Teoría de Lenguajes. Gramáticas incontextuales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Teoría de Lenguajes. Gramáticas incontextuales"

Transcripción

1 Teoría de Lenguajes Gramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Gramáticas incontextuales 1. Definiciones básicas. 2. Simplificación de gramáticas incontextuales. 3. Formas normales. Algoritmos de normalización. 4. Análisis de cadenas en gramáticas incontextuales. 5. Propiedades de decisión. 6. Subclases de gramáticas incontextuales Bibliografía M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley J. E. Hopcroft, J. D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley G. Rozenberg, A. Salomaa (Eds.). Handbook of Formal Languages (Vol.1) Springer

2 Definiciones básicas Gramática incontextual: G=(N,, P, S) con las producciones de la forma A A N, (N )* S AB A aab B cbd Árboles de derivación A S B a A b c B d Derivaciones directas S AB aabb abb abcbd abcd Derivaciones (por la izquierda, por la derecha, arbitrarias) S * abcd * Lenguaje generado por la gramática G L(G) = { w : S * w } Jerarquía de Chomsky Ambigüedad, lenguaje inherentemente ambiguo L reg L cf L cs Simplificación de gramáticas incontextuales G=(N,, P, S) diremos que está simplificada si (1) Todos sus símbolos son útiles (1.1) Generativos A N : A * w w * (1.2) Alcanzables A ( N): S * A, ( N)* (2) No contiene producciones unitarias (3) No contiene producciones vacías A B A,B N A A N Para toda gramática incontextual G existe una gramática incontextual G simplificada tal que L(G ) = L(G) { }

3 Forma Normal de Chomsky G=(N,, P, S) diremos que está en forma normal de Chomsky si todas sus producciones toman una de las dos siguientes formas (1) A BC A, B, C N (2) A a a Para toda gramática incontextual G existe una gramática incontextual G en forma normal de Chomsky tal que L(G ) = L(G) { } Algoritmo para la obtención de la Forma Normal de Chomsky Entrada G=(N,, P, S) gramática incontextual arbitraria con L(G) Salida G 1 =(N 1, 1, P 1, S) gramática en FNC tal que L(G 1 ) = L(G) { } Método /* Pasos preliminares */ Obtener G 2 =(N 2, 2, P 2, S) simplificada tal que L(G 2 ) = L(G) { } /* Fase 1 */ Para toda producción A X 1 X 2 X n P 2 con n 2 Si X i 2 sustituir X i por C xi en la anterior producción y añadir la producción C xi X i El resto de producciones permanecen igual Se obtiene la gramática G 3 = (N 3, 3, P 3, S) con L(G 3 ) = L(G 2 ) /* Fase 2 */ Para toda producción A X 1 X 2 X n P 3 con n 3 Sustituir la anterior producción por el conjunto de producciones A X 1 D 1 D 1 X 2 D 2 D n-2 X n-1 X n El resto de producciones permanecen igual Se obtiene la gramática G 1 = (N 1, 1, P 1, S) con L(G 1 ) = L(G 2 ) = L(G) { }

4 Ejemplo G=(N,, P, S) (simplificada) S AaBb ABB Aa A aa ab B a BB /* Fase 1 */ G 3 =(N 3, 3, P 3, S) S AC a BC b ABB AC a A C a A C a C b B a BB C a a C b b /* Fase 2 */ G 1 =(N 1, 1, P 1, S) S AD 1 AD 3 AC a D 1 C a D 2 D 2 BC b D 3 BB A C a A C a C b B a BB C a a C b b Forma Normal de Greibach G=(N,, P, S) diremos que está en forma normal de Greibach si todas sus producciones son de la forma A a a N* Para toda gramática incontextual G existe una gramática incontextual G en forma normal de Greibach tal que L(G ) = L(G) { }

5 Algoritmo para la obtención de la Forma Normal de Greibach (1) Entrada G=(N,, P, S) gramática incontextual arbitraria con L(G) Salida G 1 =(N 1, 1, P 1, S) gramática en FNG tal que L(G 1 ) = L(G) { } Método /* Pasos preliminares */ Obtener G 2 =(N 2, 2, P 2, S) simplificada y en FNC tal que L(G 2 ) = L(G) { } /* Fase 1 */ N 2 = { A 1, A 2,, A m } Para k=1 hasta m Para j=1 hasta k-1 Para cada producción A k A j Para cada producción A j Añadir la producción A k Eliminar la producción A k A j Para cada producción A k A k Añadir la producción B k Añadir la producción B k B k Eliminar la producción A k A k Para cada producción A k Si no comieza por A k Añadir la producción A k B k Algoritmo para la obtención de la Forma Normal de Greibach (2) Al final de la Fase 1 las producciones están en una de las tres formas (1) A i A j con j > i (2) A i a (3) B i con a (N { B 1, B 2,, B i-1 })* Las producciones de la forma (2) ya están en FNG Todas las producciones de A m ya están en FNG Las producciones de los nuevos símbolos B i comienzan por símbolos A j /* Fase 2 */ Para k = m-1 hasta 1 Para cada producción A k A j Para cada producción A j Añadir la producción A k Eliminar la producción A k A j Para cada producción B k A j Para cada producción A j Añadir la producción B k Eliminar la producción B k A j

