Función Longitud de Arco

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Función Longitud de Arco"

Transcripción

1 Función Longitud de Arco Si al extremo final de la curva Lt = t f t dt e deja variable entonce el límite uperior de la a integral depende del parámetro t y e tiene que la longitud de arco de una curva e función de la variable t ecalar t o ea Lt = f t dt entonce Lt define un nuevo parámetro para c al que e denomina a parámetro de longitud de arco. E decir i tenemo una curva c = ft y ft e una reparametrización de c tal que la rapidez con que ft recorre a C e contante igual a e decir ft = t I por lo tanto L b ft = f t dt = a b a dt = b a por lo que f era una reparametrización tal que la longitud de la curva que decribe e igual al tiempo que tarda en recorrerla. Ejemplo: Sea ft = r co t r in t. Obtengamo la reparametrizacion por la longitud de arco. = Lt = Entonce = rt por lo tanto r = t. f t dt = r co t + in tdt = rdt = rt Entonce el camino f = f r = r co r r in r e la reparametrización por la longitud de arco. Oberve que f = r in r r r co r r = in r co r = I como tenia que ocurrir. Ejemplo: Reparametrice la hélice rt = co tî + in tĵ + tˆk con repecto a la longitud de arco. Solución. = t = r t dt = = t Por lo tanto co t + in t + dt = dt = t = t y t eta en función de. Por lo tanto la parametrización requerida e rt = co in y [ ] [ ] r = in + co + =

2 [ ] co + in + = = como tenia que er. Ejemplo: Obtenga la reparametrización de la catenaria ft = t coht Solución. Tenemo que: f t = inht por lo tanto f t = tenemo que: f t = + inh t de la identidad coh t inh t = + inh t = coh t = coht = f t dt = coht = inht inh = inht Por lo tanto = inht y arcin h = t }{{} Recordemo que i = inht entonce: = et e t = e t e t e t = e t e t e t = y reolviendo eta última como una ecuación cuadrática de do grado en e t tenemo que: Por lo tanto e t = = ln + + = + + e = + + t = ln + + Por lo tanto la reparametrización por longitud de arco e: y f = ln + + coh ln f = [ ] + inh ln }{{} [ + + ] [ + ] = +

3 + + + [ ] [ + + inharcin + + = ] [ ] = + = + + = = Vector tangente unitario Normal principal y plano oculador Dada una curva ft el vector unitario tangente T e otra función vectorial aociada a la curva y etá definida por: Obervee que: T t = f t f t iempre que f t. T t = f t f t = f t f t = T e de magnitud contante por lo tanto T T =. Si la dirección e lineal T =. Si T el vector unitario que tiene la mima dirección que T e llama Normal principal a la curva y e deigna por Nt. Ai pue Nt e una nueva función vectorial aociada a la curva y eta dada por la ecuación: Nt = T t T t iempre que T t Cuando lo do vectore unitario T y N etán trazado por el punto de la curva ft determinan un plano llamado oculador de la curva. El plano oculador e el plano que mejor e adapta a la curva en cada uno de u punto. Si la curva e plana el plano oculador coincide con el plano de la curva. Ejemplo: Conideremo el camino f : R R 3 dado por: f = co in el cual e do vece diferenciable parametrizado por longitud de arco y que decribe una hélice circular en R 3. Obtenga la ecuación del plano oculador en el punto f π = π. Solución. Tenemo que: T = f f = in 3 co

