3. Método de cálculo.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3. Método de cálculo."

Transcripción

1 Método de cálculo 7. Método de cálculo. Como método de cálculo vamos a seguir el método de los desplazamientos, en el que las incógnitas son los desplazamientos de los nudos de la estructura. Y para estudiar el método, y ver como se determina la matriz de rigidez del pórtico, se va a sistematizar. n primer lugar hay que hallar la matriz de rigidez de cada una de las barras que componen la estructura, referidas a unas coordenadas locales propias de cada barra. Posteriormente todas estas matrices se refieren a unas coordenadas globales propias de la estructura, para finalizar agrupándolas en la matriz de rigidez del pórtico, en la cual quedan incorporadas las condiciones de compatibilidad y de equilibrio de todos los nudos... istemas de ejes coordenados. n una estructura continua plana se utiliza un sistema de ejes globales X, Y para toda la estructura y un sistema de ejes locales X, Y para cada barra. Figura. jes locales y globales en un pórtico biempotrado. anto en un sistema como en otro, el eje X es el eje longitudinal de la barra y el eje Y se obtiene girando 9º el eje X en sentido sinextrorsum (a izquierdas). n el sistema de ejes locales de una barra -, el eje X coincide con la directriz de la barra y su sentido positivo es el de avance desde el extremo que se considera origen hasta el extremo final. este sistema de ejes se refieren las solicitaciones y los desplazamientos de la barra.

2 8 Cálculo matricial de pórticos biempotrados a dos aguas n el sistema de ejes globales del pórtico se refieren las coordenadas de sus nudos, sus desplazamientos, las fuerzas que equilibran sus nudos y las cargas que actúan sobre la estructura... Vectores de desplazamientos y de fuerzas. os nudos de una estructura experimentan desplazamientos y están sometidos a fuerzas externas. nálogamente, los extremos de cualquier barra de la estructura experimentan desplazamientos y están sometidos a fuerzas internas o solicitaciones. odos estos desplazamientos de los nudos y de los extremos de las barras y todas las fuerzas internas y externas se representan por matrices columna, que constituyen los vectores de desplazamientos y de fuerzas.... Desplazamientos y fuerzas internas de un nudo. Y Y P P θ M i X i P X Figura 7. Desplazamientos de un nudo. Figura 8. Fuerzas externas sobre un nudo. Un nudo rígido puede experimentar un desplazamiento longitudinal y un desplazamiento angular θ (figura 7). os sentidos positivos de las componentes x, y del desplazamiento son los que coinciden con los sentidos positivos de los ejes globales X, Y. l sentido positivo del giro θ es el sentido sinextrorsum. os desplazamientos del nudo i se representan por el vector {d i, definido por { d i x y θ as fuerzas externas que actúan sobre el nudo i son, en general, la fuerza P y el par de momento M (figura 8). nálogamente, los sentidos positivos de las componentes P x, P y de la fuerza P coinciden con los sentidos positivos de los ejes globales X, Y. l sentido positivo del momento M es el correspondiente a un giro sinextrorsum. as fuerzas externas sobre el nudo i se representan por el vector {P i, definido por:

3 Método de cálculo 9 { P i P x P y M... Desplazamientos y solicitaciones en una barra. Y θ X Y θ M N X M N Figura 9. Desplazamientos y solicitaciones en una barra -. ea la barra -, que pertenece a un pórtico objeto del estudio. e adopta el extremo como origen de la barra y se representan el sistema de ejes locales, las solicitaciones y los desplazamientos de sus extremos. e consideran positivos los desplazamientos longitudinales y transversales dirigidos según los sentidos positivos de los ejes locales X, Y. ucede igual con los sentidos positivos de las fuerzas normales N y de las fuerzas cortantes. sí mismo, los sentidos positivos de los giros θ de las secciones extremas y de los momentos flectores son los correspondientes a giros sinextrorsum. os desplazamientos de los extremos y de la barra se representan por los vectores {d y {d, definidos por: { d θ { d θ

