ANALISIS MATRICIAL DE ESTRUCTURAS MODELO MATEMATICO ANALISIS ESTRUCTURAL FUERZAS (ESFUERZOS)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ANALISIS MATRICIAL DE ESTRUCTURAS MODELO MATEMATICO ANALISIS ESTRUCTURAL FUERZAS (ESFUERZOS)"

Transcripción

1 . GENERIDDES NISIS MTRICI DE ESTRCTRS Representar medante un modelo matemátco un sstema físco real. El propósto del análss es determnar la respuesta del modelo matemátco que está sometdo a un conunto de cargas dadas o fuerzas externas. Respuesta: esfuerzos, deformacones propedades de vbracón condcones de establdad Cargas: cargas estátcas (ndependentes del tempo) cargas dnámcas (ntervene el tempo) generadas por cambos de temperatura (representada como carga) Para el problema estátco: GEOMETRI PROP. FISICS MODEO MTEMTICO CCIONES EXTERNS ESTTICS NISIS ESTRCTR FERZS (ESFERZOS) DESPZMIENTOS (DEFORMCIONES). TIPOS DE IDEIZCION ) ESTRCTRS RETICRES Formada por elementos undmensonales undos en certos puntos llamados nudos. Se clasfcan según la dsposcón (geometría) de elementos y tpos de unón: Por geometría y aplcacón de carga: PNS y ESPCIES. Por el tpo de conexón: RMDRS y PORTICOS RIGIDOS. y x armadura vga contnua PRINCIPIOS COMPTCIONES EN INGENIERI

2 z x y retícula espacal parrlla en las estructuras retculares se cumple: H >> B, H B B) ESTRCTRS CONTINS Eemplo: cascarones, placas, sóldos de revolucón, etc. El análss se realza medante el Método de los Elementos Fntos. os elementos a consderar no son lneales, tenen otras característcas. trangular cuadrangular cuadrangular nudos 4 nudos 8 nudos PRINCIPIOS COMPTCIONES EN INGENIERI

3 . PRINCIPIOS DE NISIS ) COMPTIBIIDD os desplazamentos nodales deben ser consstentes. ' ' θ θ B) RECION FERZ-DEFORMCION ey consttutva del materal. P k E P Hooke (ey consttutva para materales elástcos), E, k P C) EQIIBRIO Toda las estructuras o cualquer parte de ella debe estar en equlbro bao la accón de cargas externas y fuerzas nternas. P P W CRGS EXTERNS P P Equlbro de todo el sstema RECCIONES Equlbro de una porcón de la estructura P P Equlbro del elemento Equlbro del nudo PRINCIPIOS COMPTCIONES EN INGENIERI

4 D) CONDICIONES DE BORDE Caso partcular de los prncpos de compatbldad y equlbro. Por compatbldad: Condcones de borde geométrcas o cnétcas. Por equlbro: Condcones de borde naturales o físcas. 4. SISTEMS DE COORDENDS ) SISTEM OC DE REFERENCI Y X Y X Y X El sstema local de referenca es propo para cada elemento e ndependente uno del otro. X Y Elemento en el espaco Z PRINCIPIOS COMPTCIONES EN INGENIERI

5 B) SISTEM GOB DE REFERENCI YG ZG XG 5. GRDOS DE IBERTD y x rmadura plana G.. / nudo z y x θz y x y G.. / nudo x z rmadura espacal Pórtco plano θy z y x δz G.. / nudo θx 6 G.. / nudo Parrlla Pórtco espacal PRINCIPIOS COMPTCIONES EN INGENIERI

6 6. CONVENCION DE SIGNOS Y Y Fy, My, θy Fx, x (+) X (+) Fz, z Mx, θx X Z Mz, θz 7. COMPORTMIENTO DE ESTRCTRS ) DE PNTO DE VIST DE MTERI ESTICO E INESTICO P Carga Descarga (elástca) Inelástca P f E S T I C O I N E S T I C O r r f PRINCIPIOS COMPTCIONES EN INGENIERI

7 COMPORTMIENTO INE Y PIEZO-INE P o f P P PRINCIPIO DE SPERPOSICION Para una estructura elástca-lneal P Pf P P P Pf P + P f PRINCIPIOS COMPTCIONES EN INGENIERI

8 B) DE PNTO DE VIST DE GEOMETRI INE: Deformacones pequeñas NO-INE: Deformacones aprecables, se alteran los esfuerzos nducdos en la estructura. H α Estructura con geometría ncal (sn cargas) P H - β Estructura deformada (con cargas aplcadas) Poscón de equlbro α β (geometría no lneal) 8. INDETERMINCION ESTTIC Y CINEMTIC ) INDETERMINCION ESTTIC (grados de ndetermnacón o número de redundantes) Se refere al número de accones (fuerza axal, cortante o momento) externos y/o nternos que deben lberarse a fn de transformar la estructura orgnal en una estructura estable y determnada. B) INDETERMINCION CINEMTIC (grados de lbertad) Se refere al número de componentes de desplazamento de nudo (traslacón, rotacón) que son necesaros para descrbr la respuesta del sstema. Defne la confguracón deformada del sstema. θ θ Grado de Grado de Indetermnacón Indetermnacón Estátca Cnemátca 6 - º º PRINCIPIOS COMPTCIONES EN INGENIERI