4 y T π = por otro lado: N = T T = co in = = co in y N π =. Ahora realizamo T π x N π = = in co î ĵ ˆk co in = in co al evaluar en π no queda. Por lo tanto la ecuación del plano oculador en P = π e: x y z π = y + z π = y + z = π Un tercer vector definido mediante B = T xn recibe el nombre de Vectror binomial. Lo tre vectore unitario T N y B forman un conjunto de vectore mutuamente ortogonale de orientación derecha llamado Triedo de Frenet. El plano generado por T y N e denomina plano oculador. El plano generado por N y B e llama plano normal mientra que el plano generado por T y B e llama plano rectificador. Ejercicio: Obtenga la ecuacione del plano normal y del plano rectificador del ejercicio anterior y en el mimo punto. Solución. Para el plano normal tenemo P = π y T π = por lo tanto la ecuación e: x y + z π = ó y + z = π Para el plano rectificador tenemo P = π y N π = por lo tanto la ecuación e: x + y + z π = ó x = 4

5 La recta Tangente e x y z = π + t. La recta Normal e x y z = π + t. La recta Binormal e x y z = π + t. En Reumen: La ecuación del plano Normal e... q f T = La ecuación del plano Rectificador e... q f N = La ecuación del plano Oculador e... q f B = La ecuación de la recta Tangente e... q = f + tt La ecuación de la recta Normal e... q = f + tn La ecuación de la recta Binormal e... q = f + tb En una recta el vector unitario tangente T no cambia u dirección y por tanto T =. Si la curva no e una linea recta la derivada T mide la tendencia de la tangente a cambiar u diracción. El coeficiente de variación o derivada de la tangente unitaria repecto a la longitud de arco e denomina vector curvatura de la curva. Se deigna por dt/d donde repreenta la longitud de arco. La regla de la cadena y la fórmula t = f t permite relacionar el vector curvatura dt/d con la derivada T repecto al tiempo mediante la ecuación: dt d = dt dt y pueto que T t = T t Nt obtenemo: dt d = T d dt = T f t dt d = f t T Nt que dice que el vector curvatura tiene la mima dirección que la normal principal Nt. El factor de ecala que multiplica a Nt e un número no negativo llamado curvatura de la curva en t y e deigna por kt. Ai la curvatura de kt definida como la longitud del vector curvatura eta dado por la fórmula iguiente: kt = T t f t 5

6 Ejemplo: Curvatura de una circunferencia. Para un círculo de radio a dado por la ecuación rt = a co t a in t tenemo: r t = a in t a co t y T t = in t co t y T t co t in t Por lo tanto T t = por lo tanto kt = a. Eto prueba que una circunferencia tiene curvatura contante y el reciproco de la curvatura e el radio de la circunferencia cuando kt u invero e denomina radio de curvatura y e deigna por ρ. Teorema.- Dada una función vectorial ft deignamo por nt la rapidez en el intante t ut = f t. Entonce el vector aceleración a e una combinación lineal de T y T dada por la fórmula at = u tt t + utt t. Si T t también tenemo at = u tt t + ut T t Nt. Demotración: La fórmula del vector tangente unitario no da: f t f t = f t ut = T Por lo tanto f t = T ut derivando eto obtenemo: f t = T ut + u tt t = T Ntut + u tt t Teorema.- Dada una función vectorial ft con vector velocidad vt rapidez ut = f t aceleración at y curvatura kt. Tenemo at = u tt + kt f t Nt. Demotración: Como kt = T t f t T t = kt f t y de T t T t = Nt tenemo que T t = T t Nt = kt f t Nt y de la ecuación at = u tt t + utt t e tiene que at = u tt t + u tktnt. Tomando at = u tt t + ktu tnt y vt = utt t. Efectuamo at x vt = u tt t + ktu tnt x utt t = u tt t x utt t + ktu tnt x utt t 6