6 Ejemplo G=(N,, P, A 1 ) (simplificada y en FNC) /* Fase 1 */ G 2 =(N 2, 2, P 2, A 1 ) (1) (2) (3) A A 1 A 2 A 1 A 2 A 3 3 A A 2 a a B 2 A 2 A 3 A 2 a 2 A B 2 A 3 A 2 B 2 A 3 A 3 A 1 A 3 b 2 A 3 A 1 A 3 b A 1 A 2 A 3 A 2 A 1 A 2 a A 3 A 1 A 3 b A 1 A 2 A 3 A 2 a a B 2 B 2 A 3 A 2 B 2 A 3 A 2 A 3 A 2 A 3 A 3 b (4) A 1 A 2 A 3 A 2 a ab 2 B 2 A 3 A 2 B 2 A 3 A 2 A 3 a A 3 A 3 a B 2 A 3 A 3 b /* Fase 2 */ G 1 =(N 1, 1, P 1, A 1 ) (1) (2) A 1 a A 3 a B 2 A 3 A 2 a a B 2 B 2 A 3 A 2 B 2 A 3 A 2 A 3 a A 3 A 3 a B 2 A 3 A 3 b A 1 a A 3 a B 2 A 3 A 2 a a B 2 B 2 a A 3 A 3 A 2 B 2 a B 2 A 3 A 3 A 2 B 2 b A 2 B 2 a A 3 A 3 A 2 a B 2 A 3 A 3 A 2 b A 2 A 3 a A 3 A 3 a B 2 A 3 A 3 b Otras formas de gramáticas Forma m-estándar G=(N,, P, S) diremos que está en forma m-estándar si todas sus producciones son de la forma A a a N* m Para toda gramática incontextual G y para todo valor m 2 existe una gramática incontextual G en forma m-estándar tal que L(G ) = L(G) { }

7 Algoritmo para la obtención de la Forma Normal m-estándar Entrada G=(N,, P, S) gramática incontextual en Forma Normal (m+1)-estándar Salida G 1 =(N 1,, P 1, S) gramática en Forma Normal m-estándar tal que L(G 1 ) = L(G) Método N 1 = N {(A,B) : A,B N } /* Definición de las producciones de P 1 */ P 1 = {A : A P, m+1 } {A ab 1 B m-1 (B m, B m+1 ) : A ab 1 B m B m+1 P } {(A,B) B : A P, m } {(A,B) ab 1 B m-1 (B m, B) : A ab 1 B m-1 B m P} {(A,B) ab 1 B m-2 (B m-1, B m )(B m+1,b) : A ab 1 B m B m+1 P} Ejemplo G=(N,, P, A 1 ) (en FN 3-estándar) A 1 a A 3 a A 4 A 3 A 2 a a A 4 aa 2 A 2 A 3 a A 3 A 3 a A 4 A 3 A 3 b A 4 a A 3 A 3 A 4 b A 2 A 4 a G 1 =(N 1,, P 1, A 1 ) (en FN 2-estándar) N 1 = { A 1, A 2, A 3, A 4, (A 1,A 1 ), (A 1,A 2 ), (A 1, A 3 ), (A 1,A 4 ), (A 2,A 1 ), (A 2,A 2 ), (A 2, A 3 ), (A 2,A 4 ), (A 3,A 1 ), (A 3,A 2 ), (A 3, A 3 ), (A 3,A 4 ), (A 4,A 1 ), (A 4,A 2 ), (A 4, A 3 ), (A 4,A 4 ) } P 1 : A 1 a A 3 a A 4 A 3 A 2 a a A 4 aa 2 A 2 A 3 a A 3 A 3 b A 4 b A 2 A 4 a A 3 a A 4 A 3 A 3 A 3 a A 4 (A 3,A 3 ) (A 3,A 3 ) b A 3 (A 3,A 3 ) a A 3 (A 3,A 3 ) A 4 a A 3 A 2 A 4 A 4 a A 3 (A 2,A 4 ) (A 2,A 4 ) a A 4 a A 4 A 4 a A 2 (A 2, A 4 )

8 Otras formas de gramáticas Gramáticas invertibles G=(N,, P, S) diremos que es invertible si se cumple la siguiente propiedad ( A, B N) ( ( N)*) [((A ) P) ((B ) P)] A=B Para toda gramática incontextual G existe una gramática incontextual G invertible tal que L(G ) = L(G) Una solución no práctica A i A k A i R i A k R k R Algoritmo para la obtención de la Forma Normal invertible Entrada G=(N,, P, S) gramática incontextual simplificada Salida G 1 =(N 1,, P 1, S 1 ) gramática invertible tal que L(G 1 ) = L(G) Método N 1 = {S 1 } 2 N - S 1 N /* Definición de las producciones de P 1 */ S 1 si es un subconjunto de N que contenga a S Para cada producción B x 0 B 1 x 1 B n x n P donde B i, N, x i * Para cada auxiliar A 1,, A n N 1 {S 1 } añadir la producción A x 0 A 1 x 1 A n x n donde A = {C : C x 0 C 1 x 1 C n x n P, C i A i }

9 Ejemplo G=(N,, P, S) S 0A 1B A 0A 0S 1B B 1 0 G 1 =(N 1,, P 1, S 1 ) (invertible) N 1 = { S 1, {S}, {A}, {B}, {S,A}, {S,B}, {A,B}, {S,A,B} } P 1 : S 1 {S} {S,A} {S,B} {S,A,B} B 1 0 {B} 1 0 S 0A A 0A A 1B S 1B A 0S {S,A} 0{A} 0{A,B} 0{S,A} 0{S,A,B} {S,A} 1{B} 1{A,B} 1{S,B} 1{S,A,B} {A} 0{S} 0{S,B} Análisis de cadenas en gramáticas incontextuales El problema de la pertenencia ( Membership Problem ) Dada una gramática incontextual arbitraria G=(N,, P, S) y una cadena w * w L(G)? Si w = el problema se reduce a comprobar si S es anulable En el caso de w podemos trabajar con una gramática simplificada y en forma normal G tal que L(G ) = L(G) { }. El problema se reduce a comprobar si w L(G )