4 Cálculo matricial de pórticos biempotrados a dos aguas nálogamente, las solicitaciones en los extremos y se representan por los vectores { y {, definidos por: { N M { N M.. Matriz de rigidez de una barra en coordenadas locales. (a) (b) Figura. Desplazamientos y solicitaciones en una barra. n la figura a) se representa una barra - de sección constante, cuyos d y { d. stos y (figura b). egún la ley de Hooke y el principio de superposición, entre extremos experimentan los desplazamientos { desplazamientos originan en los extremos de la barra las solicitaciones { { los desplazamientos y las solicitaciones existen las siguientes relaciones:

5 Método de cálculo donde el coeficiente de proporcionalidad ij, o coeficiente de rigidez ij de la barra, representa la solicitación i originada por un desplazamiento j unitario. stas expresiones pueden escribirse en forma matricial: o de un modo más reducido { [ ] { d [] siendo [] la matriz de rigidez de la barra en coordenadas locales. Para determinar los elementos de la matriz [] se provocan aisladamente desplazamientos unitarios dirigidos según,,... y se calculan mediante las expresiones [], [] y [] las solicitaciones que originan, que son precisamente los coeficientes de rigidez ij. Y ' Figura : Desplazamiento. X Y ' Figura : Desplazamiento. X

6 Cálculo matricial de pórticos biempotrados a dos aguas Y Figura : Desplazamiento. X Y ' Figura : Desplazamiento. X Y ' X Figura : Desplazamiento. Y Figura : Desplazamiento. X Una vez determinados los coeficientes de rigidez se compone la matriz de rigidez de la barra en coordenadas locales:

7 Método de cálculo [ ] a matriz de rigidez [] tiene las siguientes propiedades: s una matriz cuadrada de orden. os elementos de la diagonal principal son positivos y no pueden ser nulos. llo se debe a que el desplazamiento de un extremo de la barra, en un determinado sentido, exige la aplicación en ese extremo de la solicitación correspondiente y en el mismo sentido. l elemento ij representa la solicitación de orden i ( i ) originada por el desplazamiento unitario de orden j ( j ). sistema sistema ' Figura 7: Reciprocidad de los trabajos de deformación. s una matriz simétrica, lo que se demuestra mediante el teorema de Maxwell o de la reciprocidad de los trabajos. n efecto, una igualdad cualquiera entre elementos simétricos, por ejemplo y (figura 7), se demuestra igualando el trabajo que realizan las fuerzas de un sistema al efectuar los desplazamientos de un sistema, al trabajo que realizan las fuerzas de un sistema al efectuar los desplazamientos de un sistema. De la igualdad W, W, se deduce y teniendo en cuenta que y,.

8 Cálculo matricial de pórticos biempotrados a dos aguas.. olicitaciones de extremo. ustituyendo la matriz de rigidez [] en [] se obtiene la ecuación matricial: θ θ y x y x M N M N [] que determina las solicitaciones de los extremos de la barra en función de los desplazamientos de esos extremos. eniendo en cuenta las particiones de matrices realizadas, la ecuación matricial [] puede expresarse en la forma: { { [ ] [ ] [ ] [ ] { { d d [] o bien { [ ] { [ ] { d d + { [ ] { [ ] { d d + [7] siendo { M N, { M N, { θ y x d y { θ y x d los vectores de solicitaciones y de desplazamientos de los extremos y en coordenadas locales. demás: [ ] [ ]

9 Método de cálculo [ ] [ ] son las submatrices de rigidez de la barra - en coordenadas locales. Una submatriz cualquiera [ ] determina las solicitaciones que se originan en el extremo debidas a los desplazamientos del extremo. e observa que las matrices [ ] y [ ] son simétricas y que las submatrices [ ] y [ ] son transpuestas... Matriz de rigidez de una barra en coordenadas globales. ea una barra - cuyos ejes locales X, Y están girados un ángulo α respecto a los ejes globales (figura 8). Y X Y X α Figura 8: jes locales de una barra y ejes globales. ntre un vector cualquiera {V referido a coordenadas locales y ese mismo vector {V referido a coordenadas globales existen las relaciones { [ ] { V R V [8] { [ ] { V R V [9] siendo [R] la matriz de rotación definida por: [ ] α α α α cos sen sen cos R