7 = u tutt t x T t + ktu 3 tnt x T t }{{} y por lo tanto at x vt = ktu 3 tnt x T t π at x vt = kt u 3 t Nt T t in Por lo tanto at vt = ktu 3 t kt = at x vt u 3 t Definición.- El radio de curvatura e ρ = k el reciproco de la curvatura el círculo de curvatura o circulo oculador en un punto P obre una curva plana donde k e el circulo en el plano de la curva que: i E tangente a la curva en P. ii Tiene la mima curvaturaque la curva en P. iii Se encuentra hacia el lado concavo o interior de la curva. iv El radio de la curvatura de la curva P e el radio del círculo de curvatura o círculo oculador. Ai el centro del círculo oculador llamado centro de curvatura debe etar en: ct = ft + kt Nt Para el cao epecial de una curva plana con ecuación y = fx podemo ecoger x como el parámetro y ecribir rx = xî + fxĵ entonce r x = î + f xĵ y r x = f xĵ y al efectuar: î ĵ ˆk r x x r x = f x = f xˆk f x 7

8 Por lo tanto r x x r x = f x. Por otro lado f x = + [f x]. Por lo tanto para una curva plana kx = f x + [f x] 3/ Ejemplo: Determine lo vectore T y N la curvatura k y el centro de la curvatura de la parábola y = x en el punto Solución. Si la parábola eta parametrizada por x = t y por y = t entonce u vector de poición e ft = t t por lo tanto f t = t f t = + 4t y f t = por lo tanto: T t = perpendicular a T t + 4t T = 5 5 Nt = 5 5 k = f t 3 = + [f t] 3 k = + 4t 5 5 ρ = 5 5 Por lo tanto el centro de la curvatura e ct = f = Y la ecuación del círculo oculador a la parábola e por tanto: x y = = 5 4 Ejemplo: Calcule la curvatura k de la hélice xt = a cowt yt = a inwt zt = bt Solución. Tenemo que: Por lo tanto Por lo tanto f t = wa inwt aw cowt b f t = a w + b T = aw inwt aw cowt b a w + b k = T f = aw cowt aw inwt a w + b = 8

9 = aw co wt + in wt a w + b = aw a w + b En reumen: ˆB = ˆT x ˆN y por tanto ˆB = ˆN x ˆT ˆN = ˆB x ˆT ˆN = ˆT x ˆB ˆT = ˆN x ˆB ˆT = ˆB x ˆN Dado que B = T x N e tiene que B = T x N + T x N }{{} * Ete umando e igual a cero ya que T = f e un vector en la dirección de N y por tanto on colineale por lo que u producto cruz e cero por lo tanto B = T x N. Ahora como B e un vector ortogonal a T podemo concluir que B e un vector en el plano oculador. Por lo que i B e un vector paralelo a N entonce exite un ecalar z tal que B = zn. Por otro lado N e ortogonal a N. Por lo tanto e puede ecribir como N µt + zb. 9

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles

Parcial I Cálculo Vectorial

Parcial I Cálculo Vectorial Parcial I Cálculo Vectorial Febrero 8 de 1 ( Puntos) I. Responda falso o verdadero justificando matematicamente su respuesta. (i) La gráfica de la ecuación cos ϕ = 1, en coordenadas esféricas en R3, es

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO 1 ELEMENTOS DEL MOVIMIENTO Poición 1.- Ecribe el vector de poición y calcula u módulo correpondiente para lo iguiente punto: P1 (4,, 1), P ( 3,1,0) y P3 (1,0, 5); La unidade de la coordenada etán en el

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono.

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono. Cinemática de Mecanimo Análii de elocidade de Mecanimo por el Método del Polígono. DEFINICION DE ELOCIDAD La velocidad e define como la razón de cambio de la poición con repecto al tiempo. La poición (R)

Más detalles

1.1 El caso particular de las curvas planas.

1.1 El caso particular de las curvas planas. Chapter 1 Complementos de teoría de curvas 1.1 El caso particular de las curvas planas. Una curva en el espacio cuya torsión se anula está contenida en algún plano. Supongamos que ese plano es el z = 0,

Más detalles

3 Curvas alabeadas. Solución de los ejercicios propuestos.

3 Curvas alabeadas. Solución de los ejercicios propuestos. 3 Curvas alabeadas. Solución de los ejercicios propuestos.. Se considera el conjunto C = {(x, y, z R 3 : x y + z = x 3 y + z = }. Encontrar los puntos singulares de la curva C. Solución: Llamemos f (x,

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones GEOMETRÍA ANALÍTICA 8. ECUACIONES DE UNA RECTA Para determinar una recta neceitamo una de eta do condicione 1. Un punto P(x, y ) y un vector V = (a,b). Do punto P(x, y ), Q(x 1, y 1 ) Un punto P(x, y )

Más detalles

ELEMENTOS DEL MOVIMIENTO.