9 Pórtco con deformacón axal G.I.E. 8-5 G.I.C. 5 x + 6 Pórtco sn deformacón axal G.I.C 8 (θ a θ6,, ) 9. METODOS DE NISIS ) METODO DE S FERZS O FEXIBIIDDES (grado de ndetermnacón estátca) En este método se modfca la estructura orgnal hasta convertrla en una estructura estátca determnada y estable. uego, se obtenen solucones complementaras que permten restablecer la contnudad del sstema y debe resolverse un sstema de ecuacones gual al número de fuerzas redundantes. En este método se aplca la condcón de equlbro y luego, la condcón de compatbldad. B) METODO DE S RIGIDECES O DESPZMIENTOS (grado de ndetermnacón cnemátca) En este método se obtene, prmero, una estructura modfcada, bloqueando los desplazamentos de todos los nudos que son fácles de analzar. uego, se superponen otras solucones complementaras para determnar los verdaderos desplazamentos que ocurren en los nudos. El número de ecuacones a resolver es gual al número del grado de ndetermnacón cnemátca. Prmero se aplca el prncpo de compatbldad y luego el de equlbro. PRINCIPIOS COMPTCIONES EN INGENIERI

10 ) METODO DE S FERZS O FEXIBIIDDES P P M B C G.I.E. 5 - P RB P Estructura real B C θ o δb o Estructura prmara (estátca y estable). () () θ () δb (). θ () δb () M RB solucones complementaras Equlbro: Resolver cada sstema smple. Compatbldad. θ θ o δb δb o + θ () M + θ () RB + δb () M + δb () RB θ o θ + δb o δb θ δ B () () θ δ () () B θ δ B () () θ δ () () B M o θ RB o δb B R R Vector de fuerzas redundantes B Matrz de flexbldad Vector de desplazamentos M RB PRINCIPIOS COMPTCIONES EN INGENIERI

11 B) METODO DE OS DESPZMIENTOS O RIGIDECES P θ B P θ C G.I.C. Estructura real P P SB o SC o Estructura prmara (se bloquean los desplazamentos). SC () () SB () θ Solucones complementaras () SC (). θ SB () Compatbldad: Determnacón de cada sstema. Equlbro. SB o + SB () θ + SB () θ SC o + SC () θ + SC () θ o SB + SB o SC SC SB SC () () SB () () SC () () SB () () SC θ θ θ o SB o θ SC P P Vector de cargas nodales Matrz de rgdez Vector de desplazamentos nodales PRINCIPIOS COMPTCIONES EN INGENIERI

12 . EJEMPO: METODO DE RIGIDECES EN RESORTES COOCDOS EN SERIE F F, ε F P F F, ε F F P F F, ε F P F ) Relacón de compatbldad deformacón-desplazamento: F P4 ε - ε - ε 4 - B) Relacón de consttutvas: F ε F ε F ε C) Relacón de equlbro: P - F P F - F P F - F P4 F Introducendo las relacones de compatbldad en las ecuacones consttutvas: F ( - ) F ( - ) F (4 - ) PRINCIPIOS COMPTCIONES EN INGENIERI

13 Ingresando estas últmas expresones en las relacones de equlbro: P - ( - ) P ( - ) - ( - ) P ( - ) - (4 - ) P4 (4 - ) ordenando matrcalmente: P P + P + P4 4 D) Introducendo las condcones de borde: P P + P + P4 4 R o I, I I, II P II,I II, II donde: o desplazamentos conocdos o prescrtos desplazamentos ncógntas R reaccones de apoyos P cargas externas Por lo tanto, la representacón del sstema de ecuacones se puede realzar como sgue: R I,I o + I,II P II,I o + II,II En este caso, como o, ( ) R I,II P II,II a resolver PRINCIPIOS COMPTCIONES EN INGENIERI

14 Fnalmente, P P P Se resuelve el sstema de ecuacones, obtenendo, y 4 como resultados. Para determnar las fuerzas en los elementos, se utlzan las relacones consttutvas: F () F ( - ) F (4 - ) 4 MTRIZ DE RIGIDEZ DE N EEMENTO RESORTE F ½ F ε (energía de deformacón) ε En el caso de análss lneal se cumple donde: ½ F ε ½ F ( ) de la relacón consttutva se tene: F ( ) entonces: F ½ ( ) ½ ( + ) s se consdera: F + PRINCIPIOS COMPTCIONES EN INGENIERI

15 PRINCIPIOS COMPTCIONES EN INGENIERI se tene: ) (- + ) ( determnando la dervada parcal de la expresón anteror se tene: k entonces, se determnan los valores de k: k k k y k Para el eemplo, se tenen tres resortes:, y Se ensambla la matrz de rgdez del conunto, como sgue: T uego, se ntroducen las condcones de borde (apoyos). Se tene que, así, se elmna la prmera fla y columna de la matrz de rgdez T, obtenéndose fnalmente: T

16 . EJEMPO: METODO DE RIGIDECES PR RMDRS PNS ) MTRIZ DE RIGIDEZ DE N EEMENTO X' 4 4 ' Y θ ' θ X Poscón ncal Poscón deformada De la geometría ncal de la barra se pueden obtener las sguentes expresones: X X - X Y Y - Y X + Y Cx X, Cy Y De la poscón deformada de la barra, se conoce que la deformacón ε de la barra esta dada por la expresón: ε N E la geometría de la barra en esta poscón expresa los desplazamentos como sgue: ' Cos θ + Sen θ Cx + Cy ' Cos θ + 4 Sen θ Cx + Cy 4 a deformacón se puede expresar como: ε (' ' ) N E PRINCIPIOS COMPTCIONES EN INGENIERI