10 Cálculo matricial de pórticos biempotrados a dos aguas Premultiplicando por la matriz de rotación la expresión [7] se obtiene: [ R] { [ R] [ ] { d + [ R] [ ] { d [ R] { [ R] [ ] { d + [ R] [ ] { d y teniendo en cuenta [8] y [9] { [ R] [ ] [ R] { d + [ R] [ ] [ R] { d { [ R] [ ] [ R] { d + [ R] [ ] [ R] { d [] Designando por [ ] [ R] [ ] [ ] [ ] [ R] [ ] [ ] R R [ ] [ R] [ ] [ ] [ ] [ R] [ ] [ ] R R las expresiones [] se convierten en: { [ ] { d + [ ] { d { [ ] { d + [ ] { d o bien { { [ ] [ ] [ ] [ ] { d { d De una forma más simple, siendo [ ] { [ ] { d [ ] [ ] [ ] [ ].. Matriz de rigidez completa del pórtico. Una vez estudiada la matriz de una barra, se va a determinar la matriz de rigidez completa del pórtico. Para ello se considera un nudo común a más de una barra, como es

11 Método de cálculo 7 el caso del nudo de la clave del pórtico, el número, común a las barras - y - (figura 9). Y X Figura 9: jes globales y numeración de nudos en un pórtico. as ecuaciones que determinan las solicitaciones en los extremos de la barra - en función de los desplazamientos de esos extremos, en coordenadas globales, son: { { [ ] [ ] [ ] [ ] { d { d [] De igual modo, las ecuaciones en coordenadas globales que determinan las solicitaciones en los extremos de la barra - en función de los desplazamientos de esos extremos son: { { [ ] [ ] [ ] [ ] { d { d [] l ser rígidos los nudos, los desplazamientos del nudo de la barra - coinciden con los desplazamientos del mismo nudo de la barra -. e verifican las condiciones de compatibilidad, de modo que: x { d y y { d θ x θ x { d y y { d θ θ x

12 8 Cálculo matricial de pórticos biempotrados a dos aguas sí, { d { d { d eniendo en cuenta estas condiciones de compatibilidad, las condiciones de extremo dadas por [] que los desplazamientos de la barra - originan en los cinco nudos del pórtico pueden expresarse de la forma: { { { { { [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] { d { d { d { d { d De igual modo, las solicitaciones de extremo que los desplazamientos de la barra - originan en los nudos del pórtico, recogidas en la expresión [], pueden escribirse así: { { { { { [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] { d { d { d { d { d l efecto que producen los desplazamientos de todas las barras, o sea, los desplazamiento de todos los nudos de la estructura, se recoge en la siguiente ecuación matricial: { { + { { + { { + { { [ ] [ ] [ ] [ ] [ ] [ ] [ ] + [ ] [ ] [ ] [ ] [ ] [ ] [ ] + [ ] [ ] [ ] [ ] [ ] [ ] [ ] + [ ] [ ] [ ] [ ] [ ] [ ] [ ] { d { d { d { d { d [] e puede comprobar que únicamente se producen sumas de submatrices en la diagonal principal, y que las submatrices nulas son aquéllas cuyos subíndices corresponden a dos nudos no contiguos del pórtico. hora bien, el equilibrio de un nudo cualquiera exige que las solicitaciones que el nudo ejerce sobre los extremos de todas las barras que concurren en él formen un sistema equivalente con las fuerzas externas que actúan sobre el nudo. n otras palabras, la suma

