Temario III Algoritmos Combinatorios y Metaheurísticas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Temario III Algoritmos Combinatorios y Metaheurísticas"

Transcripción

1 Temario III Algoritmos Combinatorios y Metaheurísticas Verificación y Validación de Software UNCo 1 Contenidos Combinación de Datos de Test Algoritmos Combinatorios Metaheurísticas Búsqueda Tabú Algoritmos Genéticos Verificación y Validación de Software UNCo 2

2 Combinatoria y Metaheurísticas Lectura Grindal, M., Offutt, J., Andler, S. (2005): Combination Testing Strategies: A survey. Software Testing, Verification, and Reliability, Vol. 15, pp Diaz, E., Tuya, J., Blanco, R., Dolado, J. (2008) : A Tabu Search Algorithm for Structural Software Testing. Computers & OR, Vol. 35, No. 10, pp Srivastava, P., Tai hoon, K. (2009): Application of Genetic Algorithm in Software Testing. International Journal of Software Engineering and Its Applications, Vol. 3, No.4. Verificación y Validación de Software UNCo 3 Combinación de Datos de Test (1) Estructura de un Caso de Test: Especificación de las condiciones iniciales Ejecución de funciones de un Sistema bajo Test (SUT) Determinación del resultado de la prueba (oráculo), para saber si lo obtenido se corresponde con lo esperado La definición del Oráculo es habitualmente un proceso manual (su generación automática es un intenso tema de investigación). Por ello interesa tener test suites buenos pero que no sean demasiado grandes. Verificación y Validación de Software UNCo 4

3 Combinación de Datos de Test (2) Criterios de Cubrimiento para Datos de Test (I) Una vez que, para cada parámetro, se identificaron sus valores interesantes o representativos, debemos combinarlos para construir casos de test. Existen multitud de Estrategias de Combinación. En general, todas ellas persiguen obtener TS reducido pero que alcancen alta cobertura en el SUT. Con los criterios de cobertura para valores se intenta conocer cuantitativamente el grado en que se utilizan los datos de test Verificación y Validación de Software UNCo 5 Combinación de Datos de Test (3) Criterios de Cubrimiento para Datos de Test (II) Cada dato de test debería utilizarse al menos una vez Lo utilizamos sólo una vez? Dos veces? Tres?... Para ello existen Criterios que definen Algoritmos de Combinación: Each Choice o 1 wise Pairwise N wise etc Verificación y Validación de Software UNCo 6

4 Combinación de Datos de Test (4) Algoritmo Each Choice Utilizar cada valor interesante al menos una vez en un caso de test Para este criterio bastarían cuatro casos de prueba: {Trivial, null, Person, 3, Master card, Quiz} {Checkers, Dice, Computer, 2, Visa, } {Chess, Dice, Computer, 2, American express, Quiz} {Ludo, null, Person, 2, Master card, } Verificación y Validación de Software UNCo 7 Combinación de Datos de Test (5) Algoritmo Pairwise Utilizar cada par de valores interesantes al menos una vez en un caso de test Ludo con Dice, Ludo con null, Ludo con Person, Ludo con Computer,... pero también Dice con Person, Dice con Computer, etc. Se basa en la idea que muchos errores aparecen cuando interactúan dos ciertos valores para dos parámetros Se construyen Tablas de Pares, para proponer casos de prueba y se marcan los pares visitados. Se termina cuando se hayan visitado todos los pares al menos una vez. Hay n (n-1)/2 tablas de pares, siendo n el nº de parámetros: 6 5/2=15 Verificación y Validación de Software UNCo 8

5 Combinación de Datos de Test (6) Estrategias: Verificación y Validación de Software UNCo 9 Combinación de Datos de Test (7) Algoritmo All combinations (I) Se trata de determinar el producto cartesiano de todos los valores de todos los parámetros Supongamos: A={1, 2, 3, 4}, B={5, 6, 7}, C={8, 9} El número de cominaciones (cardinal del producto cartesiano) es A B C =4 3 2=24 Verificación y Validación de Software UNCo 10

6 Combinación de Datos de Test (8) Algoritmo All combinations (II) Se requiere escribir 24 oráculos, y hacer seguimiento del programa para conocer su comportamiento en esas 24 situaciones Muchos de estos casos de test serán redundantes, dado que recorrerán las mismas porciones del SUT: que no incrementen el cubrimiento aplicado (comandos, arcos, etc) Por ello, esta estrategia se utiliza, en investigación, como baseline, como elemento de comparación Pero, para un mismo conjunto de datos de test, esta estrategia es la que alcanza mayor cubrimiento, porque contiene a cualquier otra estrategia. Verificación y Validación de Software UNCo 11 Metaheurísticas (1) Qué es un problema de Optimización Combinatoria? Ejemplos: Problema de la suma de subconjuntos Determinación de caminos mínimos en grafos Flujo en redes Asignación de tareas Problema de la mochila Problemas de ruteo de vehículos. El problema del Viajante de comercio Diseño de redes de comunicaciones Ruteo en redes de comunicaciones VLSI Verificación y Validación de Software UNCo 12

7 Metaheurísticas (2) Cómo se resuelve un problema de Optimización Combinatoria? Heurísticas clásicas Metaheurísticas o heurísticas modernas o sistemas inteligentes Cuándo usarlas? Problemas para los cuales no se conocen buenos algoritmos exactos Problemas difíciles de modelar Verificación y Validación de Software UNCo 13 Metaheurísticas (3) Porqué usarlas? Adaptabilidad a modificaciones de los datos o del problema una vez que ya se obtuvo un resultado. Fáciles de implementar y programar Basadas en tener una gran capacidad de cálculo No sólo para problemas de optimización combinatoria Cómo se evalúan? problemas test problemas reales problemas generados al azar cotas inferiores Verificación y Validación de Software UNCo 14

8 Metaheurísticas (4) Una metaheurística es un conjunto de conceptos que pueden ser usados para definir algoritmos heurísticos para un amplio espectro de problemas diferentes. Las metaheurísticas son estrategias de alto nivel que guían una heuristica específica del problema a resolver para mejorar su perfomance Verificación y Validación de Software UNCo 15 Metaheurísticas (5) Principales características: Son estrategias que guían un proceso de búsqueda. No son técnicas para un problema específico. Sus conceptos básicos se pueden describir con un alto nivel de abstración. El objetivo es explorar eficientemente el espacio de búsqueda para encontrar soluciones óptimas o casi óptimas. Las estrategias van desde algoritmos simples de búsqueda local a complejos procesos de aprendizaje. Son en muchos casos algoritmos no determinísticos. Pueden usar conocimiento del dominio específico de aplicación manejando heurísticas controladas por ellas. Algunas estrategias hace uso de la memoria de la búsqueda para guiar los pasos futuros. Verificación y Validación de Software UNCo 16