17 por lo tanto, despeando N se tene: N E N E N E (' ' ) [ ( Cx + Cy 4 ) - ( Cx + Cy ) ] [ Cx ( - ) + Cy ( 4 - ) ] Por otro lado, la energía de deformacón está dada por la sguente expresón: ( σx εx + σy εy + σz εz + τxy γxy + τxz γxz + τyz γyz ) dv V para la barra recta sometda a carga axal, se cumple: σx N σy σy τxy τxz τyz reemplazando los térmnos de la ntegral, se tene: V N N E dv N N E ( d ) dx N E dx como la varacón de con respecto a los desplazamentos está dada, en este caso, por la expresón: k + k + k + k4 4. a matrz de rgdez del elemento esta dada por la expresón: k k k k4 k k k k4 k k k k4 k4 k4 k4 k44 donde, k PRINCIPIOS COMPTCIONES EN INGENIERI

18 entonces: k N N dx E N E dx k N N dx E operando, se tene: N E Cx N N E Cy N 4 E Cx E Cy manera de eemplo, se determnan los térmnos y como sgue: k k N N dx E dx E Cx E E Cx N N dx E E Cx E Cy dx E E Cx Cy por lo tanto: E Cx CxCy Cx CxCy CxCy Cy CxCy Cy Cx CxCy Cx CxCy CxCy Cy CxCy Cy E S S S S sendo: S Cx CxCy CxCy Cy PRINCIPIOS COMPTCIONES EN INGENIERI

19 B) SISTEM DE ECCIONES DE EQIIBRIO EN E EEMENTO F4 F F F F F F F4 E Cx CxCy Cx CxCy CxCy Cy CxCy Cy Cx CxCy Cx CxCy CxCy Cy CxCy Cy 4 C) EJEMPO DE PICCION kgf Y cm X Determnar los desplazamentos, fuerzas en los elementos y reaccones en los apoyos de la estructura mostrada, s se sabe que: E. 6 kgf/cm cm cm 5 6 Y () V () 4 V4 4 () (4) () (4) (5) (6) 4 V (5) (6) V () X () PRINCIPIOS COMPTCIONES EN INGENIERI

20 MTRIZ DE RIGIDEZ DE OS EEMENTOS Elemento () : V X' V x - y - Cx Cy 6 E. 7 () 7 Elemento () : V X' V4 4 4 x - y - Cx Cy () 7 E 6. 7 PRINCIPIOS COMPTCIONES EN INGENIERI

21 Elemento () : V X' x - y - Cx V () 7 Cy E 6. 7 Elemento (4) : V4 4 4 X' x - y - V Cx Cy 6 E. 7 - (4) 7 - PRINCIPIOS COMPTCIONES EN INGENIERI

22 Elemento (5) : 4 V4 4 X' x - y - V Cx Cy (5) 4749 E 6. 7 Elemento (6) : V X' x - - y - V Cx Cy E 6. 7 (6) 4749 PRINCIPIOS COMPTCIONES EN INGENIERI

23 ENSMBJE DE MTRIZ DE RIGIDEZ DE ESTRCTR V (e) V a matrz de rgdez del elemento (e) esta dada como sgue: E S (e) S S S uego, las matrces de los elementos se ensamblan en la matrz de la estructura así: T V V V 4 V T V V V 4 V4 PRINCIPIOS COMPTCIONES EN INGENIERI

24 SISTEM DE ECCIONES INEES DE ESTRCTR Se ntroducen las condcones de apoyo, V V. Consderando que sólo exste carga aplcada en el nudo ; se tene: V V4 P T Resolvendo el sstema de ecuacones lneales: cm FERZS EN OS EEMENTOS Elemento () : E N [ X ( ) + Y (V V ) ] 6 (. ) () N [.486 ] kgf () Elemento () : E N [ X (4 ) + Y (V4 V ) ] 6 (. ) () N [ ( ) ] - kgf () PRINCIPIOS COMPTCIONES EN INGENIERI

25 Elemento () : E N [ X ( ) + Y (V V ) ] 6 (. ) () N [ (.486) ] kgf () Elemento (4) : E N [ X (4 ) + Y (V4 V ) ] 6 (. ) () N [ ( ) ] - kgf () Elemento (5) : E N [ X (4 ) + Y (V4 V ) ] 6 (. ) () N [ ( ) + ( ) ] 44 kgf ( ) Elemento (6) : E N (. N ( [ X ( ) + Y (V V ) ] 6 ) () ) [ ( ) + ( ) ] N -44 kgf kgf (C) 44 (T) (T) (C) RESTDOS: fuerzas y reaccones (kgf) 44 (C) (T) kgf kgf PRINCIPIOS COMPTCIONES EN INGENIERI

26 . MTRIZ DE RIGIDEZ DE EEMENTOS CON BRZOS a a b b V V θ I I θ a b Compatbldad de Desplazamentos en el Elemento (sn consderar las deformacones axales en el elemento) V V VB V B θ θ θb θ a b V V + θ a θ θ VB V - θ b θb θ PRINCIPIOS COMPTCIONES EN INGENIERI

27 V a V θ θ VB b V θb θ H Equlbro en el Elemento V V VB V M M MB B M a b V V VB MB M M V M MB B VB M a b V V M V a + M V VB M -VB b + MB V V M a M V VB M -b MB T f H f PRINCIPIOS COMPTCIONES EN INGENIERI