ELEMENTOS DEL MOVIMIENTO. 1 Poición y deplazaiento. ELEMENTOS DEL MOVIMIENTO. Ejercicio de la unidad 11 1.- Ecribe el vector de poición y calcula u ódulo correpondiente para lo iguiente punto: P 1 (4,, 1), P ( 3,1,0) y P 3 (1,0,

Más detalles

Cálculo III (0253) TEMA 1 FUNCIONES VECTORIALES DE UNA VARIABLE REAL. Semestre 3-2009

Cálculo III (0253) TEMA 1 FUNCIONES VECTORIALES DE UNA VARIABLE REAL. Semestre 3-2009 Cálculo III (05) Semestre -009 TEMA FUNCIONES VECTORIALES DE UNA VARIABLE REAL Semestre -009 Octubre 009 UCV FIUCV CÁLCULO III (05) - TEMA Las notas presentadas a continuación tienen como único fin, el

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

Apuntes de Mecánica Newtoniana Cinemática de la Partícula

Apuntes de Mecánica Newtoniana Cinemática de la Partícula Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO ELEMENTOS DEL MOVIMIENTO Unidad 10 CONTENIDOS.- 1.- Introducción..- Magnitudes escalares vectoriales. 3.- Sistemas de referencia. Concepto de movimiento. 4.- Operaciones con vectores. 5.- Traectoria, posición

Más detalles

MATE1207 Primer parcial - Tema A MATE-1207

MATE1207 Primer parcial - Tema A MATE-1207 MATE7 Primer parcial - Tema A MATE7. Si su respuesta y justificación son correctas obtendrá el máximo puntaje. Si su respuesta es incorrecta podrá obtener créditos parciales de acuerdo a su justificación.

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

Transformaciones geométricas

Transformaciones geométricas Tranformacione geométrica Baado en: Capítulo 5 Del Libro: Introducción a la Graficación por Computador Fole Van Dam Feiner Hughe - Phillip Reumen del capítulo Tranformacione bidimenionale Coordenada homogénea

Más detalles

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química UAM I Grupo 911 Febrero 213 Ejercicios Resueltos del Tema 2.2.6 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: 1 7 y 9 12. Nota: Los ejercicios pueden contener errores,

Más detalles

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos. Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura

Más detalles

Capítulo 6: Entropía.

Capítulo 6: Entropía. Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

Funciones vectoriales

Funciones vectoriales Unidad 2: Funciones vectoriales INDICE 1. CURVAS, MOVIMIENTO EN EL ESPACIO Y ECUACIONES PARAMÉTRICAS... 1 1.1 Introducción... 1 1.2 Formas de definir una curva... 1 2. FUNCIONES VECTORIALES, LIMITES Y

Más detalles

Problemas métricos. Ángulo entre rectas y planos

Problemas métricos. Ángulo entre rectas y planos Problemas métricos Ángulo entre rectas y planos Ángulo entre dos rectas El ángulo que forman dos rectas es el ángulo agudo que determinan entre sí sus vectores directores. Dos rectas son perpendiculares

Más detalles

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura Componentes intrínsecas de la aceleración: Componentes tangencial y normal Alfonso Calera Departamento de Física Aplicada. ETSIA. Albacete. UCLM En muchas ocasiones el análisis del movimiento es más sencillo

Más detalles

TEST. Cinemática 103. 1.- Un móvil que va con M.R.U. inicia su movimiento en x = 12 m y luego de 8 s está en x = 28 m. Hallar su velocidad.