9 Metaheurísticas (6) Estrategias de Metaheurísticas: Simulated annealing (primeros trabajos 1953, 1983) Algoritmos Tabú Search (primeras aplicaciones a optimización combinatoria en 1986, basado en algunas ideas de los 70) Algoritmos genéticos y evolutivos (primeras ideas en los 60, mayormente aplicaciones a problemas de IA). GRASP (1989) Colonia de hormigas (1992), Swarm Optimization Redes neuronales (primeras ideas en los 60, resurgieron en los 80) VNS otras.. Híbridos Verificación y Validación de Software UNCo 17 Metaheurísticas (7) Aplicación a Minimización de TS Considerar la dificultad de conseguir valores aceptables para el cubrimiento de decisiones, condiciones y condiciones/decisiones. Ejemplo: encontrar valores que satisfagan la condición if (a<10) cuando esa instrucción se encuentra a una distancia computacional considerable de la entrada del programa. Generación de casos de test: Se construye una función de minimización para cada condición, aplicando diferentes heurísticas para conseguir el cubrimiento, en función de los datos recogidos durante la ejecución de cada caso. Verificación y Validación de Software UNCo 18

10 Búsqueda Tabú (1) Se basa en el algoritmo de los k vecinos junto al mantenimiento en memoria de una lista Tabú que evita repetir la búsqueda dentro de un área del espacio de soluciones (o movimientos). Permite elegir una solución vecina que no sea estrictamente mejor que la actual para salir de un mínimo local. El algoritmo requiere algunos parámetros, como la función objetivo (mide el costo de la solución), la estrategia para seleccionar vecinos y la memoria del algoritmo. Usar una Función de Aspiración que permita en algunos casos elegir un elemento o movimiento Tabú Verificación y Validación de Software UNCo 19 Búsqueda Tabú (2) Estructura de un Algoritmo de Búsqueda Tabú: Generar una solución aleatoria como solución actual Calcular costo de la solución actual y almacenarlo como mejor costo Añadir la solución actual como nueva solución Añadir la nueva solución a la lista tabú while no se alcance el criterio de parada Calcular los vecinos candidatos Calcular el costo de los candidatos Almacenar el mejor candidato como nueva solución Añadir la nueva solución a la lista tabú if costo de nueva solución < mejor costo Almacenar nueva solución como mejor solución Almacenar costo de la nueva solución como mejor costo end_if Almacenar nueva solución como solución actual end_while Verificación y Validación de Software UNCo 20

11 Búsqueda Tabú (3) Tuya, et al. (2008) : A tabu search algorithm for structural software testing. Computers & OR 35(10): Proponen la utilización de un algoritmo basado en Búsqueda Tabú para lograr amplio cubrimiento de decisiones: Un grafo de flujo de control del programa, y en los nodos se anota si el propio nodo ha sido alcanzado, cuántas veces lo ha sido y cuál es el mejor caso de prueba que lo ha alcanzado Cuando no hay ramas inalcanzables, el máximo valor posible para el cubrimiento es el 100%, mientras que será desconocido en caso de que las haya Verificación y Validación de Software UNCo 21 Búsqueda Tabú (4) Tuya: Algoritmo de Búsqueda Tabú Por este motivo establecen como criterio de parada haber alcanzado todas las ramas, o que el algoritmo haya superado un número de iteraciones prefijado. Cada solución se caracteriza por su conjunto de valores de entrada. Función de costo o fitness: se considera que el mejor caso de test es aquel que tiene más posibilidades de que sus vecinos permuten entre ramas o, lo que es lo mismo, aquel que alcanza el nodo con valores límite. Ejemplo: si la condición es x!=y, la función de costo será x y Verificación y Validación de Software UNCo 22

12 Búsqueda Tabú (5) Tuya: Algoritmo de Búsqueda Tabú Para calcular los vecinos candidatos, se basan en que, si un caso de test cubre al padre de un nodo pero no a su hijo, entonces puede encontrarse un vecino que alcance al hijo utilizando el caso que cubre al padre a partir de la mejor solución. El costo para un test x cuando no alcanza un nodo nj pero sí alcanzó el nodo padre ni. Este costo se usa para intensificar la búsqueda. El costo para un test x cuando alcanza un nodo ni. Este costo se usa para diversificar la búsqueda. Verificación y Validación de Software UNCo 23 Búsqueda Tabú (5) Tuya: Algoritmo de Búsqueda Tabú A partir de la solución actual se generan 2n vecinos cercanos y 2n vecinos lejanos (donde n es el número de variables de entrada del programa) Los candidatos se comprueban frente a la lista tabú, rechazándose aquellos que ya existen En la siguiente iteración se repite el proceso, con la diferencia de que el nodo objetivo puede haber cambiado si alguno de los candidatos alcanzó el entonces nodo objetivo. Verificación y Validación de Software UNCo 24

13 Búsqueda Tabú (6) Tuya: Algoritmo de Búsqueda Tabú Verificación y Validación de Software UNCo 25 Búsqueda Tabú (7) Tuya: Algoritmo de Búsqueda Tabú Soluciones para un caso de estudio Verificación y Validación de Software UNCo 26

14 Búsqueda Tabú (8) Tuya: Algoritmo de Búsqueda Tabú Soluciones para un caso de estudio Verificación y Validación de Software UNCo 27 Algoritmos Genéticos (1) Técnicas de búsqueda probabilística basadas en la teoría de la evolución, la selección y la herencia. Modelar o simular fenómenos naturales, evolución de las especies, procesos de selección natural, mutación, etc. Ventajas: flexibilidad, simplicidad y capacidad de hibridación Desventajas: naturaleza heurística y el manejo de restricciones Vocabulario de la genética: población, individuos, cromosomas, etc. Programas o algoritmos evolutivos Verificación y Validación de Software UNCo 28

15 Algoritmos Genéticos (2) Trabajan con una población de soluciones, denominadas individuos, y procesan toda la información que ésta contiene de forma paralela. A lo largo de las distintas generaciones de la población, realizan un proceso de selección y mejora de los individuos, de manera que son ideales para la resolución de problemas de optimización Cada individuo se evalúa con una función de fitness que mide la calidad de la solución respecto al problema que se está resolviendo. Verificación y Validación de Software UNCo 29 Algoritmos Genéticos (3) Dos tipos de operadores: Operadores de Selección: se encargan de seleccionar individuos de una población para la reproducción. Operadores de Reproducción: permiten la generación de nuevos individuos en la población. Operador de Cruzamiento: genera dos individuos nuevos, denominados hijos, a partir de dos individuos seleccionados previamente, denominados padres. Los hijos heredan parte de la información almacenada en cada uno de los dos padres Operador de Mutación: tiene como finalidad alterar la información almacenada en un individuo Verificación y Validación de Software UNCo 30

16 Algoritmos Genéticos (4) Estructura de un Algoritmo Genético: Empezar t := 0 inicializar P(t) evaluar P(t) Mientras no se cumpla la condición de parada hacer Empezar t:= t + 1 construir P (t) a partir de P( t-1) modificar P(t) evaluar P (t) Fin Fin Verificación y Validación de Software UNCo 31 Algoritmos Genéticos (5) Características: P(t) = {x1, x2, x3...xn} población de la generación t Los x k son los individuos de esa población. Cada uno representa una solución del problema que se está tratando. Se evalúa cada individuo usando una función fitness para medirlo. Para formar la población de la siguiente generación se eligen los mejores, se realiza el cruzamiento y eventualmente se realiza una mutación. Después de un numero de generaciones se espera que el mejor individuo represente una buena solución (casi óptima). Verificación y Validación de Software UNCo 32