28 Se tene la matrz de rgdez del segmento B de longtud : f, donde: EI 6 EI - EI 6 EI 6 EI 4 EI -6 EI EI - EI -6 EI EI -6 EI 6 EI EI -6 EI 4 EI θ V E, I V θ pero, H, entonces: (H ) f premultplcando por H T se tene: T H H H f T (H T H) f T e H H θ V a I E, I I b V θ EI 6 EI EI a - EI 6 EI EI + + b 4 EI EI a EI a -6 EI EI a EI EI EI e EI -6 EI EI b sm 4 EI EI b EI + + b PRINCIPIOS COMPTCIONES EN INGENIERI

29 Fuerzas de empotramento de elementos Vga con Brazos Rígdos W B a b Equlbro en el Elemento W W W V M M V V M MB VB B VB MB M V a b donde: W V W M MB W V + W a W V + W b W W M a Wa + + W W M b Wb ( + + ) PRINCIPIOS COMPTCIONES EN INGENIERI

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías Resumen de los teoremas fundamentales del análss estructural aplcados a celosías INTRODUCCIÓN Fuerzas aplcadas y deformacones de los nudos (=1,n) ESTICIDD Tensón =Ν/Α. Unforme en cada seccón de la arra.

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP)

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP) MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Prmer Semestre - Otoño 2014 Omar De la Peña-Seaman Insttuto de Físca (IFUAP) Benemérta Unversdad Autónoma de Puebla (BUAP) 1 / Omar De la Peña-Seaman

Más detalles

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA DOCTORADO EN CIENCIAS APLICADAS

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA DOCTORADO EN CIENCIAS APLICADAS UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA DOCTORADO EN CIENCIAS APLICADAS Modelo smplfcado para el comportamento dnámco de pórtcos con vgas plana-columna de concreto armado consderando el deslzamento

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Undad III: ermodnámca del Equlbro Fugacdad Fugacdad para gases, líqudos y sóldos Datos volumétrcos 9/7/ Rafael Gamero Fugacdad ropedades con varables ndependentes y ln f ' Con la dfncón

Más detalles

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo.

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo. 1 A qué se denomna malla en un crcuto eléctrco? Solucón: Se denomna malla en un crcuto eléctrco a todas las trayectoras cerradas que se pueden segur dentro del msmo. En un nudo de un crcuto eléctrco concurren

Más detalles

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros Perturbacón de los valores propos smples de matrces de polnomos dependentes dferencablemente de parámetros M Isabel García-Planas 1, Sona Tarragona 2 1 Dpt de Matemàtca Aplcada I, Unverstat Poltècnca de

Más detalles

Tema 9: SOLICITACIONES COMBINADAS

Tema 9: SOLICITACIONES COMBINADAS Tema 9: SOTONES ONDS V T N V Problemas resueltos Prof.: Jame Santo Domngo Santllana E.P.S.-Zamora (U.S.) - 8 9..-En la vga de la fgura calcular por el Teorema de los Trabajos Vrtuales: ) Flecha en ) Gro

Más detalles

Etáti Estática. 2.Centros de gravedad y 3.Momentos de inercia

Etáti Estática. 2.Centros de gravedad y 3.Momentos de inercia Etát Estátca.Equlbro 2.Centros de gravedad y 3.Momentos de nerca Parte de la físca que estuda el equlbro de los cuerpos Partedelafíscaqueestudalasrelaconesexstentes entre las fuerzas que actúan en un cuerpo

Más detalles

Una Reformulación de la Mecánica Clásica

Una Reformulación de la Mecánica Clásica Una Reformulacón de la Mecánca Clásca Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una reformulacón de la mecánca clásca que es nvarante bajo transformacones

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE DEPATAMENTO DE NDUSTA Y NEGOCO UNESDAD DE ATACAMA COPAPO - CHLE ESSTENCA EN SEE, PAALELO, MXTO Y SUPEPOSCÓN En los sguentes 8 crcutos calcule todas las correntes y ajes presentes, para ello consdere los

Más detalles

Cifrado de imágenes usando autómatas celulares con memoria

Cifrado de imágenes usando autómatas celulares con memoria Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano

Más detalles

METODO DE RIGIDEZ - RETICULADOS. 8.1- Relaciones cinemáticas para barras de reticulado

METODO DE RIGIDEZ - RETICULADOS. 8.1- Relaciones cinemáticas para barras de reticulado Capítulo 8 Método de rgdez - Retculados 8.1- Relacones cnemátcas para barras de retculado A los efectos de formular el método de rgdez resulta ndspensable relaconar los desplazamentos de los etremos de

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

Tema 3. Trabajo, energía y conservación de la energía

Tema 3. Trabajo, energía y conservación de la energía Físca I. Curso 2010/11 Departamento de Físca Aplcada. ETSII de Béjar. Unversdad de Salamanca Profs. Alejandro Medna Domínguez y Jesús Ovejero Sánchez Tema 3. Trabajo, energía y conservacón de la energía

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático

Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático qco sθ qz Ez= 4 zπε0 2+ R2 = 4πε0 [z2 +R2 ]3/ 2 El campo de las cargas en reposo. Campo electrostátco ntroduccón. Propedades dferencales del campo electrostátco. Propedades ntegrales del campo electromagnétco.

