos Sncho Cristin Chirlt Monleon Deprtment de mtemàtiques Codi d ssigntur 35 Betriz Cmpos / Cristin Chirlt - ISBN: 978-84-694-64- Edit: Publiccions de l Universitt Jume I. Servei

Más detalles

Ejercicios de optimización

Ejercicios de optimización Ejercicios de optimizción 1. Entre todos los triángulos isósceles de perímetro 0, cuál es el de áre máxim? Función mximizr: A yh Relcionr vribles: Estudimos l función: h h y x h x y x y 0 x 0y 0 y 0 0y

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

Sucesiones de Funciones

Sucesiones de Funciones Cpítulo 9 Sucesiones de Funciones 9.1. Sucesiones de Funciones. En los cpítulos 3 y 4 vimos que un sucesión de números reles es, simplemente, un colección numerble y ordend de números reles. De mner similr,

Más detalles

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo IES Pdre Poved (Gudi UNIDAD 6: DERIVADAS.. TASA DE VARIACIÓN MEDIA. Se deine l ts de vrición medi de un unción y en un intervlo [ b] T. M. [, b] ( b (, como: b (,, B,, Si considero l rect que une A ( b

Más detalles

Métodos de Integración I n d i c e

Métodos de Integración I n d i c e Métodos de Integrción I n d i c e Introducción Cmbio de Vrible Integrción por prtes Integrles de funciones trigonométrics Sustitución Trigonométric Frcciones prciles Introducción. En est sección, y con

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

CAPÍTULO XII. INTEGRALES IMPROPIAS

CAPÍTULO XII. INTEGRALES IMPROPIAS CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9

Más detalles

Segunda Versión. Integración y Series. Tomo II

Segunda Versión. Integración y Series. Tomo II UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE CIENCIA Deprtmento de Mtemátic y Cienci de l Computción CÁLCULO Segund Versión Integrción y Series Tomo II Gldys Bobdill A. y Rfel Lbrc B. Sntigo de Chile 4

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites

Más detalles

Integración en una variable. Aplicaciones

Integración en una variable. Aplicaciones Tem 4 Integrción en un vrible. Aplicciones Ls integrles formlizn un concepto bstnte sencillo e intuitivo, el de áre. Los orígenes del cálculo de áres los podemos encontrr en el método de exhución desrrolldo

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

TRABAJOS DE MATEMATICA

TRABAJOS DE MATEMATICA UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA SERIE C TRABAJOS DE MATEMATICA Nº 36/07 Un segundo curso de Cálculo Crin Boyllin, Elid Ferreyr, Mrt Urciuolo, Cynthi Will Editores:

Más detalles

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39 Índice generl. L Integrl Indenid.. Antiderivd e Integrl Indenid...................... Integrles inmedits........................... 3.3. Regl de l Cden............................ 4.4. Sustitución o Cmbio

Más detalles

Cálculo integral de funciones de una variable

Cálculo integral de funciones de una variable Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo TEMA 6. INTEGRAL DE RIEMANN 6.1 INTEGRAL DE RIEMANN 6.1.1 Prtición de un intervlo Se f :, y fx K x,. Definición: Un prtición de, es un conjunto ordendo y finito de números reles y distintos P x 0,...,x

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

1. La derivada del producto de funciones derivables

1. La derivada del producto de funciones derivables Cátedr de Mtemátic Mtemátic Fcultd de Arquitectur Universidd de l Repúblic 3 Segundo semestre Hoj 5 Derivd del producto e integrción por prtes Ddo que l derivción y l integrción pueden verse como operciones

Más detalles

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto Tema 6 Integración Definida Ejercicios resueltos Ejercicio Calcular la integral definida ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = x dx dv

Más detalles

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple Integrl de un función rel Tem 08: Integrles Múltiples Jun Igncio Del Vlle Gmbo Sede de Guncste Universidd de Cost ic Ciclo I - 2014 Ls integrles definids clculn el áre bjo un curv y = f (x) pr un región

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

TEMA 3. Integración de funciones reales de variable real.

TEMA 3. Integración de funciones reales de variable real. TEMA 3 Integrción de funciones reles de vrible rel. Ls integrles formlizn un concepto bstnte sencillo e intuitivo, el de áre. Los orígenes del cálculo de áres los podemos encontrr en el método de exhución

Más detalles

TEMA 1 EL NÚMERO REAL

TEMA 1 EL NÚMERO REAL Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

Aplicaciones de la integral indefinida

Aplicaciones de la integral indefinida Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

6 Aproximación de funciones e interpolación Aproximación de funciones e interpolación en problemas físicos

6 Aproximación de funciones e interpolación Aproximación de funciones e interpolación en problemas físicos CONENIDO 6 Aproximción de funciones e interpolción 109 6.1 Aproximción de funciones e interpolción en problems físicos.......... 109 6.2 Interpolción polinómic globl............................ 109 6.2.1

Más detalles

n f j (x). j=0 f n Los teoremas que hemos obtenido anteriormente para sucesiones de funciones pueden aplicarse a las series de funciones.