17 Algoritmos Genéticos (6) Minimización de una función max f(x) = x sen (10 pi x) + 1 con 1 < x < 2 Se puede resolver analíticamente Verificación y Validación de Software UNCo 33 Algoritmos Genéticos (7) Representación: Cromosoma: vector binario de longitud relacionada con la precisión requerida (en este caso queremos 6 decimales) [-1,2] tiene que dividirse en intervalos (22 bits) = 2**21 < < 2**22 = Para convertir un string binario en un número real: pasar (b21...b0) de base 2 a base 10 y obtener x x = -1 + x * (3/ 2**22 1) Población inicial Se construye una población de vectores de binarios de 22 bits. Evaluación La función de evaluación es la función f Verificación y Validación de Software UNCo 34

18 Algoritmos Genéticos (8) Operadores genéticos: Mutación: Se altera uno o mas genes con una probabilidad igual a la tasa de mutación predeterminada Por ejemplo si el 5to gen de v3 = ( ) es elegido para mutación el nuevo cromosoma queda v3 = ( ) En cambio si se eligiera el 10mo gen quedaría v3 = ( ) Verificación y Validación de Software UNCo 35 Algoritmos Genéticos (9) Operadores genéticos: Cruzamiento: Supongamos que tienen que cruzarse v2 y v3 y que el punto de cruzamiento queda en el 5to gen. Entonces si v2 = ( ) v3 =( ) los nuevos cromosomas son v2 = ( ) v3 = ( ) Verificación y Validación de Software UNCo 36

19 Algoritmos Genéticos (10) Aplicación a Testing: Domínguez, J. J., Estero, A., Medina, I. (2008): Generación de mutantes con algoritmos genéticos. Workshop de las JISBD, Vol. 2, No. 4, ISSN , SISTEDES. Srivastava, P., Tai hoon, K. (2009): Application of Genetic Algorithm in Software Testing. International Journal of Software Engineering and Its Applications, Vol. 3, No.4. Verificación y Validación de Software UNCo 37

METAHEURISTICAS Ideas, Mitos, Soluciones

METAHEURISTICAS Ideas, Mitos, Soluciones METAHEURISTICAS Ideas, Mitos, Soluciones OPTIMIZACION COMBINATORIA Qué es un problema de optimización combinatoria? Cómo se modela matemáticamente un problema de optimización combinatoria? Minimizar (o

Más detalles

Un algoritmo genético híbrido para resolver el EternityII. Rico, Martin; Ros, Rodrigo Directora: Prof. Dra. Irene Loiseau

Un algoritmo genético híbrido para resolver el EternityII. Rico, Martin; Ros, Rodrigo Directora: Prof. Dra. Irene Loiseau Un algoritmo genético híbrido para resolver el EternityII Rico, Martin; Ros, Rodrigo Directora: Prof. Dra. Irene Loiseau Temas Temas Introducción Eternity II Historia Descripción Demo Metaheurísticas Algoritmos

Más detalles

Búsqueda Local. cbea (LSI-FIB-UPC) Inteligencia Artificial Curso 2011/2012 1 / 33

Búsqueda Local. cbea (LSI-FIB-UPC) Inteligencia Artificial Curso 2011/2012 1 / 33 Introducción Búsqueda Local A veces el camino para llegar a la solución no nos importa, buscamos en el espacio de soluciones Queremos la mejor de entre las soluciones posibles alcanzable en un tiempo razonable

Más detalles

Algoritmos Genéticos Y

Algoritmos Genéticos Y Algoritmos Genéticos Y Optimización n Heurística Dr. Adrian Will Grupo de Aplicaciones de Inteligencia Artificial Universidad Nacional de Tucumán awill@herrera.unt.edu.ar Operadores de Mutación El operador

Más detalles

Métodos evolutivos de Optimización. Prof. Cesar de Prada Dpto. Ingeneiria de Sitemas y Automática Universidad de Valladolid

Métodos evolutivos de Optimización. Prof. Cesar de Prada Dpto. Ingeneiria de Sitemas y Automática Universidad de Valladolid Métodos evolutivos de Optimización Prof. Cesar de Prada Dpto. Ingeneiria de Sitemas y Automática Universidad de Valladolid Indice Introducción Método de Montecarlo Algoritmos genéticos Tabú Search Simulated

Más detalles

Programación Genética

Programación Genética Programación Genética Programación Genética consiste en la evolución automática de programas usando ideas basadas en la selección natural (Darwin). No sólo se ha utilizado para generar programas, sino

Más detalles

Algoritmos Genéticos. Introduccion a la Robótica Inteligente

Algoritmos Genéticos. Introduccion a la Robótica Inteligente Algoritmos Genéticos Introduccion a la Robótica Inteligente 7 Marzo 2014 (IRIN) AGs 7/03/2014 1 / 43 Índice 1 Introducción 2 Algoritmos Genéticos 3 Algunos Fundamentos Matemáticos 4 Conclusiones (IRIN)

Más detalles

Introducción a los Algoritmos Genéticos. Tomás Arredondo Vidal 17/4/09

Introducción a los Algoritmos Genéticos. Tomás Arredondo Vidal 17/4/09 Introducción a los Algoritmos Genéticos Tomás Arredondo Vidal 17/4/09 Esta charla trata de lo siguiente: Introducción a algunos aspectos de los algoritmos genéticos. Introducción a algunas aplicaciones

Más detalles

ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS

ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS EtsiIngenio Inteligencia Artificial 1 Raposo López Alejandro Sánchez Palacios Manuel Resumen dibujo de grafos mediante algoritmos genéticos

Más detalles

Desarrollo de un sistema capaz de optimizar rutas de entrega utilizando algoritmos genéticos

Desarrollo de un sistema capaz de optimizar rutas de entrega utilizando algoritmos genéticos MT 6 Desarrollo de un sistema capaz de optimizar rutas de entrega utilizando algoritmos genéticos Rosario Baltazar 1 Judith Esquivel Vázquez 2 Andrea Rada 3 Claudia Díaz 4 Resumen Durante los últimos 15

Más detalles

&$3Ì78/2 $/*25,7026 (92/87,926 $9$1=$'26 3$5$ 763 6.1. INTRODUCCIÓN

&$3Ì78/2 $/*25,7026 (92/87,926 $9$1=$'26 3$5$ 763 6.1. INTRODUCCIÓN &$3Ì78/2 6.1. INTRODUCCIÓN Los primeros avances para solucionar el TSP, por medio de Algoritmos Evolutivos han sido introducidos por Goldberg y Lingle en [68] y Grefenstette en [72]. En éste área muchos

Más detalles

Introducción a los Algoritmos Genéticos

Introducción a los Algoritmos Genéticos Introducción a los Algoritmos Genéticos Francisco José Ribadas Pena INTELIGENCIA ARTIFICIAL 5 Informática ribadas@uvigo.es 17 de octubre de 2005 c FJRP 2005 ccia IA Métodos de 8 < : 1 Introducción 9 =

Más detalles

Algoritmos genéticos como métodos de aproximación analítica y búsqueda de óptimos locales

Algoritmos genéticos como métodos de aproximación analítica y búsqueda de óptimos locales Algoritmos genéticos como métodos de aproximación analítica y búsqueda de óptimos locales Jorge Salas Chacón A03804 Rubén Jiménez Goñi A93212 Juan Camilo Carrillo Casas A91369 Marco Vinicio Artavia Quesada

Más detalles

Algoritmos Genéticos Y

Algoritmos Genéticos Y Algoritmos Genéticos Y Optimización n Heurística Dr. Adrian Will Grupo de Aplicaciones de Inteligencia Artificial Universidad Nacional de Tucumán awill@herrera.unt.edu.ar Algoritmos Genéticos - Operadores

Más detalles

Algoritmos Genéticos.