10 Análisis de cadenas mediante exploración exhaustiva Entrada : G=(N,, P, S) en FNG y w = w 1 w 2 w n (w ) Salida : Cierto (si w L(G)) o Falso (si w L(G)) Método : Explorar sistemáticamente todos los árboles de derivación que sigan el orden de los símbolos de la cadena S w 1 A 1 A p w 2 A 2 A q Complejidad temporal: O(k n ) (siendo k el número máximo de producciones que tiene cualquier auxiliar de la gramática) Algoritmo de análisis CYK (Cocke-Younger-Kasami) Entrada : G=(N,, P, S) en FNC y w = w 1 w 2 w n (w ) Salida : Cierto (si w L(G)) o Falso (si w L(G)) Método : Para i=1 hasta n V i1 = { A : A w i P } Para j=2 hasta n Para i=1 hasta n-j+1 V ij = Para k=1 hasta j-1 V ij = V ij { A : A BC P, B V ik, C V i+k, j-k } Si S V 1n devolver Cierto sino devolver Falso Complejidad temporal: O(n 3 ) Complejidad espacial: O(n 2 ) (siendo G un parámetro externo)

11 Ejemplo G=(N,, P, S) (simplificada y en FNC) S AB BC A BA a B CC b C AB a w = baaba j b a a b a i B A,C A,C B A,C S,A B S,C S,A B B S,A,C S,A,C S V 15 Cierto (w L(G)) Propiedades de decisión Un problema de decisión (expresado en términos formales) es decidible si existe un algoritmo que lo resuelva. (En caso contrario es indecidible) Algunos problemas decidibles referentes a gramáticas incontextuales El problema de la vacuidad : L(G) =? El problema de la infinitud : L(G) =? El problema de la pertenencia : w L(G)? El problema de la equivalencia estructural : str(g 1 ) = str(g 2 )? (str(g i ) denota el conjunto de esqueletos de G i, árboles de derivación donde los nodos internos no tienen etiquetas )

12 Algunos problemas indecidibles referentes a gramáticas incontextuales El problema de la inclusión : L(G 1 ) L(G 2 )? El problema de la equivalencia : L(G 1 )= L(G 2 )? El problema de la exhaustividad : L(G) = *? El problema de la regularidad : Es L(G) regular? El problema de la ambigüedad : Es G ambigua? El problema de la ambigüedad inherente : Es L(G) inherentemente ambiguo? El problema de la complementariedad : Es L(G) incontextual? El problema de la intersección : Es L(G 1 ) L(G 2 ) incontextual? Algunas subclases de gramáticas incontextuales Gramáticas lineales pares G=(N,, P, S) A u B v A w A, B N u, v, w * u = v L reg L el L cf Gramáticas lineales G=(N,, P, S) A u B A B v A w A, B N u, v, w * L reg L el L lin L cf

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales Teoría de utómatas y Lenguajes Formales Introducción a las ramáticas. ramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Introducción

Más detalles

Teoría de Lenguajes. Propiedades y caracterizaciones de los lenguajes incontextuales

Teoría de Lenguajes. Propiedades y caracterizaciones de los lenguajes incontextuales Teoría de Lenguajes Propiedades y caracterizaciones de los lenguajes incontextuales José M. empere Departamento de istemas Informáticos y Computación Universidad Politécnica de Valencia Propiedades y caracterizaciones

Más detalles

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales 1. Objetivos 2. Representación de los datos en Mathematica 3. Eliminación de símbolos inútiles 3.1. Símbolos

Más detalles

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I Tema 4: Gramáticas independientes del contexto Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación.

Más detalles

1. Cadenas EJERCICIO 1

1. Cadenas EJERCICIO 1 LENGUAJES FORMALES Y AUTÓMATAS CURSO 2006/2007 - BOLETÍN DE EJERCICIOS Víctor J. Díaz Madrigal y José Miguel Cañete Departamento de Lenguajes y Sistemas Informáticos 1. Cadenas La operación reversa aplicada

Más detalles

Teoría de Autómatas y Lenguajes Formales.

Teoría de Autómatas y Lenguajes Formales. Teoría de Autómatas y Lenguajes Formales Prueba de Evaluación de Lenguajes y Gramáticas Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel

Más detalles

Coordinación de Ciencias Computacionales INAOE. Teoría de Autómatas y Lenguajes Formales. Temario detallado para examen de ingreso 2012

Coordinación de Ciencias Computacionales INAOE. Teoría de Autómatas y Lenguajes Formales. Temario detallado para examen de ingreso 2012 Coordinación de Ciencias Computacionales INAOE Teoría de Autómatas y Lenguajes Formales Temario detallado para examen de ingreso 2012 1. Autómatas 1.1. Por qué estudiar la teoría de autómatas? 1.1.1. Introducción

Más detalles

TEMA 6 GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO

TEMA 6 GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO TEMA 6 GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO TEMA 6.- GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO 6.1. Gramáticas independientes del contexto. 6.2. Limpieza de Gramáticas Independientes del contexto. 6.3.

Más detalles

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto EJERCICIOS del TEMA 3: Lenguajes independientes del contexto Sobre GICs (gramáticas independientes del contexto) 1. Sea G una gramática con las siguientes producciones: S ASB ε A aab ε B bba ba c ) d )

Más detalles

GRAMÁTICAS y LENGUAJES INDEPENDIENTES DEL CONTEXTO

GRAMÁTICAS y LENGUAJES INDEPENDIENTES DEL CONTEXTO Dpto. de Informática (ATC, CCIA y LSI). Universidad de Valladolid. TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES I Ingeniería Técnica en Informática de Sistemas. Curso 2011-12 GRAMÁTICAS y LENGUAJES INDEPENDIENTES

Más detalles

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.