Más detalles

La clasificación de métodos de registro propuesta por Maintz [1998] utiliza las siguientes categorías:

La clasificación de métodos de registro propuesta por Maintz [1998] utiliza las siguientes categorías: II.5. Regstro de mágenes médcas El regstro es la determnacón de una transformacón geométrca de los puntos en una vsta de un objeto con los puntos correspondentes en otra vsta del msmo objeto o en otro

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición-

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición- Fscoquímca CIBX Guía de Trabajos Práctcos 2010 Trabajo Práctco N 7 - Medda de la Fuerza lectromotrz por el Método de Oposcón- Objetvo: Medr la fuerza electromotrz (FM) de la pla medante el método de oposcón

Más detalles

www.fisicaeingenieria.es

www.fisicaeingenieria.es 2.- PRIMER PRINCIPIO DE LA TERMODINÁMICA. 2.1.- Experencas de Joule. Las experencas de Joule, conssteron en colocar una determnada cantdad de agua en un calorímetro y realzar un trabajo, medante paletas

Más detalles

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica)

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica) IUITOS EÉTIOS (apuntes para el curso de Electrónca) os crcutos eléctrcos están compuestos por: fuentes de energía: generadores de tensón y generadores de corrente y elementos pasos: resstores, nductores

Más detalles

Smoothed Particle Hydrodynamics Animación Avanzada

Smoothed Particle Hydrodynamics Animación Avanzada Smoothed Partcle Hydrodynamcs Anmacón Avanzada Iván Alduán Íñguez 03 de Abrl de 2014 Índce Métodos sn malla Smoothed partcle hydrodynamcs Aplcacón del método en fludos Búsqueda de vecnos Métodos sn malla

Más detalles

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas.

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas. MATRICES Las matrces se utlzan en el cálculo numérco, en la resolucón de sstemas de ecuacones lneales, de las ecuacones dferencales y de las dervadas parcales. Además de su utldad para el estudo de sstemas

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17 Procesamento Dgtal de mágenes Pablo Roncaglolo B. Nº 7 Orden de las clases... CAPTURA, DGTALZACON Y ADQUSCON DE MAGENES TRATAMENTO ESPACAL DE MAGENES TRATAMENTO EN FRECUENCA DE MAGENES RESTAURACON DE MAGENES

Más detalles

Variable aleatoria: definiciones básicas

Variable aleatoria: definiciones básicas Varable aleatora: defncones báscas Varable Aleatora Hasta ahora hemos dscutdo eventos elementales y sus probabldades asocadas [eventos dscretos] Consdere ahora la dea de asgnarle un valor al resultado

Más detalles

8 MECANICA Y FLUIDOS: Calorimetría

8 MECANICA Y FLUIDOS: Calorimetría 8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

ELABORACION DE NOTAS DE CLASE DE LA ASIGNATURA ANALISIS DE ESTRUCTURAS II. Jorge Eliécer Escobar Florez

ELABORACION DE NOTAS DE CLASE DE LA ASIGNATURA ANALISIS DE ESTRUCTURAS II. Jorge Eliécer Escobar Florez ELORCION DE NOTS DE CLSE DE L SIGNTUR NLISIS DE ESTRUCTURS II Jorge Elécer Escobar Florez UNIVERSIDD INDUSTRIL DE SNTNDER Escuela de Ingenería cvl ucaramanga 007 ELORCION DE NOTS DE CLSE DE L SIGNTUR NLISIS

Más detalles

Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana?

Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana? Cadenas de Marov Después de mucho estudo sobre el clma, hemos vsto que s un día está soleado, en el 70% de los casos el día sguente contnua soleado y en el 30% se pone nublado. En térmnos de probabldad,

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

Texto guía para prácticas Pascual Martí Montrull Gregorio Sánchez Olivares Pedro Martínez Castejón Concepción Díaz Gómez

Texto guía para prácticas Pascual Martí Montrull Gregorio Sánchez Olivares Pedro Martínez Castejón Concepción Díaz Gómez Análss de Estructuras Teto guía para práctcas Pascual Martí Montrull Gregoro Sánchez Olvares Pedro Martínez Casteón Concepcón Díaz Gómez ÍNDICE LISTA DE FIGURAS... LISTA DE SÍMBOLOS... v 1. INTRODUCCIÓN...

Más detalles

1. MODELAMIENTO DE SISTEMAS: FUNDAMENTOS

1. MODELAMIENTO DE SISTEMAS: FUNDAMENTOS 1. MODELAMIENTO DE SISTEMAS: FUNDAMENTOS 1.1 INTRODUCCION Un sstema representa una undad donde se hacen tratamentos físcos o químcos de materales que puede ser contrastada con un modelo que representa

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o 4 LNZ DE OHR: Contraccón de mezcla alcohol/h2o CONTENIDOS Defncones. Contraccón de una ezcla. olumen específco deal y real. Uso de la balanza de ohr. erfcacón de Jnetllos. Propagacón de Errores. OJETIOS

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DELTA MATE OMAÓN UNETAA / Gral. Ampuda, 6 8003 MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas

Más detalles

Cantidad de movimiento

Cantidad de movimiento Cnétca 37 / 63 Cnétca Cantdad de momento Momento cnétco: Teorema de Koeng Energía cnétca: Teorema de Koeng Sóldo con punto fjo: Momento cnétco Sóldo con punto fjo: Energía cnétca Sóldo: Momento relato

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin.

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin. Capítulo II: MECÁNICA DEL SÓLIDO RÍGIDO 5ª Leccón: Sstema de fuerzas gravtatoras. Cálculo de centros de gravedad de fguras planas: teoremas de Guldn. Sstemas de fuerzas gravtatoras La deduccón parte de

Más detalles

Materiales Industriales, Ingeniería Técnica Industrial Mecánica Profesor: Dr. María Jesús Ariza, Departamento de Física Aplicada, CITE II-A, 2.