Algoritmos Genéticos. Algoritmos Genéticos. Miguel Cárdenas Montes, Antonio Gómez Iglesias Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, Madrid, Spain miguel.cardenas@ciemat.es 15-19 de Octubre de 2011

Más detalles

OPTIMIZACIÓN DE TRANSFORMACIONES LINEALES DE DATOS MEDIANTE BUSQUEDA LOCAL

OPTIMIZACIÓN DE TRANSFORMACIONES LINEALES DE DATOS MEDIANTE BUSQUEDA LOCAL OPTIMIZACIÓN DE TRANSFORMACIONES LINEALES DE DATOS MEDIANTE BUSQUEDA LOCAL INGENIERIA INFORMATICA AUTOR: FRANCISCO GODOY MUÑOZ-TORRERO TUTOR: JOSE MARIA VALLS FERRAN CO-DIRECTOR: RICARDO ALER MUR Contenidos

Más detalles

Propuesta de una arquitectura para la generación de mutantes de orden superior en WS-BPEL

Propuesta de una arquitectura para la generación de mutantes de orden superior en WS-BPEL Propuesta de una arquitectura para la generación de mutantes de orden superior en WS-BPEL Emma Blanco Muñoz, Antonio García Domínguez, Juan José Domínguez Jiménez, Inmaculada Medina Bulo Escuela Superior

Más detalles

Scheduling Problem. Cuándo y dónde debo hacer cada trabajo?

Scheduling Problem. Cuándo y dónde debo hacer cada trabajo? Scheduling Problem Cuándo y dónde debo hacer cada trabajo? Ejemplos de problemas de asignación de recursos Fabricación de varios tipos de productos Asignación de turnos de trabajo Inversión financiera

Más detalles

Evaluación de la disponibilidad de los servicios desplegados sobre Volunteer Computing

Evaluación de la disponibilidad de los servicios desplegados sobre Volunteer Computing Evaluación de la disponibilidad de los servicios desplegados sobre Volunteer Computing Antonio Escot Praena Enginyeria Informàtica i Tècnica de Gestió Dirección del TFC Ángel A. Juan, PhD. Eva Vallada

Más detalles

Metaheurísticas: una visión global *

Metaheurísticas: una visión global * Metaheurísticas: una visión global * Belén Melián, José A. Moreno Pérez, J. Marcos Moreno Vega DEIOC. Universidad de La Laguna 38271 La Laguna {mbmelian,jamoreno,jmmoreno}@ull.es Resumen Las metaheurísticas

Más detalles

A L G O R I T M O S E VO L U T I VO S A P L I C A D O S A L A G E N E R AC I Ó N D E H O R A R I O S PA R A C O L E G I O

A L G O R I T M O S E VO L U T I VO S A P L I C A D O S A L A G E N E R AC I Ó N D E H O R A R I O S PA R A C O L E G I O E S C U E L A P O L I T É C N I C A N A C I O N A L F A C U L T A D D E C I E N C I A S D E P A R T A M E N T O D E M A T E M Á T I C A S A L G O R I T M O S E VO L U T I VO S A P L I C A D O S A L A G

Más detalles

Representación, Codificación en un AG Población Inicial. Aptitud. Estrategia de Selección. Cruce, Mutación, Reemplazo. Condición de Parada.

Representación, Codificación en un AG Población Inicial. Aptitud. Estrategia de Selección. Cruce, Mutación, Reemplazo. Condición de Parada. Computación n Evolutiva: Algoritmos Genéticos 1.- Metaheurísticos. Computación Evolutiva: Algoritmos Genéticos 2.- Conceptos principales de un Algoritmo Genético 3.- Estructura de un Algoritmo Genético

Más detalles

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 22. Algoritmos Genéticos. prb@2007 2

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 22. Algoritmos Genéticos. prb@2007 2 Procesamiento Digital de Imágenes Pablo Roncagliolo B. Nº 22 prb@2007 2 1 El núcleo de cada célula humana contiene una base de datos química. Esta base de datos contiene todas las instrucciones que la

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA ELÉCTRICA PROGRAMA DE MAESTRÍA EN INGENIERÍA ELÉCTRICA

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA ELÉCTRICA PROGRAMA DE MAESTRÍA EN INGENIERÍA ELÉCTRICA UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA ELÉCTRICA PROGRAMA DE MAESTRÍA EN INGENIERÍA ELÉCTRICA ALGORITMOS GRASP Y SIMULATED ANNEALING COMO INICIALIZADORES DE BRANCH AND BOUND EN LA SOLUCIÓN

Más detalles

Redes de Kohonen y la Determinación Genética de las Clases

Redes de Kohonen y la Determinación Genética de las Clases Redes de Kohonen y la Determinación Genética de las Clases Angel Kuri Instituto Tecnológico Autónomo de México Octubre de 2001 Redes Neuronales de Kohonen Las Redes de Kohonen, también llamadas Mapas Auto-Organizados

Más detalles

Tema 3: Problemas de Satisfacción de Restricciones

Tema 3: Problemas de Satisfacción de Restricciones Tema 3: Problemas de Satisfacción de Restricciones Universidad de Granada Tema 3: Satisfacción de Restricciones Contenido Problemas de satisfacción de restricciones Métodos de búsqueda Búsqueda local para

Más detalles

Búsqueda heurística Prof. Constantino Malagón

Búsqueda heurística Prof. Constantino Malagón Búsqueda heurística Prof. Constantino Malagón Area de Computación e Inteligencia Artificial 1 Búsqueda heurística Los métodos de búsqueda heurística disponen de alguna información sobre la proximidad de

Más detalles

Generación automática de casos de prueba mediante búsqueda dispersa

Generación automática de casos de prueba mediante búsqueda dispersa Generación automática de casos de prueba mediante búsqueda dispersa Raquel Blanco, Eugenia Díaz, Javier Tuya Departamento de Informática, Universidad de Oviedo {rblanco madiaz tuya}@uniovi.es Abstract

Más detalles

Métodos Heurísticos en Inteligencia Artificial

Métodos Heurísticos en Inteligencia Artificial Métodos Heurísticos en Inteligencia Artificial Javier Ramírez rez-rodríguez Ana Lilia Laureano-Cruces Universidad Autónoma Metropolitana Métodos Heurísticos en Inteligencia Artificial Los problemas de

Más detalles

Aplicación de la inteligencia artificial a la resolución del problema de asignación de estudiantes del departamento de PDI

Aplicación de la inteligencia artificial a la resolución del problema de asignación de estudiantes del departamento de PDI Aplicación de la inteligencia artificial a la resolución del problema de asignación de estudiantes del departamento de PDI Ricardo Köller Jemio Departamento de Ciencias Exactas e Ingeniería, Universidad