Más detalles

Nivel del ejercicio : ( ) básico, ( ) medio, ( ) avanzado.

Nivel del ejercicio : ( ) básico, ( ) medio, ( ) avanzado. Universidad Rey Juan Carlos Curso 2010 2011 Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas Hoja de Problemas 10 Gramaticas Independientes del Contexto Nivel del

Más detalles

Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I

Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I Gramáticas independientes del contexto UTÓMTS Y LENGUJES FORMLES LENGUJES INDEPENDIENTES DEL CONTEXTO Y UTÓMTS DE PIL Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNM E-mail:

Más detalles

Tema 1: Introducción. Teoría de autómatas y lenguajes formales I

Tema 1: Introducción. Teoría de autómatas y lenguajes formales I Tema 1: Introducción Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison Wesley.

Más detalles

Texto: Hopcroft, J. E., Motwani, R., Ullman, J.D., Introduction to Automata Theory, Languajes, and Computation. 3rd Edition. Addison Wesley, 2007.

Texto: Hopcroft, J. E., Motwani, R., Ullman, J.D., Introduction to Automata Theory, Languajes, and Computation. 3rd Edition. Addison Wesley, 2007. Universidad de Puerto Rico Recinto de Mayagüez Facultad de Artes y Ciencias DEPARTAMENTO DE CIENCIAS MATEMÁTICAS Programa de Autómata y Lenguajes Formales Curso: Autómata y Lenguajes Formales Codificación:

Más detalles

ESCUELA: UNIVERSIDAD DEL ISTMO

ESCUELA: UNIVERSIDAD DEL ISTMO 1.-IDENTIFICACIÓN ESCUELA: UNIVERSIDAD DEL ISTMO CLAVE: 3041 GRADO: ING. EN COMPUTACIÓN, CUARTO SEMESTRE TIPO DE TEÓRICA/PRÁCTICA ANTECEDENTE CURRICULAR: 3033.- OBJETIVO GENERAL Proporcionar al alumno

Más detalles

Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars)

Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars) Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars) Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales

Más detalles

autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y

autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y CONTENIDO Reconocedores [HMU2.1]. Traductores [C8]. Diagramas de Estado [HMU2.1]. Equivalencia entre AF deterministas y no deterministas [HMU2.2-2.3]. Expresiones [HMU3]. Propiedades de [HMU4]. Relación

Más detalles

PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS

PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS Licenciatura en Sistemas de Información PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS UNSE FCEyT 1. DESCRIPCIÓN Este taller consta de tres partes. En cada una de ellas se especifican

Más detalles

Tema 2 Gramáticas y Lenguajes Libres de Contexto

Tema 2 Gramáticas y Lenguajes Libres de Contexto Tema 2 Gramáticas y Lenguajes Libres de Contexto 1. Definiciones Básicas 2. 3. Forma Normal de Chomsky 4. Autómatas de Pila 5. Propiedades de los Lenguajes Libres de Contexto 1. Definiciones básicas 1.

Más detalles

La Ambigüedad en el Parsing

La Ambigüedad en el Parsing La en el Parsing Definición y Ejemplos Universidad de Cantabria Outline El Problema 1 El Problema 2 3 El Problema En nuestra busqueda por encontrar la estructura exploraremos como elegir una derivación

Más detalles

SSL Guia de Ejercicios

SSL Guia de Ejercicios 1 SSL Guia de Ejercicios INTRODUCCIÓN A LENGUAJES FORMALES 1. Dado el alfabeto = {a, b, c}, escriba las palabras del lenguaje L = {x / x }. 2. Cuál es la cardinalidad del lenguaje L = {, a, aa, aaa}? 3.

Más detalles

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002 Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto

Más detalles

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V.

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Compiladores: Análisis Sintáctico Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Sintaxis Define la estructura del lenguaje Ejemplo: Jerarquía en

Más detalles

Expresiones regulares, gramáticas regulares

Expresiones regulares, gramáticas regulares Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde

Más detalles

Pregunta 1 [40 puntos] Diga si las siguientes afirmaciones son verdaderas o falsas, demostrando su respuesta.

Pregunta 1 [40 puntos] Diga si las siguientes afirmaciones son verdaderas o falsas, demostrando su respuesta. Pregunta 1 [40 puntos] Diga si las siguientes afirmaciones son verdaderas o falsas, demostrando su respuesta. (a) Es posible aceptar por stack vacío el lenguaje {0 i 1 j i = j o j = 2i} con un AA determinístico.

Más detalles

GRAMATICAS LIBRES DEL CONTEXTO

GRAMATICAS LIBRES DEL CONTEXTO GRMTICS LIBRES DEL CONTEXTO Estas gramáticas, conocidas también como gramáticas de tipo 2 o gramáticas independientes del contexto, son las que generan los lenguajes libres o independientes del contexto.

Más detalles

6 Propiedades de los lenguajes libres de contexto 6.1 El Lema de Bombeo para LLC

6 Propiedades de los lenguajes libres de contexto 6.1 El Lema de Bombeo para LLC 1 Curso ásico de Computación 6 Propiedades de los lenguajes libres de contexto 6.1 El Lema de ombeo para LLC El lema de ombeo para LLC nos dice que siempre existe dos subcadenas cortas muy juntas que se

Más detalles

Capítulo 1 Lenguajes formales 6

Capítulo 1 Lenguajes formales 6 Capítulo 1 Lenguajes formales 6 1.8. Operaciones entre lenguajes Puesto que los lenguajes sobre Σ son subconjuntos de Σ, las operaciones usuales entre conjuntos son también operaciones válidas entre lenguajes.