Materiales Industriales, Ingeniería Técnica Industrial Mecánica Profesor: Dr. María Jesús Ariza, Departamento de Física Aplicada, CITE II-A, 2. Materales Industrales, Ingenería Técnca Industral Mecánca Profesor: Dr. María Jesús Arza, Departamento de Físca Aplcada, CITE II-A,. Teoría de meddas. Meddas magntudes: La teoría de meddas Las varables

Más detalles

Matemática Financiera Sistemas de Amortización de Deudas

Matemática Financiera Sistemas de Amortización de Deudas Matemátca Fnancera Sstemas de Amortzacón de Deudas 7 Qué aprendemos Sstema Francés: Descomposcón de la cuota. Amortzacones acumuladas. Cálculo del saldo. Evolucón. Representacón gráfca. Expresones recursvas

Más detalles

EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA

EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA JRCICIOS RSULTOS D TRABAJO Y NRGÍA. Un bloque de 40 kg que se encuentra ncalmente en reposo, se empuja con una uerza de 30 N, desplazándolo en línea recta una dstanca de 5m a lo largo de una superce horzontal

Más detalles

Ecuaciones y Teoremas de la Elasticidad.

Ecuaciones y Teoremas de la Elasticidad. Capítulo 5 Ecuacones y Teoremas de la Elastcdad. partr de las ecuacones báscas de la Teoría de la Elastcdad, presentadas en los tres capítulos anterores, se dervan un conjunto de ecuacones y teoremas de

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA TERMODINÁMICA AVANZADA Undad III: Termodnámca del Equlbro Ecuacones para el coefcente de actvdad Funcones de eceso para mezclas multcomponentes 9/7/0 Rafael Gamero Funcones de eceso en mezclas bnaras Epansón

Más detalles

Conservación del Momento Lineal y de la Energía

Conservación del Momento Lineal y de la Energía Conservacón del Moento Lneal y de la Energía Conservacón del Moento Lneal y de la Energía Objetvos Coprobar experentalente la conservacón del oento lneal edante choques elástcos e nelástcos. Coprobar la

Más detalles

OSCILACIONES 1.- INTRODUCCIÓN

OSCILACIONES 1.- INTRODUCCIÓN OSCILACIONES 1.- INTRODUCCIÓN Una parte relevante de la asgnatura trata del estudo de las perturbacones, entenddas como varacones de alguna magntud mportante de un sstema respecto de su valor de equlbro.

Más detalles

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera Tema - MATEMÁTICAS FINANCIERAS Materal realzado por J. Davd Moreno y María Gutérrez Unversdad Carlos III de Madrd Asgnatura: Economía Fnancera Apuntes realzados por J. Davd Moreno y María Gutérrez Advertenca

Más detalles

Continua: Corriente cuyo valor es siempre constante (no varía con el tiempo). Se denota como c.c.

Continua: Corriente cuyo valor es siempre constante (no varía con el tiempo). Se denota como c.c. .. TIPOS DE CORRIENTES Y DE ELEMENTOS DE CIRCUITOS Contnua: Corrente cuyo valor es sempre constante (no varía con el tempo). Se denota como c.c. t Alterna: Corrente que varía snusodalmente en el tempo.

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR DECANATO DE ESTUDIOS DE POSTGRADO COORDINACIÓN DE POSTGRADO EN INGENIERÍA QUÍMICA MAESTRIA EN INGENIERÍA QUÍMICA

UNIVERSIDAD SIMÓN BOLÍVAR DECANATO DE ESTUDIOS DE POSTGRADO COORDINACIÓN DE POSTGRADO EN INGENIERÍA QUÍMICA MAESTRIA EN INGENIERÍA QUÍMICA UNIVERSIDAD SIMÓN BOLÍVAR DECANAO DE ESUDIOS DE POSGRADO COORDINACIÓN DE POSGRADO EN INGENIERÍA QUÍMICA MAESRIA EN INGENIERÍA QUÍMICA APLICACIÓN DEL MÉODO POD PARA LA OBENCIÓN DE UN MODELO REDUCIDO DE

Más detalles

Valoración de opciones financieras por diferencias finitas

Valoración de opciones financieras por diferencias finitas Valoracón de opcones fnanceras por dferencas fntas José Mª Pesquero Fernández Dpto. Nuevos Productos - Tesorería BBVA mpesquero@grupobbva.com Indce INDICE. Introduccón. La ecuacón dferencal 3. Dferencas

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

Tema 3. Teoremas de la Teoría de Circuitos

Tema 3. Teoremas de la Teoría de Circuitos Tema 3. Teoremas de la Teoría de Crcutos 3.1 Introduccón 3. Superposcón 3.3 Transformacón de fuentes 3.4 Teorema de Theenn 3.5 Teorema de Norton V Th Th L 3.6 Máxma transferenca de potenca José. Pereda,

Más detalles

Resumen TEMA 5: Dinámica de percusiones

Resumen TEMA 5: Dinámica de percusiones TEM 5: Dnámca e percusones Mecánca Resumen TEM 5: Dnámca e percusones. Concepto e percusón Impulsón elemental prouca por una fuerza: F Impulsón prouca por una fuerza en un nteralo (t, t ): F Percusón es

Más detalles

CANTIDADES VECTORIALES: VECTORES

CANTIDADES VECTORIALES: VECTORES INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO FEH DURION 3 11 JUNIO 3 DE 2012 7 UNIDDES