Más detalles

ALGORITMOS GENÉTICOS

ALGORITMOS GENÉTICOS Arranz de la Peña, Jorge Universidad Carlos III 100025106@alumnos.uc3m.es ALGORITMOS GENÉTICOS Parra Truyol, Antonio Universidad Carlos III 100023822@alumnos.uc3m.es En este documento se pretende analizar

Más detalles

Leica Application Suite

Leica Application Suite Leica Application Suite Macro Editor y Macro Runner Personalizado y automatizado 2 Las instrucciones se pueden pausar opcionalmente cuando la rutina se ejecuta para interactuar con las imágenes. Las instrucciones

Más detalles

Julian López Franco Universidad de La Salle Carrera 2 No. 10 70 Bogotá, Colombia jullopez@unisalle.edu.co

Julian López Franco Universidad de La Salle Carrera 2 No. 10 70 Bogotá, Colombia jullopez@unisalle.edu.co ESTRATEGIAS PARA EL DISEÑO E HIBRIDACIÓN DE UNA METAHEURÍSTICA BASADA EN BÚSQUEDA DISPERSA QUE RESUELVA EL PROBLEMA MDVRP MULTIOBJETIVO: COSTO Y BALANCEO DE CARGA Julian López Franco Universidad de La

Más detalles

Inteligencia Artificial para desarrolladores Conceptos e implementación en C#

Inteligencia Artificial para desarrolladores Conceptos e implementación en C# Introducción 1. Estructura del capítulo 19 2. Definir la inteligencia 19 3. La inteligencia de los seres vivos 22 4. La inteligencia artificial 24 5. Dominios de aplicación 26 6. Resumen 28 Sistemas expertos

Más detalles

Un algoritmo evolutivo simple para el problema de asignación de tareas a procesadores

Un algoritmo evolutivo simple para el problema de asignación de tareas a procesadores Un algoritmo evolutivo simple para el problema de asignación de tareas a procesadores Pablo Ezzatti CeCal, Facultad de Ingeniería Universidad de la República, Uruguay pezzatti@fing.edu.uy Sergio Nesmachnow

Más detalles

TÉCNICAS DE PLANIFICACIÓN Y CONTROL DE PROYECTOS 1

TÉCNICAS DE PLANIFICACIÓN Y CONTROL DE PROYECTOS 1 Técnicas de planificación y control de proyectos Andrés Ramos Universidad Pontificia Comillas http://www.iit.comillas.edu/aramos/ Andres.Ramos@comillas.edu TÉCNICAS DE PLANIFICACIÓN Y CONTROL DE PROYECTOS

Más detalles

Comparación de técnicas metaheurísticas para la generación automática de casos de prueba que obtengan una cobertura software

Comparación de técnicas metaheurísticas para la generación automática de casos de prueba que obtengan una cobertura software Comparación de técnicas metaheurísticas para la generación automática de casos de prueba que obtengan una cobertura software Eugenia Díaz, Raquel Blanco, Javier Tuya Departamento de Informática, Universidad

Más detalles

UTgeNes - Framework para Implementación y Estudio de Algoritmos

UTgeNes - Framework para Implementación y Estudio de Algoritmos UTgeNes - Framework para Implementación y Estudio de Algoritmos Genéticos Abstract UTgeNes es un framework para la implementación y estudio de algoritmos genéticos propuesto para la realización de trabajos

Más detalles

18:15 19:15 13.5. Reunión de la red HEUR. Sala Andalucía 3. 19:30 21:00 Acto de Inauguración y Conferencia Invitada CEDI2005. Miércoles, 14 Septiembre

18:15 19:15 13.5. Reunión de la red HEUR. Sala Andalucía 3. 19:30 21:00 Acto de Inauguración y Conferencia Invitada CEDI2005. Miércoles, 14 Septiembre IVCongresoEspañolde Metaheurísticas,Algoritmos EvolutivosyBioinspirados MAEB 05 18:15 19:15 13.5.ReunióndelaredHEUR SalaAndalucía3 19:30 21:00 ActodeInauguraciónyConferencia InvitadaCEDI2005 Miércoles,14Septiembre

Más detalles

FORMULACIÓN DE UN ALGORITMO GENÉTICO PARA EL PROBLEMA DE PROGRAMACIÓN DE ÓRDENES DE TRABAJO DE UNA EMPRESA DE ARTES GRÁFICAS

FORMULACIÓN DE UN ALGORITMO GENÉTICO PARA EL PROBLEMA DE PROGRAMACIÓN DE ÓRDENES DE TRABAJO DE UNA EMPRESA DE ARTES GRÁFICAS FORMULACIÓN DE UN ALGORITMO GENÉTICO PARA EL PROBLEMA DE PROGRAMACIÓN DE ÓRDENES DE TRABAJO DE UNA EMPRESA DE ARTES GRÁFICAS PROYECTO DE GRADO Javier mauricio gamboa salgado Código: 544004 John alexander

Más detalles

Introducción INTRODUCCIÓN

Introducción INTRODUCCIÓN Introducción INTRODUCCIÓN Las empresas de distintos sectores económicos han concebido la logística como un proceso estratégico para mantener su actividad y garantizar la eficiencia de las operaciones de

Más detalles

Algoritmos Genéticos. Algoritmos Genéticos. Introducción a la Computación Evolutiva. Tercera Clase: Algoritmos Genéticos

Algoritmos Genéticos. Algoritmos Genéticos. Introducción a la Computación Evolutiva. Tercera Clase: Algoritmos Genéticos Introducción a la Computación Evolutiva Tercera Clase: Algoritmos Genéticos Algoritmos Genéticos Desarrollados en USA durante los años 70 Autores principales: J. Holland, K. DeJong, D. Goldberg Aplicados

Más detalles

Complejidad - Problemas NP-Completos. Algoritmos y Estructuras de Datos III

Complejidad - Problemas NP-Completos. Algoritmos y Estructuras de Datos III Complejidad - Problemas NP-Completos Algoritmos y Estructuras de Datos III Teoría de Complejidad Un algoritmo eficiente es un algoritmo de complejidad polinomial. Un problema está bien resuelto si se conocen

Más detalles

Capítulo VI MÉTODOS DE SOLUCIÓN PARA JOB SHOP SCHEDULING

Capítulo VI MÉTODOS DE SOLUCIÓN PARA JOB SHOP SCHEDULING Capítulo VI MÉTODOS DE SOLUCIÓN PARA JOB SHOP SCHEDULING 6.1. HEURÍSTICAS CONVENCIONALES El problema de job shop scheduling (JSSP) es un problema muy importante [69]; está entre los problemas de optimización

Más detalles

Un algoritmo evolutivo simple para el problema de asignación de tareas a procesadores

Un algoritmo evolutivo simple para el problema de asignación de tareas a procesadores Un algoritmo evolutivo simple para el problema de asignación de tareas a procesadores Pablo Ezzatti CeCal, Facultad de Ingeniería Universidad de la República, Uruguay pezzatti@fing.edu.uy Sergio Nesmachnow

Más detalles

Una heurística para la asignación de máquinas a trabajos fijos

Una heurística para la asignación de máquinas a trabajos fijos VIII Congreso de Ingeniería de Organización Leganés, 9 y 10 de septiembre de 2004 Una heurística para la asignación de máquinas a trabajos fijos José Manuel García Sánchez, Marcos Calle Suárez, Gabriel