Más detalles

Introducción a la Lógica y la Computación

Introducción a la Lógica y la Computación Introducción a la Lógica y la Computación Parte III: Lenguajes y Autómatas Clase del 7 de Noviembre de 2014 Parte III: Lenguajes y Autómatas Introducción a la Lógica y la Computación 1/20 Lenguajes Formales

Más detalles

Introducción a la Lógica y la Computación

Introducción a la Lógica y la Computación Introducción a la Lógica y la Computación Parte III: Lenguajes y Autómatas Clase del 4 de Noviembre de 2015 Parte III: Lenguajes y Autómatas Introducción a la Lógica y la Computación 1/21 Lenguajes Formales

Más detalles

PROGRAMA INSTRUCCIONAL AUTOMATAS Y LENGUAJES FORMALES

PROGRAMA INSTRUCCIONAL AUTOMATAS Y LENGUAJES FORMALES UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA

Más detalles

Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer, utilizar y diseñar gramáticas de libre contexto

Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer, utilizar y diseñar gramáticas de libre contexto Universidad Autónoma del Estado de México Centro Universitario UAEM Texcoco Departamento de Ciencias Aplicadas. Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer,

Más detalles

DEPARTAMENTO: Ingeniería e Investigaciones Tecnológicas

DEPARTAMENTO: Ingeniería e Investigaciones Tecnológicas CÓDIGO ASIGNATURA 1129 DEPARTAMENTO: Ingeniería e Investigaciones Tecnológicas ASIGNATURA: Autómatas y Lenguajes Formales Ingeniería en Informática Año: 5 Cuatri: 1 1. OBJETIVOS Dar a los alumnos conocimientos

Más detalles

INSTITUTO POLITÉCNICO NACIONAL

INSTITUTO POLITÉCNICO NACIONAL PROGRAMA SINTÉTICO UNIDAD ACADÉMICA: ESCUELA SUPERIOR DE CÓMPUTO PROGRAMA Ingeniero en Sistemas Computacionales ACADÉMICO: UNIDAD DE APRENDIZAJE: Teoría Computacional NIVEL: II OBJETIVO GENERAL: Implementar

Más detalles

Gramáticas Independientes del Contexto (GIC)

Gramáticas Independientes del Contexto (GIC) Asignatura: Teoría de la Computación Tema 4: Gramáticas independientes del contexto Definiciones y propiedades Gramáticas Independientes del Contexto (GIC) Qué es una gramática? Modelo de estructuras recursivas.

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 4: Expresiones Regulares. Luis Peña

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 4: Expresiones Regulares. Luis Peña Máquinas Secuenciales, Autómatas y Lenguajes Tema 4: Expresiones Regulares Luis Peña Sumario Tema 4: Expresiones Regulares. 1. Concepto de Expresión Regular 2. Teoremas de Equivalencia Curso 2012-2013

Más detalles

Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas

Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas Gramáticas Introducción Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas En algunos lenguajes, una sucesión de símbolos depende del

Más detalles

Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003

Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003 Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Interrogación 2 IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Esta interrogación

Más detalles

Cualquier lenguaje de contexto libre, L, puede ser generado por medio de una GCL, G, que cumpla las siguientes condiciones:

Cualquier lenguaje de contexto libre, L, puede ser generado por medio de una GCL, G, que cumpla las siguientes condiciones: Teoría de Autómatas y Lenguajes Formales Boletín de Autoevaluación 5: Cómo se simplifica una Gramática de Contexto Libre?. 1. Objetivos. El objetivo de este boletín es ilustrar cómo proceder para simplificar

Más detalles

Lección 3: Fundamentos para el análisis sintáctico

Lección 3: Fundamentos para el análisis sintáctico Lección 3: Fundamentos para el análisis sintáctico 1) Introducción 2) Gramáticas. Definiciones y clasificación 3) GLC. Notaciones 4) GLC. Árboles de análisis sintáctico 5) GLC. Derivación a dcha. y a izda.

Más detalles

Carrera: SCM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Carrera: SCM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Teoría de la computación Ingeniería en Sistemas Computacionales SCM - 0434 3-2-8

Más detalles

Propiedades de los Lenguajes Libres de Contexto

Propiedades de los Lenguajes Libres de Contexto Propiedades de los Lenguajes Libres de Contexto 15 de junio de 2015 15 de junio de 2015 1 / 1 Contenido 15 de junio de 2015 2 / 1 Introducción Introducción Simplificación de CFG s. Esto facilita la vida,

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes. Tema 3.

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes. Tema 3. UNIVRSIDAD NACIONAL D DUCACIÓN A DISTANCIA scuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes Tema 3 Parte I Análisis Sintáctico Javier Vélez Reyes jvelez@lsi.uned.es Objetivos

Más detalles

Paso 1: Autómata. A 1 sin estados inútiles, que reconoce el lenguaje denotado por a a* b*

Paso 1: Autómata. A 1 sin estados inútiles, que reconoce el lenguaje denotado por a a* b* UNIVERSIDAD DE CÓRDOBA ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INFORMÁTICA Y ANÁLISIS NUMÉRICO INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS SEGUNDO CURSO, SEGUNDO CUATRIMESTRE TEORÍA DE AUTÓMATAS

Más detalles

Introducción a la indecidibilidad

Introducción a la indecidibilidad Introducción a la indecidibilidad José M. empere Departamento de istemas Informáticos y Computación Universidad Politécnica de Valencia Lenguajes y problemas Un problema será considerado cualquier cuestión