13 Método de cálculo 9 de solicitaciones en un nudo debe ser igual a la carga genérica externa aplicada sobre ese nudo. a expresión matricial de esta condición de equilibrio es, para un nudo genérico i: { i { P i ntonces, la ecuación [] puede escribirse { P { P { P { P { P [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] { d { d { d { d { d es decir, { P [ ] { d [] siendo {P el vector de las fuerzas externas (cargas y reacciones) que actúan sobre los nudos, en coordenadas globales. {d el vector de desplazamiento de los nudos, referido también a coordenadas globales. [ ] la matriz de rigidez completa de la estructura. e obtiene de ensamblar las cuatro matrices de rigidez de las barras en coordenadas globales.... Propiedades de la matriz completa [ ]. n los pórticos a dos aguas, que constan de cinco nudos (n ), el orden de la matriz completa es n, es decir,. a matriz de rigidez completa es una matriz simétrica. as submatrices de la diagonal principal [ ii ] son simétricas al proceder a su vez de matrices simétricas. Del mismo modo, las submatrices [ ij ] y [ ji ], que ocupan cuadrículas simétricas respecto a la diagonal principal, también son submatrices simétricas al ser submatrices de barra transpuestas. Desde un punto de vista energético, toda esta simetría es consecuencia del teorema de Maxwell.

14 Cálculo matricial de pórticos biempotrados a dos aguas os elementos de la diagonal principal nunca pueden ser submatrices nulas. a matriz [ ] es una matriz singular (no tiene matriz inversa). n principio, y hasta ahora se ha constatado, la matriz [ ] se genera estableciendo las condiciones de equilibrio de todos los nudos de la estructura, como si en el pórtico no hubiese enlaces externos. Por ello, y como parece razonable, si entre las cargas aplicadas existe equilibrio, el sistema de ecuaciones [] es indeterminado por haber infinitas soluciones de desplazamientos de los nudos, entre las que se incluye la solución transcendente, que equivale a suponer el pórtico como un cuerpo rígido. Y en el caso de no existir equilibrio entre las cargas aplicadas, el sistema de ecuaciones [] es incompatible. anto en un caso como en otro, el determinante es nulo, y por consiguiente la matriz de rigidez del pórtico [ ] es una matriz singular. a matriz de rigidez [ ] es una matriz en banda, y como ya se ha visto, además simétrica. l semiancho de banda b, medido en unidades de submatrices, y sin contar la submatriz de la diagonal principal, es igual a la máxima diferencia existente en la numeración de dos nudos contiguos de la estructura, dada por la expresión: {( j i) b máx i...n- j...n siendo i, j nudos contiguos. doptando la numeración de los nudos del pórtico que se muestra en la figura 9, se obtiene como semiancho de banda b en este tipo de estructuras {( ), ( - ), ( - ), ( - ) b demás, el número máximo de elementos no nulos en cualquier fila f máx f n, siendo n s el contados a partir de la diagonal principal es ( ) máx s b + orden de las submatrices. l ser los pórticos estructuras planas, n, por lo que f máx ( + ).

15 Método de cálculo.7. Matriz de rigidez del pórtico. a ecuación matricial [] { P [ ] { d relaciona las fuerzas que actúan sobre los nudos de la estructura, definidas por el vector {P, con los desplazamientos de esos nudos, definidos por el vector {d. sta relación se establece a partir de la matriz de rigidez completa de la estructura [ ]. hora bien, en el vector {P intervienen tanto las cargas aplicadas como las reacciones de los enlaces externos. sí mismo, en el vector {d intervienen los desplazamientos desconocidos de los nudos libres y los desplazamientos de los nudos unidos a los enlaces externos, que suelen ser nulos en el caso de apoyos o empotramientos, constantes cuando se produce un asiento en un apoyo, o bien función de las reacciones en el caso de apoyos elásticos. n los pórticos biempotrados a dos aguas, con la numeración de los nudos definida en la figura 9, se observa que en los nudos, y los desplazamientos son desconocidos, mientras que en los empotramientos y los desplazamientos han de ser nulos. eniendo en cuenta estas consideraciones, la ecuación [] puede escribirse: { P { P { P { P { P [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] { { d { d { d { o también: { P { P { P { P { P [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] { d { d { d { { De forma más reducida:

16 Cálculo matricial de pórticos biempotrados a dos aguas { Pa { R [ ] [ ] [ ] [ ] { d { [] De aquí se deduce: { P a [ ] { d [] que es la ecuación matricial de la estructura, correspondiente a unas cargas determinadas. n esta ecuación: {P a es el vector de cargas aplicadas sobre los nudos libres. {d es el vector de desplazamiento de los nudos. [] es la matriz de rigidez de la estructura que tiene en cuenta únicamente las solicitaciones en los nudos libres, mientras que la matriz de rigidez completa considera las solicitaciones de todos los nudos. a matriz de rigidez [] es una matriz de orden m, siendo m el número posible de desplazamientos de los nudos (o grado de indeterminación cinemática de la estructura). n los pórticos biempotrados objeto de estudio, el orden de la matriz [] es 9, que corresponde con el grado de indeterminación cinemática de estos pórticos. l principio de unicidad de las soluciones exige que el sistema de ecuaciones [] tenga solución única. n consecuencia, la matriz de rigidez [] tiene que ser regular, mientras que, como hemos visto, la matriz de rigidez completa [ ] es singular. demás de esta diferencia, y del menor orden de [] respecto a [ ], (en pórticos planos biempotrados de nudos el orden de [] es 9 y el de [ ] ), el resto de propiedades coincide.

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

Resumen 3: Matrices, determinantes y sistemas de ecuaciones

Resumen 3: Matrices, determinantes y sistemas de ecuaciones Resumen 3: Matrices, determinantes y sistemas de ecuaciones lineales 1 Matrices Una matriz con coeficientes sobre un cuerpo K (normalmente K R) consiste en una colección de números (o escalares) del cuerpo

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos

Más detalles

Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm

Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm Problema 1. n la celosía de la figura, calcular los esfuerzos en todas las barras y reacciones en los apoyos, debido a la actuación simultánea de todas las acciones indicadas (cargas exteriores y asientos

Más detalles

Clasificación estática de las estructuras

Clasificación estática de las estructuras lasificación estática de las estructuras pellidos, nombre asset Salom, Luisa (lbasset@mes.upv.es) epartamento entro Mecánica de Medios ontinuos y Teoría de Estructuras Escuela Técnica Superior de rquitectura

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

III. Análisis de marcos

III. Análisis de marcos Objetivo: 1. Efectuar el análisis de estructuras de marcos. 1. Introducción. Aquellas estructuras constituidas de vigas unidimensionales conectadas en sus extremos de forma pivotada o rígida son conocidas

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

Tema 1: MATRICES. OPERACIONES CON MATRICES

Tema 1: MATRICES. OPERACIONES CON MATRICES Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

GEOMETRÍA: ESPACIO AFÍN

GEOMETRÍA: ESPACIO AFÍN GEOMETRÍA: ESPACIO AFÍN.- ECUACIONES DE LA RECTA EN EL PLANO..- Ecuación vectorial Sea Pab (, ) un punto de la recta r, v = ( v, v) dirección que r, y, sea (, ) en el siguiente dibujo: un vector, no nulo,

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

CARGAS NO APLICADAS EN NUDOS

CARGAS NO APLICADAS EN NUDOS Capítulo 9 Cargas no aplicadas en los nudos 9.1- Cargas en el interior de un tramo Hasta ahora sólo se consideraron casos en que las cargas eteriores están aplicadas sobre los nudos; en el caso que actúen

Más detalles

Algebra Lineal XXVI: La Regla de Cramer.

Algebra Lineal XXVI: La Regla de Cramer. Algebra Lineal XXVI: La Regla de Cramer José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Unidad 3: Razones trigonométricas.