Más detalles

Sistemas de producción y búsqueda de soluciones. Area de Computación e Inteligencia Artificial 1

Sistemas de producción y búsqueda de soluciones. Area de Computación e Inteligencia Artificial 1 Sistemas de producción y búsqueda de soluciones Area de Computación e Inteligencia Artificial 1 Técnicas de búsqueda Resolución de problemas en Inteligencia Artificial. En general, podemos afirmar que

Más detalles

Algoritmos Genéticos

Algoritmos Genéticos Introducción a la Computación Evolutiva Tercera Clase: Algoritmos Genéticos Algoritmos Genéticos Desarrollados en USA durante los años 70 Autores principales: J. Holland, K. DeJong, D. Goldberg Aplicados

Más detalles

Tema 2. Ingeniería del Software I feliu.trias@urjc.es

Tema 2. Ingeniería del Software I feliu.trias@urjc.es Tema 2 Ciclo de vida del software Ingeniería del Software I feliu.trias@urjc.es Índice Qué es el ciclo de vida del Software? El Estándar 12207 Modelos de proceso Qué es el Ciclo de Vida del SW? Definición

Más detalles

2 Métodos combinatorios

2 Métodos combinatorios 2 Métodos combinatorios Las pruebas pueden aplicarse de muchas maneras, es decir, existen diferentes formas de preparar casos de prueba. En este capítulo se presentan dos formas de prueba muy fáciles de

Más detalles

Ciclo de vida y Metodologías para el desarrollo de SW Definición de la metodología

Ciclo de vida y Metodologías para el desarrollo de SW Definición de la metodología Ciclo de vida y Metodologías para el desarrollo de SW Definición de la metodología La metodología para el desarrollo de software es un modo sistemático de realizar, gestionar y administrar un proyecto

Más detalles

Algoritmos sobre Grafos

Algoritmos sobre Grafos Sexta Sesión 27 de febrero de 2010 Contenido Deniciones 1 Deniciones 2 3 4 Deniciones sobre Grafos Par de una lista de nodos y una lista de enlaces, denidos a su vez como pares del conjunto de nodos.

Más detalles

Proceso de testing. Ingeniería del Software I. Actividades del proceso de testing. Actividades del proceso de testing

Proceso de testing. Ingeniería del Software I. Actividades del proceso de testing. Actividades del proceso de testing Ingeniería del Software I Testing Martina Marré martina@dc.uba.ar Proceso de testing RECORDEMOS El testing no es sólo una etapa del proceso de desarrollo Tradicionalmente, empezaba al término de la implementación,

Más detalles

Resumen de técnicas para resolver problemas de programación entera. 15.053 Martes, 9 de abril. Enumeración. Un árbol de enumeración

Resumen de técnicas para resolver problemas de programación entera. 15.053 Martes, 9 de abril. Enumeración. Un árbol de enumeración 5053 Martes, 9 de abril Ramificación y acotamiento () Entregas: material de clase Resumen de técnicas para resolver problemas de programación entera Técnicas de enumeración Enumeración completa hace una

Más detalles

TEMA 3 PROFESOR: M.C. ALEJANDRO GUTIÉRREZ DÍAZ 2 3. PROCESAMIENTO DE CONSULTAS DISTRIBUIDAS

TEMA 3 PROFESOR: M.C. ALEJANDRO GUTIÉRREZ DÍAZ 2 3. PROCESAMIENTO DE CONSULTAS DISTRIBUIDAS 1 1 BASES DE DATOS DISTRIBUIDAS TEMA 3 PROFESOR: M.C. ALEJANDRO GUTIÉRREZ DÍAZ 2 3. PROCESAMIENTO DE CONSULTAS DISTRIBUIDAS 3.1 Metodología del procesamiento de consultas distribuidas 3.2 Estrategias de

Más detalles

La gestión de proyectos es la rama de la ciencia de la administración que trata de la planificación y el control de proyectos.

La gestión de proyectos es la rama de la ciencia de la administración que trata de la planificación y el control de proyectos. DEFINICIÓN DE PROYECTO Un proyecto es un conjunto de acciones No repetitivas Únicas De duración determinada Formalmente organizadas Que utilizan recursos Podremos considerar un proyecto, a efectos de aplicarle

Más detalles

OPTIMIZACIÓN DEL PROBLEMA DEL AGENTE VIAJERO USANDO EL SISTEMA DE COLONIA DE HORMIGAS Y BUSQUEDA GREEDY

OPTIMIZACIÓN DEL PROBLEMA DEL AGENTE VIAJERO USANDO EL SISTEMA DE COLONIA DE HORMIGAS Y BUSQUEDA GREEDY OPTIMIZACIÓN DEL PROBLEMA DEL AGENTE VIAJERO USANDO EL SISTEMA DE COLONIA DE HORMIGAS Y BUSQUEDA GREEDY Esquivel Estrada Jaime*, Ordoñez Arizmendi Armando*, Ortiz Servín Juan José**. *Universidad Autónoma

Más detalles

7. Conclusiones. 7.1 Resultados

7. Conclusiones. 7.1 Resultados 7. Conclusiones Una de las preguntas iniciales de este proyecto fue : Cuál es la importancia de resolver problemas NP-Completos?. Puede concluirse que el PAV como problema NP- Completo permite comprobar

Más detalles

1 Agencia de viajes: enunciado

1 Agencia de viajes: enunciado 1 AGENCIA DE VIAJES: ENUNCIADO 1 1 Agencia de viajes: enunciado Una agencia de viajes mantiene una base de datos con exactamente N clientes y M destinos turísticos. En una situación real, estos valores

Más detalles

Hoy terminamos caja blanca

Hoy terminamos caja blanca Hoy terminamos caja blanca Aseguramiento de la calidad y pruebas de software 5- Pruebas del software Caja Blanca/Otros enfoques Blanca A. Vargas Govea vargasgovea@itesm.mx Marzo 22, 2013 Contenido Pruebas

Más detalles

Resolución de Problemas

Resolución de Problemas Resolución de Problemas con algoritmos Colaboratorio de Computación Avanzada (CNCA) 2015 1 / 27 Contenidos 1 Introducción 2 Elementos de algoritmos Elementos Variables Estructuras de Control Condicionales

Más detalles

CICLO DE VIDA DEL SOFTWARE. Una aproximación lógica a la adquisición, el suministro, el desarrollo, la explotación y el mantenimiento del software

CICLO DE VIDA DEL SOFTWARE. Una aproximación lógica a la adquisición, el suministro, el desarrollo, la explotación y el mantenimiento del software 3.010 CONCEPTO DE CICLO DE VIDA Una aproximación lógica a la adquisición, el suministro, el desarrollo, la explotación y el mantenimiento del software IEEE 1074 Un marco de referencia que contiene los

Más detalles

Análisis de los datos

Análisis de los datos Universidad Complutense de Madrid CURSOS DE FORMACIÓN EN INFORMÁTICA Análisis de los datos Hojas de cálculo Tema 6 Análisis de los datos Una de las capacidades más interesantes de Excel es la actualización