n f j (x). j=0 f n Los teoremas que hemos obtenido anteriormente para sucesiones de funciones pueden aplicarse a las series de funciones. Cpítulo 10 Series de Funciones 10.1. Series de Funciones Definición 10.1 Se X R y (f n ) n N un sucesión de funciones reles sobre X. Pr n N definimos S n : X R por S n (x) = f j (x). Llmmos (S n ) n N

Más detalles

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0. CÁLCULO ELEMENTAL APUNTES Vlor bsoluto Definición 1. El vlor bsoluto del número rel, que se design por, se define por { si 0, = si < 0. Definición 2. L distnci entre los números x 1 y x 2 de l rect rel

Más detalles

LA INTEGRAL DEFINIDA Y SUS APLICACIONES

LA INTEGRAL DEFINIDA Y SUS APLICACIONES Integrl Definid y Aplicciones LA INTEGRAL DEFINIDA Y SUS APLICACIONES Autores: Pco Mrtínez (jmrtinezos@uoc.edu), Ptrici Molinàs (pmolins@uoc.edu), Ángel A. Jun (junp@uoc.edu). ESQUEMA DE CONTENIDOS Aplicciones

Más detalles

Aproximación e interpolación mediante polinomios

Aproximación e interpolación mediante polinomios LA GACETA DE LA RSME, Vol. 5.3 (2002), Págs. 621 627 621 Aproximción e interpolción medinte polinomios por Miguel Mrno y Mrt Mrcolini En este trbjo se muestr un relción entre los conceptos de interpolción

Más detalles

La Geometría de las Normas del Espacio de las Funciones Continuas

La Geometría de las Normas del Espacio de las Funciones Continuas Divulgciones Mtemátics Vol. 11 No. 1(2003), pp. 71 82 L Geometrí de ls Norms del Espcio de ls Funciones Continus The Geometry of the Norms of the Spce of Continuous Functions Arístides Arellán (ristide@ciens.ul.ve)

Más detalles

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8 POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr

Más detalles

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura). TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

CAPÍTULO 3. PROCEDIMIENTOS DE INTEGRACIÓN 3.1. Integración por cambio de variable 3.2. Integración por partes 3.2.1. Producto de un polinomio por una

CAPÍTULO 3. PROCEDIMIENTOS DE INTEGRACIÓN 3.1. Integración por cambio de variable 3.2. Integración por partes 3.2.1. Producto de un polinomio por una CAPÍTULO. PROCEDIMIENTOS DE INTEGRACIÓN.. Integrción por cmbio de vrible.. Integrción por prtes... Producto de un polinomio por un eponencil... Producto de un polinomio por un seno o un coseno... Producto

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

MATEMÁTICAS III (Carrera de Economía) OPTIMIZACIÓN CON RESTRICCIONES ( )

MATEMÁTICAS III (Carrera de Economía) OPTIMIZACIÓN CON RESTRICCIONES (  ) MATEMÁTICAS III (Crrer de Economí) OPTIMIZACIÓN CON RESTRICCIONES ( http://www.geocities.com/jls ) El propósito centrl de l economí como cienci es el estudio de l signción óptim de los recursos escsos.

Más detalles

Familiarizarse con las propiedades y las principales técnicas de integración.

Familiarizarse con las propiedades y las principales técnicas de integración. Capítulo 7 Integración Objetivos Familiarizarse con las propiedades y las principales técnicas de integración. 7.1. Definición y propiedades Sea f(x) una función real. Una primitiva o integral indefinida

Más detalles

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL RAFAEL HERRERÍAS PLEGUEZUELO EDUARDO PÉREZ RODRÍGUEZ Deprtmento de Economí Aplicd Universidd de Grnd. INTRODUCCIÓN Se supone que el Sr. Corto dispone de

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida Integrl Indefinid Estmos costumrdos decir que el producto el cociente son operciones inverss. Lo mismo sucede con l potencición l rdicción. Vmos estudir hor l operción invers de l diferencición. Dd l función

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc

Más detalles

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

Cálculo Integral. Métodos de integración

Cálculo Integral. Métodos de integración Unidd Métodos de integrción álculo Integrl Métodos de integrción Universidd iert y Distnci de Méico Unidd Métodos de integrción Índice UNIDD MÉTODOS DE INTEGRIÓN Propósito de l unidd ompetenci especíic

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

Estabilidad de los sistemas en tiempo discreto

Estabilidad de los sistemas en tiempo discreto Estbilidd de los sistems en tiempo discreto En tiempo discreto tmbién se puede hblr de estbilidd de estdo y de estbilidd de entrd slid de form similr l empled pr los sistems en tiempo continuo. Podemos

Más detalles

5. INTEGRAL DE LÍNEA. 5.1 Introducción. 5.2 Curvas

5. INTEGRAL DE LÍNEA. 5.1 Introducción. 5.2 Curvas 5. INTEGRAL DE LÍNEA 5.1 Introducción Nos proponemos mplir l noción de integrl, que y conocemos pr el cso de funciones de un vrile rel, cmpos de vris vriles. Cundo se definí l integrl definid pr un función