Unidad 3: Razones trigonométricas. Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Generalidades Definición [Sistema de ecuaciones lineales] Un sistema de m ecuaciones lineales con n incógnitas, es un conjunto de m igualdades

Más detalles

MATRICES. M(n) ó M nxn A =

MATRICES. M(n) ó M nxn A = MTRICES Definición de matriz. Una matriz de orden m n es un conjunto de m n elementos pertenecientes a un conjunto, que para nosotros tendrá estructura de cuerpo conmutativo y lo denotaremos por K, dispuestos

Más detalles

CONDUCTIVIDAD ELÉCTRICA I E

CONDUCTIVIDAD ELÉCTRICA I E CONDUCTVDAD LÉCTRCA La conductividad eléctrica de una substancia se define como la relación entre la intensidad de corriente eléctrica producida y el campo eléctrico que la produce: = el campo eléctrico

Más detalles

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

Tema 1. Álgebra lineal. Matrices

Tema 1. Álgebra lineal. Matrices 1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos

Más detalles

Sistem as de ecuaciones lineales

Sistem as de ecuaciones lineales Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a

Más detalles

Lección 1. Algoritmos y conceptos básicos.

Lección 1. Algoritmos y conceptos básicos. Página 1 de 8 Lección 1. Algoritmos y conceptos básicos. Objetivos. La primera lección del curs está dedicada a repasar los conceptos y algoritmos del álgebra lineal, básicos para el estudio de la geometría

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS CC SOCIALES CAPÍTULO 2 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

**********************************************************************

********************************************************************** 13.1.- Representar las leyes de variación del momento flector, el esfuerzo cortante y el esfuerzo normal en la viga de la figura, acotando los valores más característicos. Hallar además la epresión analítica

Más detalles

Translaciones, giros, simetrías.

Translaciones, giros, simetrías. Translaciones, giros, simetrías. Transformaciones geométricas Transformación geométrica es una aplicación del plano en el plano tal que a cada punto de un plano le hace corresponder otro punto del mismo

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

IX. Análisis dinámico de fuerzas

IX. Análisis dinámico de fuerzas Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a

Más detalles

Tema 5: Sistemas de ecuaciones lineales.

Tema 5: Sistemas de ecuaciones lineales. TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1

Más detalles

CONSIDERACIONES GENERALES SOBRE ESTÁTICA

CONSIDERACIONES GENERALES SOBRE ESTÁTICA CONSIDERACIONES GENERALES SOBRE ESTÁTICA Índice 1. CONCEPTOS ÚTILES 2 1.1. Configuración geométrica de un sistema....................... 2 1.2. Ligaduras....................................... 2 1.3. Coordenadas

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 1 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Análisis estático de estructuras planas

Análisis estático de estructuras planas Análisis estático de estructuras planas Apellidos, nombre Basset Salom, Luisa (lbasset@mes.upv.es) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior de Arquitectura

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES CONCEPTO MATRICES Se llama matriz de orden (dimensión) m n a un conjunto de m n elementos dispuestos en m filas y n columnas Se representa por A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn j=1,2,,n

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales ALBERTO VIGNERON TENORIO Dpto. de Matemáticas Universidad de Cádiz Índice general 1. Sistemas de ecuaciones lineales 1 1.1. Sistemas de ecuaciones lineales. Definiciones..........

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia.

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia. TRIGONOMETRÍA MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico 1.- Ángulos en la Circunferencia. 2.- Razones Trigonométricas de un Triángulo Rectángulo. 3.- Valores del Seno, Coseno y Tangente

Más detalles

!MATRICES INVERTIBLES

!MATRICES INVERTIBLES Tema 4.- MATRICES INVERTIBLES!MATRICES INVERTIBLES!TÉCNICAS PARA CALCULAR LA INVERSA DE UNA MATRIZ REGULAR 1 Hemos hablado anteriormente de la matriz cuadrada unidad de orden n (I n ).. Es posible encontrar

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

Ejercicio nº 4 + 5 : El pórtico simple desplazable. 3 t/m 2 I. 8 m

Ejercicio nº 4 + 5 : El pórtico simple desplazable. 3 t/m 2 I. 8 m Ejercicio nº 4 + 5 : El pórtico simple desplazable t t/m 4 m ecuaciones generales de equilibrio y 6 incógnitas Grado Hiperestático (método de las fuerzas) El problema se puede afrontar en primera aproximación,

Más detalles

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González.