Más detalles

Unidad Académica Profesional UAEM Tianguistenco, Paraje El Tejocote, San Pedro Tlaltizapán, Tianguistenco, México CP 52640

Unidad Académica Profesional UAEM Tianguistenco, Paraje El Tejocote, San Pedro Tlaltizapán, Tianguistenco, México CP 52640 Estudio de Tres Algoritmos Heurísticos para Resolver un Problema de Distribución con Ventanas de Tiempo: Sistema por Colonia de Hormigas, Búsqueda Tabú y Heurístico Constructivo de una Ruta Manuel González

Más detalles

MatemásTIC. Estudio y práctica del álgebra matricial con una aplicación TIC didáctica y sencilla. 65 Noviembre 2010, pp. 57-67

MatemásTIC. Estudio y práctica del álgebra matricial con una aplicación TIC didáctica y sencilla. 65 Noviembre 2010, pp. 57-67 65, pp. 57-67 Estudio y práctica del álgebra matricial con una aplicación TIC didáctica y sencilla MatemásTIC A lo largo de los distintos números de Suma nos planteamos en esta sección descubrir distintas

Más detalles

Framework basado en Colonias de Hormigas artificiales para la resolución de problemas de optimización

Framework basado en Colonias de Hormigas artificiales para la resolución de problemas de optimización Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Laboratorio de Inteligencia Artificial Framework basado en Colonias de Hormigas artificiales para la resolución de problemas

Más detalles

CAPITULO 4 JUSTIFICACION DEL ESTUDIO. En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de

CAPITULO 4 JUSTIFICACION DEL ESTUDIO. En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de CAPITULO 4 JUSTIFICACION DEL ESTUDIO En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de estudios previos y los alcances que justifican el presente estudio. 4.1. Justificación.

Más detalles

Programación Lineal Entera

Programación Lineal Entera Programación Lineal Entera P.M. Mateo y David Lahoz 2 de julio de 2009 En este tema se presenta un tipo de problemas formalmente similares a los problemas de programación lineal, ya que en su descripción

Más detalles

TÉCNICAS HEURÍSTICAS Y METAHEURÍSTICAS DE OPTIMIZACIÓN

TÉCNICAS HEURÍSTICAS Y METAHEURÍSTICAS DE OPTIMIZACIÓN TÉCNICAS HEURÍSTICAS Y METAHEURÍSTICAS DE OPTIMIZACIÓN RAMÓN ALFONSO GALLEGO RENDÓN ANTONIO ESCOBAR ZULUAGA ELIANA MIRLEDY TORO OCAMPO Universidad Tecnológica de Pereira Pereira - Risaralda - Colombia

Más detalles

CAPÍTUL07 SISTEMAS DE FILOSOFÍA HÍBRIDA EN BIOMEDICINA. Alejandro Pazos, Nieves Pedreira, Ana B. Porto, María D. López-Seijo

CAPÍTUL07 SISTEMAS DE FILOSOFÍA HÍBRIDA EN BIOMEDICINA. Alejandro Pazos, Nieves Pedreira, Ana B. Porto, María D. López-Seijo CAPÍTUL07 SISTEMAS DE FILOSOFÍA HÍBRIDA EN BIOMEDICINA Alejandro Pazos, Nieves Pedreira, Ana B. Porto, María D. López-Seijo Laboratorio de Redes de Neuronas Artificiales y Sistemas Adaptativos Universidade

Más detalles

Sistemas de Recuperación de Información

Sistemas de Recuperación de Información Sistemas de Recuperación de Información Los SRI permiten el almacenamiento óptimo de grandes volúmenes de información y la recuperación eficiente de la información ante las consultas de los usuarios. La

Más detalles

GANTT, PERT y CPM. Figura 5.3: Carta GANTT 3.

GANTT, PERT y CPM. Figura 5.3: Carta GANTT 3. GANTT, PERT y CPM Características Conseguir una buena programación es un reto, no obstante es razonable y alcanzable. Ella debe tener el compromiso del equipo al completo, para lo cual se recomienda que

Más detalles

Propuesta de un algoritmo genético para la programación diaria de los pedidos de una empresa del sector de la construcción

Propuesta de un algoritmo genético para la programación diaria de los pedidos de una empresa del sector de la construcción 5 th International Conference on Industrial Engineering and Industrial Management XV Congreso de Ingeniería de Organización Cartagena, 7 a 9 de Septiembre de 2011 Propuesta de un algoritmo genético para

Más detalles

Representación del conocimiento. Diferencia entre información y conocimiento (1) Diferencia entre información y conocimiento (2) Notas

Representación del conocimiento. Diferencia entre información y conocimiento (1) Diferencia entre información y conocimiento (2) Notas Todo problema es más sencillo de resolver si disponemos de conocimiento específico sobre él Este conocimiento dependiente del dominio se combina con el conocimiento general sobre cómo resolver problemas

Más detalles

Diseño de redes viales urbanas usando algoritmos genéticos. M. Angélica Pinninghoff J.* Eduardo Matthews D. * Héctor Díaz C.

Diseño de redes viales urbanas usando algoritmos genéticos. M. Angélica Pinninghoff J.* Eduardo Matthews D. * Héctor Díaz C. Diseño de redes viales urbanas usando algoritmos genéticos M. Angélica Pinninghoff J.* Eduardo Matthews D. * Héctor Díaz C. e-mail: mapinnin@inf.udec.cl * Departamento de Ingeniería Informática y Ciencias

Más detalles

Simulación ISC. Profr. Pedro Pablo Mayorga

Simulación ISC. Profr. Pedro Pablo Mayorga Simulación ISC Profr. Pedro Pablo Mayorga Ventajas 1. Es un proceso relativamente eficiente y flexible. 2. Puede ser usada para analizar y sintetizar una compleja y extensa situación real, pero no puede

Más detalles

Carrera: SCB - 0419 4-0-8. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Carrera: SCB - 0419 4-0-8. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Investigación de operaciones Ingeniería en Sistemas Computacionales SCB - 0419

Más detalles

CICLO DE VIDA DEL SOFTWARE

CICLO DE VIDA DEL SOFTWARE CICLO DE VIDA DEL SOFTWARE 1. Concepto de Ciclo de Vida 2. Procesos del Ciclo de Vida del Software 3. Modelo en cascada 4. Modelo incremental 5. Modelo en espiral 6. Prototipado 7. La reutilización en

Más detalles

Optimización de Procesos

Optimización de Procesos Optimización de Procesos Tier I: Métodos Matemáticos de Click to edit Master title style Optimización Sección 4: Optimización Multi-Objetivo Click to Introducción edit Master title style La optimización

Más detalles

Algoritmos para CSP 1

Algoritmos para CSP 1 Algoritmos para CSP 1 1. Técnicas de Consistencia, o Inferenciales I. Inferencia, o consistencia completa Proceso que permite la síntesis de todas las restricciones de un problema en una única restricción

Más detalles

INTRODUCCIÓN AL TESTING BASADO EN MODELOS

INTRODUCCIÓN AL TESTING BASADO EN MODELOS INTRODUCCIÓN AL TESTING BASADO EN MODELOS SEMANA DE LA CIENCIA Y DE LA INGENIERÍA. UNIVERSIDAD DE CÁDIZ. Manuel Núñez - Universidad Complutense de Madrid WARNING! El uso que haré del castellano en esta