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),

Más detalles

Tema 9 Cálculo integral de funciones reales de variable real

Tema 9 Cálculo integral de funciones reales de variable real Tem 9 Cálculo integrl de funciones reles de vrile rel Ojetivos: 1. Clculr funciones primitivs con wxmxim. 2. Prcticr con el concepto de función integrle y l integrl de un función. 3. Trjr con funciones

Más detalles

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS TABLA DE DISTRIBUCIÓN DE FRECUENCIAS L.C. y Mtro. Frncisco Jvier Cruz Ariz L.C. y Mtro. Frncisco Jvier Cruz Ariz TABLA DE DISTRIBUCIÓN DE FRECUENCIAS Un mner de simplificr los dtos es usr un tbl de frecuenci

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS

INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS INTEGRAL DEFINIDA APLICACIÓN l CÁLCULO de ÁREAS Isc Brrow (60-677), teólogo y mtemático inglés, mestro de Newton y precursor de l regl que llev su nomre. MATEMÁTICAS II º Bchillerto Alfonso González IES

Más detalles

Integración de Funciones de Varias variables

Integración de Funciones de Varias variables Cpítulo 1 Integrción de Funciones de Vris vribles 1. L σ-álgebr de orel 2. L medid de Lebesgue 3. Funciones medibles Un vez estudid l medid de Lebesgue en R n, vmos desrrollr hor l integrción de funciones

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

Integración de Funciones

Integración de Funciones Cpítulo 9 Integrción de Funciones Hemos visto que l derivd represent l ts de vrición de un función. De hí que luego podmos interpretr l derivd de diferentes mner como l velocidd de vrición de cierto fenómeno

Más detalles

Laboratorio N 7, Asíntotas de funciones.

Laboratorio N 7, Asíntotas de funciones. Universidd Diego Portles Fcultd de Ingenierí. Instituto de Ciencis Básics Asigntur: Cálculo I Lortorio N 7, Asíntots de funciones. Introducción. Ls síntots de un función son rects que seprn ls regiones

Más detalles

Noviembre 2006, Versión 1.1. Ejercicio 1 Resuelve las siguientes ecuaciones diferenciales ordinarias. 1. 4y 00 + y 0 =0. 2. y 00 y 0 6y =0.

Noviembre 2006, Versión 1.1. Ejercicio 1 Resuelve las siguientes ecuaciones diferenciales ordinarias. 1. 4y 00 + y 0 =0. 2. y 00 y 0 6y =0. E.T.S. Minas: Métodos Matemáticos Ejercicios resueltos Tema 8 EDOs de orden superior Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 006/07

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

ESCEMMat ESCENARIOS MULTIMEDIA EN FORMACIÓN DE FUTUROS PROFESORES DE MATEMÁTICAS DE SECUNDARIA FUNDAMENTACIÓN TEÓRICA ESCENARIO 2

ESCEMMat ESCENARIOS MULTIMEDIA EN FORMACIÓN DE FUTUROS PROFESORES DE MATEMÁTICAS DE SECUNDARIA FUNDAMENTACIÓN TEÓRICA ESCENARIO 2 FUNDAMENTACIÓN TEÓRICA ESCENARIO Dominio I: Conocimientos de Mtemátics Tem: Funciones reles de un vrible rel. L función eponencil. L función logrítmic. Asignturs involucrds en l formción universitri: Análisis

Más detalles

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales.

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales. El conjunto de los números reles (R) El conjunto de los números reles se form medinte l unión del conjunto de los números rcionles y el conjunto de los números irrcionles. Propieddes del conjunto R R =

Más detalles

4.1. El problema del cálculo de áreas

4.1. El problema del cálculo de áreas Cpítulo 4 Integrción 4.. El problem del cálculo de áres Unidd de medid: áre del cudrdo. Áre de un rectángulo, de un triángulo, de un prlelogrmo, de un rombo, de un trpecio, de un polígono regulr. Exhución

Más detalles

3.- Derivada e integral de funciones de variable compleja.

3.- Derivada e integral de funciones de variable compleja. 3.- Derivd e integrl de funciones de vrile complej. ) Derivds, funciones nlítics e interpretción geométric. ) Regls de diferencición. c) Ecuciones de uch-riemnn. d) Funciones rmónics. e) Integrción complej.

Más detalles

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 2 Aproximación e interpolación

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 2 Aproximación e interpolación E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 2 Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 2006/07

Más detalles

CAPÍTULO 3 CÁLCULO INTEGRAL

CAPÍTULO 3 CÁLCULO INTEGRAL CAPÍTULO 3 CÁLCULO INTEGRAL. INTERROGANTES CENTRALES DEL CAPÍTULO Concepto de áre Sums de Riemnn Integrl definid Propieddes de l integrl definid Integrl indefinid Propieddes de l integrl indefinid Teorem

Más detalles