TEST. Cinemática 103. 1.- Un móvil que va con M.R.U. inicia su movimiento en x = 12 m y luego de 8 s está en x = 28 m. Hallar su velocidad. Cinemática 103 TEST 1.- Un móvil que va con M.R.U. inicia u movimiento en x = 12 m y luego de 8 etá en x = 28 m. Hallar u velocidad. a) 2 m/ d) 6 m/ ) 8 m/ e) 7 m/ c) 4 m/ 2.- Señalar verdadero o falo

Más detalles

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34 SECO 2014-II Félix Monaterio-Huelin y Álvaro Gutiérre 6 de maro de 2014 Índice Índice 33 Índice de Figura 33 Índice de Tabla 34 12.Muetreador ideal y relación entre y 35 13.Muetreo de Sitema en erie 38

Más detalles

RELACIÓN DE EXÁMENES DE GEOMETRÍA III

RELACIÓN DE EXÁMENES DE GEOMETRÍA III RELACIÓN DE EXÁMENES DE GEOMETRÍA III Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría III Licenciatura: Matemáticas

Más detalles

siendo: donde: quedando

siendo: donde: quedando 1- CINEMATICA Preliminar de matemáticas. Derivadas. E.1 Halla la velocidad instantánea cuando la ecuación horaria viene dada por: a) x(t) = t 2 Siendo: 2t 2 + 4t t + 2 t 2 2t 2 2t 2 + 4t t + 2 t 2 2t 2

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

Expresiones de velocidad y aceleración en distintas coordenadas

Expresiones de velocidad y aceleración en distintas coordenadas Apéndice B Expresiones de velocidad y aceleración en distintas coordenadas Índice B.1. Coordenadas cartesianas............... B.1 B.2. Coordenadas cilíndricas y polares......... B.2 B.3. Coordenadas esféricas................

Más detalles

Las anteriores fórmulas suelen expresarse matricialmente como

Las anteriores fórmulas suelen expresarse matricialmente como Capítulo III Teoría de las curvas 1. Clasificación de curvas en R 3 En esta sección veremos que, esencialmente, la curvatura y la torsión determinan las curvas de R 3. Para ello necesitaremos las conocidas

Más detalles

4. Integrales de Línea. Áreas de Superficies e Integrales de Superficie

4. Integrales de Línea. Áreas de Superficies e Integrales de Superficie NOTAS DE CLASE CÁLCULO III Doris Hinestroza Diego L. Hoyos 1 Índice general 1. Funciones Vectoriales 5 1.1. El Espacio R n............................ 5 1.2. Funciones Vectoriales........................

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:

Más detalles

Repaso de Vectores. Autor: Dra. Estela González. flecha. La longitud de la línea indica la magnitud del vector, y su

Repaso de Vectores. Autor: Dra. Estela González. flecha. La longitud de la línea indica la magnitud del vector, y su Autor: Dra. Estela González Algunas cantidades físicas como tiempo, temperatura, masa, densidad y carga eléctrica se pueden describir plenamente con un número y una unidad, pero otras cantidades (también

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

Funciones vectoriales 831

Funciones vectoriales 831 12Funciones vectoriales Se construye una rueda giratoria usando los principios básicos de una rueda de bicicleta. Cuando se está cerca de la parte de la rueda giratoria en movimiento, las fuerzas de rotación

Más detalles

Unidad III: Curvas en R2 y ecuaciones paramétricas

Unidad III: Curvas en R2 y ecuaciones paramétricas Unidad III: Curvas en R2 y ecuaciones paramétricas 2.1 Ecuación paramétrica de la línea recta. La recta constituye una parte fundamental de las matemáticas. Existen numerosas formas de representar una

Más detalles

Superficies paramétricas

Superficies paramétricas SESIÓN 7 7.1 Introducción En este curso ya se han estudiando superficies S que corresponden a gráficos de funciones de dos variables con dos tipos de representaciones: Representación explícita de S, cuando