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE ECUACIONES LINEALES Método de reducción o de Gauss 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS.

Más detalles

TEMA 4: Sistemas de ecuaciones lineales II

TEMA 4: Sistemas de ecuaciones lineales II TEM 4: Sistemas de ecuaciones lineales II ) Teorema de Rouché-Frobenius. ) Sistemas de Cramer: regla de Cramer. 3) Sistemas homogeneos. 4) Eliminación de parámetros. 5) Métodos de factorización. 5) Métodos

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

Sistema de Ecuaciones Lineales Matrices y Determinantes (3ª Parte)

Sistema de Ecuaciones Lineales Matrices y Determinantes (3ª Parte) Sistema de Ecuaciones Lineales Matrices y Determinantes (ª Parte) Definición: Sistemas Equivalentes Dos sistemas de ecuaciones son equivalentes si y solo si tienen el mismo conjunto solución Teorema fundamental

Más detalles

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m. Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

MÓDULO 8: VECTORES. Física

MÓDULO 8: VECTORES. Física MÓDULO 8: VECTORES Física Magnitud vectorial. Elementos. Producto de un vector por un escalar. Operaciones vectoriales. Vector unitario. Suma de vectores por el método de componentes rectangulares. UTN

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

GEOMETRÍA EN EL ESPACIO.

GEOMETRÍA EN EL ESPACIO. GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

TEMA 8.- NORMAS DE MATRICES Y

TEMA 8.- NORMAS DE MATRICES Y Álgebra II: Tema 8. TEMA 8.- NORMAS DE MATRICES Y NúMERO DE CONDICIóN Índice. Introducción 2. Norma vectorial y norma matricial. 2 2.. Norma matricial inducida por normas vectoriales......... 4 2.2. Algunos

Más detalles

PRINCIPIOS DE LA DINÁMICA

PRINCIPIOS DE LA DINÁMICA Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento

Más detalles

Una matriz es un arreglo rectangular de elementos. Por ejemplo:

Una matriz es un arreglo rectangular de elementos. Por ejemplo: 1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles

Matemáticas. D e t e r m i n a n t e s

Matemáticas. D e t e r m i n a n t e s Matemáticas D e t e r m i n a n t e s El determinante de una matriz cuadrada es un número que se obtiene a partir de los elementos de la matriz. Su estudio se justifica en cuanto que simplifica la resolución

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

8.- MÉTODOS GENERALES: ANÁLISIS MATRICIAL

8.- MÉTODOS GENERALES: ANÁLISIS MATRICIAL 8.- MÉTODOS GENERALES: ANÁLISIS MATRICIAL 1 8.1 FLEXIBILIDAD Y RIGIDEZ 8.1.1 Concepto de flexibilidad.- a) La ley de Hooke aplicada a una barra de longitud L y sección A que, sometida a un esfuerzo axil

Más detalles

Ing. Ramón Morales Higuera

Ing. Ramón Morales Higuera MATRICES. Una matriz es un conjunto ordenado de números. Un determinante es un número. CONCEPTO DE MATRIZ. Se llama matriz a un conjunto ordenado de números, dispuestos en filas y Las líneas horizontales

Más detalles

CÁLCULO VECTORIAL I. B, es un nuevo vector que se define del siguiente modo: Si A ybson (LI), entonces el vector A. B se caracteriza por:

CÁLCULO VECTORIAL I. B, es un nuevo vector que se define del siguiente modo: Si A ybson (LI), entonces el vector A. B se caracteriza por: PRODUCTO VECTORIAL DE DOS VECTORES El producto vectorial de dos vectores A y, y escribimos A, es un nuevo vector que se define del siguiente modo: Si A yson (LI), entonces el vector A se caracteriza por:

Más detalles

Tema 2. Sistemas de ecuaciones lineales

Tema 2. Sistemas de ecuaciones lineales Tema 2. Sistemas de ecuaciones lineales Estructura del tema. Definiciones básicas Forma matricial de un sistema de ecuaciones lineales Clasificación de los sistemas según el número de soluciones. Teorema

Más detalles

Problema a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente.