Más detalles

Transformación de Park o D-Q

Transformación de Park o D-Q Apénce B ransformacón e Park o D-Q B.. Expresón e la matrz e transformacón La transformacón e Park o D-Q conerte las componentes 'abc' el sstema trfásco a otro sstema e referenca 'q'. El objeto e la transformacón

Más detalles

EL MÉTODO DE LOS ELEMENTOS FINITOS: Una Introducción

EL MÉTODO DE LOS ELEMENTOS FINITOS: Una Introducción EL MÉTODO DE LOS ELEMENTOS FINITOS: Una Introduccón Zeferno A. da Fonseca Lopes EL MÉTODO DE LOS ELEMENTOS FINITOS: Una Introduccón Unversdad Rafael Urdaneta Autordades Rectorales Dr. Jesús Esparza Bracho,

Más detalles

Rentas o Anualidades

Rentas o Anualidades Rentas o Anualdades Patrca Ksbye Profesorado en Matemátca Facultad de Matemátca, Astronomía y Físca 10 de setembre de 2013 Patrca Ksbye (FaMAF) 10 de setembre de 2013 1 / 31 Introduccón Rentas o Anualdades

Más detalles

Equilibrio termodinámico entre fases fluidas

Equilibrio termodinámico entre fases fluidas CAPÍTULO I Equlbro termodnámco entre fases fludas El conocmento frme de los conceptos de la termodnámca se consdera esencal para el dseño, operacón y optmzacón de proyectos en la ngenería químca, debdo

Más detalles

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena.

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena. UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE COURNOT. Autores: García Córdoba, José Antono; josea.garca@upct.es Ruz Marín, Manuel; manuel.ruz@upct.es Sánchez García, Juan Francsco; jf.sanchez@upct.es

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp Análss de Webull Resumen El procedmento del Análss de Webull está dseñado para ajustar una dstrbucón de Webull a un conjunto de n observacones. Es comúnmente usado para analzar datos representando tempos

Más detalles

315 M/R Versión 1 Segunda Parcial 1/7 Lapso 2009/2

315 M/R Versión 1 Segunda Parcial 1/7 Lapso 2009/2 35 M/R Versón Segunda Parcal /7 UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Segunda Parcal VERSIÓN:

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente

Más detalles

Determinación de Puntos de Rocío y de Burbuja Parte 1

Determinación de Puntos de Rocío y de Burbuja Parte 1 Determnacón de Puntos de Rocío y de Burbuja Parte 1 Ing. Federco G. Salazar ( 1 ) RESUMEN El cálculo de las condcones de equlbro de fases líqudo vapor en mezclas multcomponentes es un tema de nterés general

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Undad Central del Valle del Cauca Facultad de Cencas Admnstratvas, Económcas y Contables Programa de Contaduría Públca Curso de Matemátcas Fnanceras Profesor: Javer Hernando Ossa Ossa Ejerccos resueltos

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Parte I: Propagación de ondas

Parte I: Propagación de ondas desarrollo de experencas ddáctcas 5 Anmando la Físca Parte I: Propagacón de ondas Oleg V. Nagornov, Roberto E. Calgars, Georgna B. Rodrígez y Marta G. Calgars Calqer profesor qe trate de enseñar físca

Más detalles

EQUILIBRIO DE UN CUERPO RIGIDO

EQUILIBRIO DE UN CUERPO RIGIDO Manual e Laboratoro e ísca I C - UNMSM EQUILIBRIO E UN CUERPO RIGIO EXPERIENCIA Nº 6 Cuerpo rígdo: La dstanca entre dos puntos cualesquera del cuerpo permanece nvarante en el tempo. I. OBJETIVOS - Estudar

Más detalles

INTERACCION SUELO ESTRUCTURA, ESTATICA Y SISMICA DE CIMENTACIONES MONOLITICAS SUPERFICIALES 1. Por. Dr. Leonardo Zeevaert

INTERACCION SUELO ESTRUCTURA, ESTATICA Y SISMICA DE CIMENTACIONES MONOLITICAS SUPERFICIALES 1. Por. Dr. Leonardo Zeevaert INTERACCION SUELO ESTRUCTURA, ESTATICA Y SISMICA DE CIMENTACIONES MONOLITICAS SUPERFICIALES Por. Dr. Leonardo Zeevaert INTRODUCCIÓN La compatbldad de los desplazamentos en la nterfase, entre la estructura

Más detalles

TERMÓMETROS Y ESCALAS DE TEMPERATURA

TERMÓMETROS Y ESCALAS DE TEMPERATURA Ayudantía Académca de Físca B EMPERAURA El concepto de temperatura se basa en las deas cualtatvas de calente (temperatura alta) y río (temperatura baja) basados en el sentdo del tacto. Contacto térmco.-

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

UNIVERSIDAD TECNOLOGICA NACIONAL - FACULTAD REGIONAL ROSARIO Departamento de Ingeniería Química. Cátedra: Integración IV

UNIVERSIDAD TECNOLOGICA NACIONAL - FACULTAD REGIONAL ROSARIO Departamento de Ingeniería Química. Cátedra: Integración IV UNIVERSIDAD TECNOLOGICA NACIONAL - FACULTAD REGIONAL ROSARIO Departamento de Ingenería Químca Cátedra: Integracón IV Tema: Resolucón de Sstemas de Ecuacones Lneales Alumnos: Damán Match, Marcos Boss y

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Deducción de parámetros y comportamiento