Más detalles

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859 SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann Noviembre, 859 No creo poder exprear mejor mi agradecimiento por la ditinción que la Academia me ha hecho al nombrarme

Más detalles

Errores y Tipo de Sistema

Errores y Tipo de Sistema rrore y Tipo de Sitema rror dinámico: e la diferencia entre la eñale de entrada y alida durante el período tranitorio, e decir el tiempo que tarda la eñal de repueta en etablecere. La repueta de un itema

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles

UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial

UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial Primer Parcial Identifica los criterios de convergencia para determinar si una serie es convergente o no. 1,2 Representa una función mediante una serie de potencias estableciendo el intervalo de convergencia.

Más detalles

Guía realizada por: Pimentel Yender.

Guía realizada por: Pimentel Yender. REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN U.E. COLEGIO DON CESAR ACOSTA BARINAS. ESTADO, BARINAS. PROFESOR: PIMENTEL YENDER. FÍSICA 4TO AÑO. MOVIMIENTO CIRCULAR

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV 8.4. CRITERIO DE ESTAB.: METODO DE LIAPUNOV 309 8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV Consideremos el sistema autónomo dx = F (x, y) dt (8.32) dt = G(x, y), y supongamos que tiene

Más detalles

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen: 0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.

Más detalles

CAMPOS: CIRCULACIÓN Y FLUJO

CAMPOS: CIRCULACIÓN Y FLUJO AMPO: IRULAIÓN Y FLUJO Dado el vector a ( x + y) i ˆ + xy ˆ j calcular su circulación a lo largo de la recta y x+ desde el punto A (, ) al B (, 2). olución: I.T.I. 99, 5, I.T.T. 2 En la trayectoria que

Más detalles

VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector

VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector VECTORES Un vector (Vector posición) en el plano es un par ordenado de números reales A(a, b). Se representa geométricamente por un segmento de recta dirigido, cuyo punto inicial es el origen del sistema

Más detalles

Dibujo Técnico Curvas cónicas-parábola

Dibujo Técnico Curvas cónicas-parábola 22. CURVAS CÓNICAS-PARÁBOLAS 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC0004-21

El estudio teórico de la práctica se realiza en el problema PTC0004-21 PRÁCTICA LTC-14: REFLEXIONES EN UN CABLE COAXIAL 1.- Decripción de la práctica a) Excitar un cable coaxial de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm.

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm. 9 Óptica geométrica EJERCICIOS PROPUESTOS 9. Indica la caracterítica de la imagen que oberva una perona que e etá mirando en un epejo plano. La imagen e virtual derecha. Virtual, porque e puede ver pero

Más detalles

Laboratorio de Física para Ingeniería

Laboratorio de Física para Ingeniería Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)

Más detalles

6 La transformada de Laplace

6 La transformada de Laplace CAPÍTULO 6 La tranformada de Laplace 6. efinición de la tranformada de Laplace 6.. efinición y primera obervacione En la gran mayoría de lo itema de interé para la fíica y la ingeniería e poible (al meno

Más detalles

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular.

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. 1. Definiciones previas 1.1. Wronskiano Diremos que el Wronskiano de un conjunto

Más detalles

Ejercicios resueltos.