Problema a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente. Problema 717.- a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente. Hallar el lugar geométrico de los puntos comunes a

Más detalles

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A Eámenes de Matemáticas de Selectividad ndalucía resueltos http://qui-mi.com/ Eamen de Selectividad Matemáticas JUNIO 5 - ndalucía OPCIÓN.- [,5 puntos] Se quiere construir un depósito abierto de base cuadrada

Más detalles

C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE

C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE COMENTARIOS AL CAPÍTULO 6. BARRAS EN FLEXIÓN SIMPLE Para tener una respuesta simétrica de la sección en flexión simple y evitar efectos torsionales, se exige que cuando sean más de una las arras de los

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

Denotamos a los elementos de la matriz A, de orden m x n, por su localización en la matriz de la

Denotamos a los elementos de la matriz A, de orden m x n, por su localización en la matriz de la MATRICES Una matri es un arreglo rectangular de números. Los números están ordenados en filas y columnas. Nombramos a las matrices para distinguirlas con una letra del alfabeto en mayúscula. Veamos un

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos

Más detalles

TEMA 6 ESTÁTICA. Bibliografía recomendada:

TEMA 6 ESTÁTICA. Bibliografía recomendada: TEMA 6 ESTÁTICA 0 > Introducción. 1 > Equilibrio. Tipos de equilibrio. 2 > Principios fundamentales y ecuaciones cardinales de la Estática. 3 > Estática de sistemas planos. 3.1 > Reacciones en apoyos y

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

Problema Cinemático Directo

Problema Cinemático Directo Problema Cinemático Directo Parámetros Denavit-Hartenberg Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg

Más detalles

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253 Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre IES Fco Ayala de Granada Septiembre de 015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 Septiembre 015 ax + b [ 5 puntos] Halla los valores a, b y c sabiendo que

Más detalles

Aplicación del Principio de las Fuerzas Virtuales a la resolución estática de estructuras hiperestáticas

Aplicación del Principio de las Fuerzas Virtuales a la resolución estática de estructuras hiperestáticas Aplicación del Principio de las Fuerzas Virtuales a la resolución estática de estructuras hiperestáticas Apellidos, nombre asset Salom, Luisa (lbasset@mes.upv.es) Departamento Centro Mecánica de Medios

Más detalles

IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio opción A, modelo de año 200 [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función a maximizar A (/2)(x)(y)

Más detalles

MECANICA I Carácter: Obligatoria

MECANICA I Carácter: Obligatoria UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL MECANICA I Carácter: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE DE CREDITO HT

Más detalles

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A).

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno a 11 = a 11 5 = 5 Determinante

Más detalles

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1 PRODUCTO ESCALAR INTRODUCCIÓN El espacio vectorial de los vectores libres del plano se caracteriza por tener definidas dos operaciones: una interna, suma de vectores, y otra externa, producto de un número

Más detalles

3- Sistemas de Ecuaciones Lineales

3- Sistemas de Ecuaciones Lineales Nivelación de Matemática MTHA UNLP 1 3- Sistemas de Ecuaciones Lineales 1. Introducción Consideremos el siguiente sistema, en él tenemos k ecuaciones y n incógnitas. Los coeficientes a ij son números reales

Más detalles

Arcos planos. J. T. Celigüeta

Arcos planos. J. T. Celigüeta Arcos planos J. T. Celigüeta Arcos planos. Definición Directriz curva plana. Sección transversal despreciable. Curvatura pequeña: radio mucho mayor que el canto R>>h Varias condiciones de apoyo en los

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

Ecuaciones, ecuación de la recta y sistemas

Ecuaciones, ecuación de la recta y sistemas Ecuaciones, ecuación de la recta y sistemas Ecuaciones Una ecuación es una igualdad condicionada en la que aplicando operaciones adecuadas se logra despejar (aislar) la incógnita. Cuando una ecuación contiene

Más detalles

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21

Más detalles