Deducción de parámetros y comportamiento Captulo 7. Deduccón de paráetros y coportaento presto por el odelo 287 Capítulo 7: presto por el odelo Deduccón de paráetros y coportaento S ben la utlzacón del odelo consttuto planteado requere la deternacón

Más detalles

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO 1 ÍNDICE 1. INTRODUCCIÓN 2. EL CAMPO MAGNÉTICO 3. PRODUCCIÓN DE UN CAMPO MAGNÉTICO 4. LEY DE FARADAY 5. PRODUCCIÓN DE UNA FUERZA EN UN CONDUCTOR 6. MOVIMIENTO DE

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora

Más detalles

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización. Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón

Más detalles

16/07/2012 P= F A. Pascals. Bar

16/07/2012 P= F A. Pascals. Bar El Estado Gaseoso El Estado Gaseoso Undad I Característcas de los Gases Las moléculas ndvduales se encuentran relatvamente separadas. Se expanden para llenar sus recpentes. Son altamente compresbles. enen

Más detalles

315 M de R Versión 1 Segunda Parcial 1/8 Lapso 2008/2

315 M de R Versión 1 Segunda Parcial 1/8 Lapso 2008/2 5 M de R Versón Segunda Parcal /8 Lapso 8/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 5 MOMENTO: Segunda Parcal

Más detalles

Principio de D Alembert

Principio de D Alembert Capítulo 15 Prncpo de D Alembert 15.1 Prncpo de D Alembert En práctcamente cualquer sstema mecánca, además de las fuerzas que controlan su evolucón, exsten certo número de lgaduras que constrñen su movmento.

Más detalles

COMPONENTES ELEMENTALES

COMPONENTES ELEMENTALES Capítulo COMPONENTES ELEMENTALES.. Modelos de Componentes Una componente eléctrca se descrbe por una relacón entre sus arables termnales, la que se denomna relacón de equlbro. El oltaje y la corrente,

Más detalles

Colección de problemas de. Poder de Mercado y Estrategia

Colección de problemas de. Poder de Mercado y Estrategia de Poder de Mercado y Estratega Curso 3º - ECO- 0-03 Iñak Agurre Jaromr Kovark Marta San Martín Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU Tema. Olgopolo y competenca monopolístca.

Más detalles

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística Facultad de Ingenería Dvsón de Cencas Báscas Coordnacón de Cencas Aplcadas Departamento de Probabldad y Estadístca Probabldad y Estadístca Prmer Eamen Fnal Tpo A Semestre: 00- Duracón máma:. h. Consderar

Más detalles

Física I. TRABAJO y ENERGÍA MECÁNICA. Apuntes complementarios al libro de texto. Autor : Dr. Jorge O. Ratto

Física I. TRABAJO y ENERGÍA MECÁNICA. Apuntes complementarios al libro de texto. Autor : Dr. Jorge O. Ratto ísca I Apuntes complementaros al lbro de teto TRABAJO y ENERGÍA MECÁNICA Autor : Dr. Jorge O. Ratto Estudaremos el trabajo mecánco de la sguente manera : undmensonal constante Tpo de movmento varable bdmensonal

Más detalles

ONDAS ESFÉRICAS RADIACIÓN ACÚSTICA

ONDAS ESFÉRICAS RADIACIÓN ACÚSTICA ONDAS ESFÉRCAS RADACÓN ACÚSTCA.- SEA UN MEDO FLUDO LMTADO SÓTROPO Y HOMOGÉNEO. CONSDEREMOS EN SU NTEROR UNA ESFERA DE RADO QUE SE HNCHA RÁPDAMENTE HASTA LOGRAR UN VALOR DE RADO. EL FLUDO ALREDEDOR DE LA

Más detalles

Modelos dinámicos de formación de precios y colusión. Carlos S. Valquez IEF

Modelos dinámicos de formación de precios y colusión. Carlos S. Valquez IEF Modelos dnámcos de formacón de precos y colusón Carlos S. Valquez IEF Modelos dnámcos de formacón de precos y colusón Enfoques empleados en el análss de la nteraccón repetda entre empresas: Juegos repetdos.

Más detalles

CAPITULO 2 VELOCIDAD DE REACCIÓN, ESTEQUIOMETRÍA Y EQUILIBRIO

CAPITULO 2 VELOCIDAD DE REACCIÓN, ESTEQUIOMETRÍA Y EQUILIBRIO PIULO VELOI E REIÓ, ESEQUIOMERÍ Y EQUILIRIO. IROUIÓ omo hemos vsto en el apítulo, la velocdad de reaccón es fundamental para poder dseñar reactores químcos. La velocdad de reaccón depende báscamente de

Más detalles

MEMORIAS DEL XV CONGRESO INTERNACIONAL ANUAL DE LA SOMIM 23 al 25 DE SEPTIEMBRE, 2009 CD. OBREGÓN, SONORA. MÉXICO A4_139

MEMORIAS DEL XV CONGRESO INTERNACIONAL ANUAL DE LA SOMIM 23 al 25 DE SEPTIEMBRE, 2009 CD. OBREGÓN, SONORA. MÉXICO A4_139 MEMORIAS DEL XV CONGRESO INERNACIONAL ANUAL DE LA SOMIM 23 al 25 DE SEPIEMBRE, 29 CD. OBREGÓN, SONORA. MÉXICO A4_39 Cnemátca Inversa y Análss Jacobano del Robot Paralelo Hexa Vázquez Hernández Jesús, Cuenca

Más detalles