Ejercicios resueltos. E.T.S. Arquitectura Curvas y super cies. Ejercicios resueltos.. Sea la curva intersección de la super cie z = xy con el cilindro parabólico y = x. Se pide: (a) En el punto P de coordenadas (0; 0; 0), obtener

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil

Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil 1 / 32 Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil Curso Académico 2011-2012 2 / 32 Motivación: muchas ecuaciones y propiedades fundamentales de la Física (y, en consecuencia, de aplicación

Más detalles

Teoría Tema 6 Ecuaciones de la recta

Teoría Tema 6 Ecuaciones de la recta página 1/14 Teoría Tema 6 Ecuaciones de la recta Índice de contenido Base canónica en dos dimensiones como sistema referencial...2 Ecuación vectorial de la recta...4 Ecuación paramétrica de la recta...6

Más detalles

Tema 2: Vectores libres

Tema 2: Vectores libres Tema 2: Vectores libres FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Magnitudes escalares y vectoriales Definición de vector Vectores

Más detalles

CÁLCULO DIFERENCIAL. Máximos y Mínimos. Equipo 2

CÁLCULO DIFERENCIAL. Máximos y Mínimos. Equipo 2 CÁLCULO DIFERENCIAL Equipo 2 Máximos y Mínimos Estos son los ejercicios que deberá el equipo explicar dentro de la clase, este equipo tendrá un máximo de 5 integrantes, y deberá valerse de materiales o

Más detalles

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3 Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los

Más detalles

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO ENUNCIADOS Pág. 1 CARACTERÍSTICAS DEL MOVIMIENTO 1 Por qué e dice que todo lo movimiento on relativo? 2 Cómo e claifican lo movimiento en función de la trayectoria decrita? 3 Coincide iempre el deplazamiento

Más detalles

Cálculo de derivadas

Cálculo de derivadas 0 Cálculo de derivadas. La derivada Piensa y calcula La gráfica f() representa el espacio que recorre un coche en función del tiempo. Calcula mentalmente: a) la pendiente de la recta secante, r, que pasa

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

Matemáticas TRABAJO. Funciones Trigonométricas

Matemáticas TRABAJO. Funciones Trigonométricas Matemáticas TRABAJO Funciones Trigonométricas 2 En este trabajo trataremos de mostrar de una forma práctica las funciones trigonométricas, con sus formas de presentación, origen y manejos. También se incluirán

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

un coche está parado en un semáforo implica v 0 =0.

un coche está parado en un semáforo implica v 0 =0. TEMA 1 CINEMÁTICA DE LA PARTÍCULA CONSEJOS PREVIOS A LA RESOLUCIÓN DE PROBLEMAS Movimiento con aceleración constante Al abordar un problema debes fijar el origen de coordenadas y la dirección positiva.

Más detalles

Apuntes de cálculo diferencial en una y varias variables reales. Eduardo Liz Marzán

Apuntes de cálculo diferencial en una y varias variables reales. Eduardo Liz Marzán Apuntes de cálculo diferencial en una y varias variables reales Eduardo Liz Marzán Diciembre de 2013 Índice general 1 Preliminares 1 11 Introducción 1 12 La relación de orden en el conjunto de los números

Más detalles

Introducción a la geometría. del plano y del espacio. Curvas.

Introducción a la geometría. del plano y del espacio. Curvas. UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Introducción a la geometría del plano y del espacio. Curvas. Ramón Bruzual Marisela Domínguez

Más detalles

Matemáticas 4 Enero 2016

Matemáticas 4 Enero 2016 Laboratorio #1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos. 1) u = 3i + 2j 4k; v = i + 5j 3k 2) u = i + 2j 3k; v = 1i 2j + 3k 3) u = 1 2 i + 1 3 j +

Más detalles

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar.

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar. NOTAS DE LASE ÁLULO III Unidad 4: INTEGRALES DE LINEA, DE SUPERFIIE, TEOREMAS FUNDAMENTALES Guía de Estudio Doris Hinestroza 1 Índice 1. INTEGRALES DE LINEA, DE SUPERFIIE, TEO- REMAS FUNDAMENTALES DEL

Más detalles

Cicloide: Calculo Diferencial e Integral

Cicloide: Calculo Diferencial e Integral Cicloide: Calculo Diferencial e Integral Profesor: Miguel Carrasco Auxiliares: Germán Ibarra 3 de Octubre de 7 Definición: Un conjunto Γ R n se llamara Curva si existe una función continua σ : [a, b] R