Más detalles

Compiladores: Sesión 3. Análisis léxico, expresiones regulares

Compiladores: Sesión 3. Análisis léxico, expresiones regulares Compiladores: Sesión 3. Análisis léxico, expresiones regulares Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad Javeriana Cali 29 de enero de

Más detalles

Autómatas de Pila y Lenguajes Incontextuales

Autómatas de Pila y Lenguajes Incontextuales Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia

Más detalles

Examen de Computabilidad y Complejidad (CMC) 21 de enero de 2011

Examen de Computabilidad y Complejidad (CMC) 21 de enero de 2011 Examen de Computabilidad y Complejidad (CMC) 21 de enero de 2011 (I) CUESTIONES: (Justifique formalmente las respuestas) 1. Es el lenguaje {x {a,b,c}*: x a x b x c } incontextual? El lenguaje dado no es

Más detalles

Tarea Nº 2 Introducción a la Informática Lema del Bombeo y Lenguajes de Contexto Libre

Tarea Nº 2 Introducción a la Informática Lema del Bombeo y Lenguajes de Contexto Libre Tarea Nº 2 Introducción a la Informática Lema del Bombeo y Lenguajes de Contexto Libre Dr. Horst von Brand vonbrand@inf.utfsm.cl Diego Candel dcontard@.inf.utfsm.cl Lunes 24 de Abril 1º Semestre del 2006

Más detalles

Propiedades de lenguajes independientes del contexto

Propiedades de lenguajes independientes del contexto Capítulo 12. Propiedades de lenguajes independientes del contexto 12.1. Identificación de lenguajes independientes del contexto Lema de bombeo. 12.2. Propiedades Cierre, Complemento de lenguajes, Sustitución,

Más detalles

Teoría de Lenguajes Solución 2do. Parcial Curso 2013

Teoría de Lenguajes Solución 2do. Parcial Curso 2013 Ejercicio 1 [Evaluación individual del obligatorio] Teoría de Lenguajes Solución 2do. Parcial Curso 2013 a) iv. Cuando se realiza un reduce b) ii. La gramática implementada en el archivo Sintactico.sin

Más detalles

Propiedades de los Lenguajes Libres de Contexto

Propiedades de los Lenguajes Libres de Contexto de los s de los Lenguajes Libres de Contexto INAOE (INAOE) 1 / 47 Contenido de los s 1 2 -ɛ 3 4 5 6 de los s (INAOE) 2 / 47 () de los s Queremos mostrar que todo (sin ɛ) se genera por una CFG donde todas

Más detalles

13.3. MT para reconocer lenguajes

13.3. MT para reconocer lenguajes 13.3. MT para reconocer lenguajes Gramática equivalente a una MT Sea M=(Γ,Σ,,Q,q 0,f,F) una Máquina de Turing. L(M) es el lenguaje aceptado por la máquina M. A partir de M se puede crear una gramática

Más detalles

Teoría de la Computación Lenguajes Regulares (LR) - Propiedades

Teoría de la Computación Lenguajes Regulares (LR) - Propiedades Teoría de la Computación Lenguajes Regulares (LR) - Propiedades Prof. Hilda Y. Contreras Departamento de Computación hyelitza@ula.ve http://webdelprofesor.ula.ve/ingenieria/hyelitza Objetivo Lenguajes

Más detalles

Teoría de Lenguajes. Clase Teórica 8 Propiedades de Lenguajes Independientes de Contexto y su Lema de Pumping Primer cuartimestre 2014

Teoría de Lenguajes. Clase Teórica 8 Propiedades de Lenguajes Independientes de Contexto y su Lema de Pumping Primer cuartimestre 2014 Teoría de Lenguajes Clase Teórica 8 Propiedades de Lenguajes Independientes de Contexto y su Lema de Pumping Primer cuartimestre 2014 Estas notas están basadas en el material compilado por el Profesor

Más detalles

Tema 3: Gramáticas regulares. Teoría de autómatas y lenguajes formales I

Tema 3: Gramáticas regulares. Teoría de autómatas y lenguajes formales I Tema 3: Gramáticas regulares Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison

Más detalles

TC - Teoría de la Computación

TC - Teoría de la Computación Unidad responsable: 270 - FIB - Facultad de Informática de Barcelona Unidad que imparte: 723 - CS - Departamento de Ciencias de la Computación Curso: Titulación: 2016 GRADO EN INGENIERÍA INFORMÁTICA (Plan

Más detalles

2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total.

2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total. U.R.J.C. Ingeniera Técnica en Informática de Sistemas Teoría de Autómatas y Lenguajes Formales Junio 2009 2do. Parcial Normas : La duración del examen es de 2 horas. Todos los ejercicios se entregarán

Más detalles

EXÁMENES DE REPASO Teoría de Autómatas y Lenguajes Formales UNIVERSIDAD FRANCISCO DE VITORIA

EXÁMENES DE REPASO Teoría de Autómatas y Lenguajes Formales UNIVERSIDAD FRANCISCO DE VITORIA EXÁMENES DE REPASO Teoría de Autómatas y Lenguajes Formales UNIVERSIDAD FRANCISCO DE VITORIA 1ER PARCIAL TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Examen parcial 12/02/2003 1.- Usa el lema de bombeo para

Más detalles

Sintaxis y Semántica. Tema 3. Sintaxis y Semántica. Expresiones y Lenguajes Regulares. Dr. Luis A. Pineda ISBN:

Sintaxis y Semántica. Tema 3. Sintaxis y Semántica. Expresiones y Lenguajes Regulares. Dr. Luis A. Pineda ISBN: Tema 3 Expresiones y Lenguajes Regulares Dr Luis A Pineda ISBN: 970-32-2972-7 Sintaxis y Semántica En us uso normal, las expresiones lingüística hacen referencia a objetos individuales, así como a sus

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACIÓN

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACIÓN BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACIÓN PROGRAMA DE LA MATERIA CORRESPONDIENTE A LA LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN. Coordinación: NOMBRE DE LA MATERIA:

Más detalles

Universidad de Valladolid

Universidad de Valladolid Universidad de Valladolid Departamento de Informática Teoría de autómatas y lenguajes formales. 2 o I.T.Informática. Gestión. Examen de primera convocatoria. 18 de junio de 29 Apellidos, Nombre... Grupo:...