Más detalles

- Bases de Datos - - Diseño Físico - Luis D. García

- Bases de Datos - - Diseño Físico - Luis D. García - Diseño Físico - Luis D. García Abril de 2006 Introducción El diseño de una base de datos está compuesto por tres etapas, el Diseño Conceptual, en el cual se descubren la semántica de los datos, definiendo

Más detalles

Ciclo de vida del Software

Ciclo de vida del Software Tema 2: Ciclo de vida del Software Marcos López Sanz Índice Qué es el ciclo de vida del Software? La norma 12207-2008 Modelos de desarrollo Qué es el Ciclo de Vida del SW? Es una sucesión de etapas por

Más detalles

DISEÑO DE METAHEURÍSTICOS HÍBRIDOS PARA PROBLEMAS DE RUTAS CON FLOTA HETEROGÉNEA (2 Parte) : GRASP Y CONCENTRACIÓN HEURÍSTICA

DISEÑO DE METAHEURÍSTICOS HÍBRIDOS PARA PROBLEMAS DE RUTAS CON FLOTA HETEROGÉNEA (2 Parte) : GRASP Y CONCENTRACIÓN HEURÍSTICA DISEÑO DE METAHEURÍSTICOS HÍBRIDOS PARA PROBLEMAS DE RUTAS CON FLOTA HETEROGÉNEA (2 Parte) : GRASP Y CONCENTRACIÓN HEURÍSTICA Cristina R. Delgado Serna Departamento de ECONOMÍA (Área de Economía Aplicada)

Más detalles

Ingeniería del Software I Clase de Testing Funcional 2do. Cuatrimestre de 2007

Ingeniería del Software I Clase de Testing Funcional 2do. Cuatrimestre de 2007 Enunciado Se desea efectuar el testing funcional de un programa que ejecuta transferencias entre cuentas bancarias. El programa recibe como parámetros la cuenta de origen, la de cuenta de destino y el

Más detalles

Métodos generales de generación de variables aleatorias

Métodos generales de generación de variables aleatorias Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad

Más detalles

Aritmética finita y análisis de error

Aritmética finita y análisis de error Aritmética finita y análisis de error Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 1 / 47 Contenidos 1 Sistemas decimal

Más detalles

Búsqueda tabú y evolución genética para el árbol de expansión capacitado de costo mínimo

Búsqueda tabú y evolución genética para el árbol de expansión capacitado de costo mínimo Búsqueda tabú y evolución genética para el árbol de expansión capacitado de costo mínimo Efraín Ruiz Dept. d Estadística i Investigació Operativa Universitat Politècnica de Catalunya Jordi Girona, 1-3.

Más detalles

Uso de una Colonia de Hormigas. para resolver Problemas de Programación. de Horarios

Uso de una Colonia de Hormigas. para resolver Problemas de Programación. de Horarios LABORATORIO NACIONAL DE INFORMÁTICA AVANZADA A. C. Centro de Enseñanza LANIA Uso de una Colonia de Hormigas para resolver Problemas de Programación de Horarios Tesis que presenta: Emanuel Téllez Enríquez

Más detalles

CAPÍTULO 2 METODOS PROBABILÍSTICOS

CAPÍTULO 2 METODOS PROBABILÍSTICOS CAPÍTULO 2 METODOS PROBABILÍSTICOS La planeación de movimientos tiene aplicaciones en muchas áreas tales como la robótica, sistemas de realidad virtual y diseño asistido por computadora. Aunque muchos

Más detalles

ESCUELA POLITÉCNICA NACIONAL

ESCUELA POLITÉCNICA NACIONAL ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA OPTIMIZACIÓN DE CONTROLADORES DIGITALES PID EN SISTEMAS DINÁMICOS USANDO ALGORITMOS GENÉTICOS PROYECTO PREVIO A LA OBTENCIÓN

Más detalles

Algoritmos Genéticos. Aplicación al Juego de las N Reinas.

Algoritmos Genéticos. Aplicación al Juego de las N Reinas. Algoritmos Genéticos. Aplicación al Juego de las N Reinas. Juan Carlos Pozas Bustos NIA: 100025154 Univ.Carlos III de Madrid Ing.Telecomunicación España 100025154@alumnos.uc3m.es Términos generales En

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMÉRICA) SYLLABO

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMÉRICA) SYLLABO UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMÉRICA) FACULTAD DE INGENIERIA DE SISTEMAS E INFORMATICA Escuela Académico Profesional de Ingeniería de Sistemas 1. ESPECIFICACIONES

Más detalles

Computación Evolutiva: Algoritmos Genéticos

Computación Evolutiva: Algoritmos Genéticos Computación Evolutiva: Apuntes de la asignatura: Inteligencia Artificial Razonamiento Aproximado (Máster) Daniel Manrique Gamo Profesor Titular de Universidad Índice 1. Introducción 5 1.1. Bases de la

Más detalles

SISI / TS / AG / SR SIMULADOR DE SISTEMAS DE INVENTARIOS ESTOCASTICOS

SISI / TS / AG / SR SIMULADOR DE SISTEMAS DE INVENTARIOS ESTOCASTICOS 62 CAPITULO 3 SISI / TS / AG / SR SIMULADOR DE SISTEMAS DE INVENTARIOS ESTOCASTICOS En este capítulo se describe de manera general lo que es SISI / TS / AG / SR y se explica cada una de las opciones que

Más detalles

Entrenamiento de una red neuronal, utilizando un corpus de voces infantiles

Entrenamiento de una red neuronal, utilizando un corpus de voces infantiles Entrenamiento de una red neuronal, utilizando un corpus de voces infantiles Autora: Ana María Hernández Zecuatl Asesora Investigación: Mc Nancy Aguas García 6 de enero de 2009 Resumen El presente trabajo

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 11 de septiembre de 2003 1. Introducción Un LP donde se requiere que todas las variables sean enteras se denomina un problema

Más detalles

Capítulo 1. Introducción

Capítulo 1. Introducción Capítulo 1. Introducción El WWW es la mayor fuente de imágenes que día a día se va incrementando. Según una encuesta realizada por el Centro de Bibliotecas de Cómputo en Línea (OCLC) en Enero de 2005,

Más detalles

Fundamentos de Investigación de Operaciones Asignación y Vendedor Viajero

Fundamentos de Investigación de Operaciones Asignación y Vendedor Viajero Fundamentos de Investigación de Operaciones y Vendedor Viajero 23 de mayo de 2004 Si bien la resolución del problema de transporte mediante tableau parece ser muy expedita, existen ciertos tipos de problemas

Más detalles

Tema 11. Soporte del Sistema Operativo 11.1. REQUERIMIENTOS DE LOS SISTEMAS OPERATIVOS. 11.1.1. MULTIPROGRAMACIÓN.

Tema 11. Soporte del Sistema Operativo 11.1. REQUERIMIENTOS DE LOS SISTEMAS OPERATIVOS. 11.1.1. MULTIPROGRAMACIÓN. Tema 11 Soporte del Sistema Operativo 11.1. REQUERIMIENTOS DE LOS SISTEMAS OPERATIVOS. El sistema operativo es básicamente un programa que controla los recursos del computador, proporciona servicios a

Más detalles