Más detalles

Problemas Primera Sesión

Problemas Primera Sesión roblema rimera Seión 1. Demuetra que ax + by) ax + by para cualequiera x, y R y cualequiera a, b R con a + b = 1, a, b 0. n qué cao e da la igualdad? Solución 1. Nótee que ax + by ax + by) = a1 a)x + b1

Más detalles

Apuntes de Geometría Diferencial de Curvas y Superficies

Apuntes de Geometría Diferencial de Curvas y Superficies Apuntes de Geometría Diferencial de Curvas y Superficies Angel Montesdeoca (1) La Laguna, 2004 (1) amontes@ull.es http://webpages.ull.es/users/amontes Contenido TEMA I. Representación paramétrica de curvas

Más detalles

1 El plano y el espacio Euclídeos. Operaciones

1 El plano y el espacio Euclídeos. Operaciones Fundamentos Matemáticos de la Ingeniería. (Tema 8 Hoja 1 Escuela Técnica Superior de Ingeniería Civil e Industrial (Esp. en Hidrología Fundamentos Matemáticos de la Ingeniería. Tema 8: Cálculo diferencial

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES C U R S O: FÍSICA Mención MATERIAL: FM-1 MAGNITUDES ESCALARES Y VECTORIALES La Fíica tiene por objetivo decribir la naturaleza y lo fenómeno que en ella ocurren, a travé de magnitude y relacione entre

Más detalles

Problemas de Geometría Analítica del Espacio

Problemas de Geometría Analítica del Espacio 1) Dados los vectores u(4, 4, 8), v( 2,, 5), w(3, 5, 8) y a(22,, 11). Hallar los valores de x, y, z que verifican la combinación lineal a = x u + y v + z w. 2) Dados los vectores a( 5, 19, n) y b( h, 3,

Más detalles

Capitulo 2: Movimientos en 2 y 3 dimensiones

Capitulo 2: Movimientos en 2 y 3 dimensiones Capitulo 2: Movimientos en 2 3 dimensiones Índice 1. Posicionamiento en mas de una dimensión 2 1.1. Propiedades de Vectores................................. 5 1.2. Componentes de un Vector................................

Más detalles

En los ejercicios 1-8, dibujar la curva representada por la función vectorial e indicar su orientación.

En los ejercicios 1-8, dibujar la curva representada por la función vectorial e indicar su orientación. Universidad de Costa Rica Práctica Miscelánea para el Primer Parcial Facultad de Ciencias Funciones Vectoriales, Regla de la Cadena y Funciones Implícitas Escuela de Matemática MA 1003 Cálculo 3 Departamento

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo La circunferencia y el círculo 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA:

Más detalles

Derivada. 1. Pendiente de la recta tangente a una curva

Derivada. 1. Pendiente de la recta tangente a una curva Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

UNIVERSIDAD AUTÓNOMA DE SANTO DOMINGO Primada de América FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS

UNIVERSIDAD AUTÓNOMA DE SANTO DOMINGO Primada de América FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS CÁTEDRA: ELABORADO POR: FECHA : Mayo de 2006 ACTUALIZADO POR: MATEMÁTICAS AVANZADAS Prerequisito No. CRÉDITOS: MAT-155 03 No. HORAS TOTALES 64 TEÓRICAS 02 TEÓRICAS 32 PRACTICAS 02 PRACTICAS 32 FECHA :

Más detalles

Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje

Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje Magnitudes escalares y vectoriales Tipos de vectores Operaciones con vectores libres Momento de un vector deslizante respecto a un punto Momento de un vector deslizante respecto a un eje Magnitudes escalares

Más detalles

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior).

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior). íica de 2º Bachillerato Actividad Para ver un objeto con mayor detalle, utilizamo un dipoitivo compueto de una única lente, llamado corrientemente lupa. [a] Indica el tipo de lente que debemo utilizar

Más detalles