Más detalles

INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS

INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS UNIVERSIDAD DE CÓRDOBA ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INFORMÁTICA Y ANÁLISIS NUMÉRICO INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS SEGUNDO CURSO, SEGUNDO CUATRIMESTRE TEORÍA DE AUTÓMATAS

Más detalles

Carácter Modalidad Horas de estudio semestral (16 semanas)

Carácter Modalidad Horas de estudio semestral (16 semanas) PROGRAMA DE ESTUDIOS: TEORÍA DE LA COMPUTACIÓN PROTOCOLO Fechas Mes/año Clave Semestre 5 o Elaboración 05-2010 Nivel Licenciatura X Maestría Doctorado Aprobación Ciclo Integración Básico Superior Aplicación

Más detalles

CONJUNTOS REGULARES. Orlando Arboleda Molina. 19 de Octubre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle

CONJUNTOS REGULARES. Orlando Arboleda Molina. 19 de Octubre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle CONJUNTOS REGULARES Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 19 de Octubre de 2008 Contenido Expresiones regulares Teorema de Kleene Autómatas

Más detalles

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila.

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila. 0 Temas Definición de autómata de pila Autómata de pila determinístico y no determinístico Objetivo Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2)

Más detalles

Modelos del Lenguaje. Qué es un ML? Modelos basados en N-gramas Modelos basados en Gramáticas Propuesta de T.D

Modelos del Lenguaje. Qué es un ML? Modelos basados en N-gramas Modelos basados en Gramáticas Propuesta de T.D Modelos del Lenguaje Qué es un ML? Modelos basados en N-gramas Modelos basados en Gramáticas Propuesta de T.D Modelos De Lenguaje Qué es un modelo de lenguaje? Mecanismo para definir la estructura del

Más detalles

6. Autómatas a Pila. Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales

6. Autómatas a Pila. Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales 6. Autómatas a Pila Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar

Más detalles

Tema 5 Lenguajes independientes del contexto. Sintaxis

Tema 5 Lenguajes independientes del contexto. Sintaxis Tema 5 Lenguajes independientes del contexto. Sintaxis 1 Gramáticas independientes del contexto Transformación de gramáticas independientes del contexto Autómatas de pila Obtención de un autómata de pila

Más detalles

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 Teoría de Lenguajes Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 aterial compilado por el Profesor Julio Jacobo, a lo largo de distintas ediciones

Más detalles

1.-DEFINE EN QUE CONSISTEN LAS GRAMÁTICAS LIBRES DE CONTEXTO

1.-DEFINE EN QUE CONSISTEN LAS GRAMÁTICAS LIBRES DE CONTEXTO 1.-DEFINE EN QUE CONSISTEN LAS GRAMÁTICAS LIBRES DE CONTEXTO una gramática libre de contexto (o de contexto libre) es una gramática formal en la que cada regla de producción es de la forma: V w Donde V

Más detalles

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx

Más detalles

Preguntas y respuestas para la evaluación continua de TALF 2009/2010

Preguntas y respuestas para la evaluación continua de TALF 2009/2010 Preguntas y respuestas para la evaluación continua de TALF 2009/2010 Dr. Arno Formella Universidade de Vigo Escola Superior de Enxeñaría Informática Departamento de Informática Área de Linguaxes e Sistemas

Más detalles

Tema 5. Análisis sintáctico ascendente

Tema 5. Análisis sintáctico ascendente Tema 5 Análisis sintáctico Ciencias de la Computación e Inteligencia Artificial Índice 5.1 Introducción 5.2 Análisis sintáctico por desplazamiento y reducción 5.3 El autómata reconocedor de prefijos viables

Más detalles

Otras propiedades de los lenguajes regulares

Otras propiedades de los lenguajes regulares Capítulo 3 Otras propiedades de los lenguajes regulares En los dos capítulos anteriores hemos presentado las propiedades básicas de los lenguajes regulares pero no hemos visto cómo se puede demostrar que

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes. Tema 4

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes. Tema 4 UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes Tema 4 Análisis Sintáctico Ascendente Javier Vélez Reyes jvelez@lsi.uned.es Objetivos

Más detalles

Capítulo 7: Expresiones Regulares

Capítulo 7: Expresiones Regulares Capítulo 7: Expresiones Regulares 7.1. Concepto de expresión regular 7.1.1. Definición 7.1.2. Lenguaje descrito 7.1.3. Propiedades 7.2. Teoremas de equivalencia 7.2.1. Obtener un AFND a partir de una expresión

Más detalles

Unidad I Introducción a la programación de Sistemas. M.C. Juan Carlos Olivares Rojas

Unidad I Introducción a la programación de Sistemas. M.C. Juan Carlos Olivares Rojas Unidad I Introducción a la programación de Sistemas M.C. Juan Carlos Olivares Rojas Agenda 1.1 Qué es y que estudia la programación de sistemas? 1.2 Herramientas desarrolladas con la teoría de programación

Más detalles

Cátedra de Sintaxis y Semántica de Lenguajes

Cátedra de Sintaxis y Semántica de Lenguajes Universidad Tecnológica Nacional Facultad Regional Córdoba Cátedra de Sintaxis y Semántica de Lenguajes Modalidad Académica Coordinador de Cátedra: Ing. Juan Giró Ciclo Lectivo: 2009 Nombre de la Materia

Más detalles

Expresiones Regulares

Expresiones Regulares Conjuntos Regulares y Una forma diferente de expresar un lenguaje Universidad de Cantabria Conjuntos Regulares y Esquema 1 Motivación 2 Conjuntos Regulares y 3 4 Conjuntos Regulares y Motivación El problema

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS 1. DATOS INFORMATIVOS MATERIA: DISEÑO DE LENGUAJES Y AUTOMATAS: CARRERA: INGENIERÍA DE SISTEMAS NIVEL:

Más detalles

Nombre de la asignatura : Lenguajes y Autómatas. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : SCB- 9324

Nombre de la asignatura : Lenguajes y Autómatas. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : SCB- 9324 . D A T O S D E L A A S I G N A T U R A Nombre de la asignatura : Lenguajes y Autómatas Carrera : Ingeniería en Sistemas Computacionales Clave de la asignatura : SCB- 9 Horas teoría-horas práctica-créditos

Más detalles

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo:

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo: 1 Clase 3 SSL EXPRESIONES REGULARES Para REPRESENTAR a los Lenguajes Regulares. Se construyen utilizando los caracteres del alfabeto sobre el cual se define el lenguaje, el símbolo y operadores especiales.

Más detalles

Tema 2: Métodos de Deducción para la Lógica Proposicional

Tema 2: Métodos de Deducción para la Lógica Proposicional Tema 2: Métodos de Deducción para la Lógica Proposicional Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2010 11 LC, 2010 11 Métodos de Deducción

Más detalles

Carrera: MTF-0535 2-4-8. Participantes Representante de las academias de ingeniería Mecatrónica de los Institutos Tecnológicos.

Carrera: MTF-0535 2-4-8. Participantes Representante de las academias de ingeniería Mecatrónica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Programación en Tiempo Real MTF-0535 2-4-8 2.- HISTORIA DEL PROGRAMA Lugar y fecha

Más detalles

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes

Más detalles

Autómatas Finitos Deterministicos (DFA)

Autómatas Finitos Deterministicos (DFA) Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica Fa.M.A.F., Universidad Nacional de Córdoba 22//4 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes y computación.

Más detalles

AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO

AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO Autómatas de pila y lenguajes independientes del contexto -1- AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO AUTÓMATAS DE PILA - Son autómatas finitos con una memoria en forma de pila. - Símbolos

Más detalles

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso Universidad Rey Juan Carlos

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso Universidad Rey Juan Carlos TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso 202-203 Universidad Rey Juan Carlos GUÍA PARA LA REALIZACIÓN DE LA HOJA DE PROBLEMAS No 3 (Tema 3: Expresiones Regulares)

Más detalles

Autómatas Finitos Deterministicos (DFA)

Autómatas Finitos Deterministicos (DFA) Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica y la Computación Fa.M.A.F., Universidad Nacional de Córdoba 26/0/6 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes

Más detalles

RELACIONES Y FUNCIONES. M.C. Mireya Tovar Vidal

RELACIONES Y FUNCIONES. M.C. Mireya Tovar Vidal RELACIONES Y FUNCIONES M.C. Mireya Tovar Vidal IDEA INTUITIVA DE RELACIÓN Una relación es una correspondencia entre dos elementos de dos conjuntos con ciertas propiedades. En computación las relaciones

Más detalles

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12 Teoría de conjuntos. Teoría de Conjuntos. personal.us.es/elisacamol Curso 2011/12 Teoría de Conjuntos. Teoría de conjuntos. Noción intuitiva de conjunto. Propiedades. Un conjunto es la reunión en un todo

Más detalles

Teoría de Autómatas y Lenguajes Formales.

Teoría de Autómatas y Lenguajes Formales. Teoría de Autómatas y Lenguajes Formales Prácticas Introducción a JFLAP Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber

Más detalles

PROGRAMA DE LABORATORIO SECCIÓN: ÁREA A LA QUE PERTENECE: POS-REQUISITO: AUXILIAR:

PROGRAMA DE LABORATORIO SECCIÓN: ÁREA A LA QUE PERTENECE: POS-REQUISITO: AUXILIAR: UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA ESCUELA DE CIENCIAS PROGRAMA DE LABORATORIO CÓDIGO: 777 CRÉDITOS: 4 NOMBRE CURSO: ESCUELA: PRE-REQUISITO: Organización de Lenguajes y Compiladores

Más detalles

Gramáticas independientes del contexto. Tema 3: Lenguajes independientes del contexto. Derivaciones. Árbol de derivación

Gramáticas independientes del contexto. Tema 3: Lenguajes independientes del contexto. Derivaciones. Árbol de derivación Tema 3: Lenguajes independientes del contexto Gramáticas independientes de contexto (GIC) Conceptos básicos Ambigüedad Ejemplos de GICs Autómatas con pila (AP) Definición de autómata con pila Determinismo

Más detalles

Teoría de la Computabilidad

Teoría de la Computabilidad Teoría de la Computabilidad Módulo 7: Lenguajes sensibles al contexto 2016 Departamento de Cs. e Ing. de la Computación Universidad Nacional del Sur Bahía Blanca, Argentina Es este programa en Pascal sintácticamente

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

Primera aproximación al aprendizaje automático.

Primera aproximación al aprendizaje automático. APRENDIZAJE Introducción al aprendizaje algorítmico José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Aprender: Tomar algo en la memoria [...] Adquirir

Más detalles