Tema I. Matrices y determinantes

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema I. Matrices y determinantes"

Transcripción

1 Tema I. Matrices y determinantes 2007 Carmen Moreno Valencia 1. Matrices sobre un cuerpo 2. Operaciones con matrices 3. Determinante de una matriz cuadrada 4. Menor complementario y adjunto 5. Cálculo de determinantes 6. Inversa de una matriz cuadrada 7. Rango de una matriz 1. Matrices sobre un cuerpo Definición. Sea K un cuerpo. Se llama matriz A de m filas y n columnas sobre K al conjunto de mn elementos de K dispuestos en m filas y n columnas, a a a a a a a a A a a a a a a a a n n n m1 m2 m3 mn

2 A (a ij ), i1, 2,..., m; a ij ŒK j1, 2,..., n. Matrices 2 El elemento que ocupa la fila i y la columna j se representa a ij, 2. Producto por escalares M mxn (K): Conjunto de todas las matrices sobre K de m filas y n columnas. Ej. 1 2 π 1 M 3 2( R) 1 2 2

3 Matriz Fila: A ŒM 1 xn(k) Matrices 3 ( π ) M13 A 1 1 ( R) Matriz Columna: AŒM m x1(k) 1 A 3 M 31 ( R) 2 Matriz cuadrada de orden n: AŒM nxn (K). Tiene el mismo número de filas que de columnas Diagonal Principal de A la forman los elementos de la forma a ii (iguales subíndices)

4 Matrices 4 Matriz cuadrada diagonal: Sus únicos elementos no nulos son los de la diagonal principal. Matriz cuadrada unidad I n :(o Identidad) Matriz cuadrada diagonal con unos en la diagonal principal y ceros en las restantes posiciones: a ii 1; a ij 0, iπj Matriz triangular Una matriz cuadrada A (a ij ) se dice que es triangular si, o bien por encima o bien por debajo de la diagonal, los elementos son todos nulos, es decir, a ij 0 para todo i < j o bien a ij 0 para todo i >j

5 Matrices 5 Dos matrices, A,B ŒM mxn (K)son iguales cuando a ij b ij, i1,..., m, j1,...,n Se llama submatriz de A a toda matriz obtenida de eliminar filas y/o columnas de A. Ej A M3( R) B 2 4 M ( R) 0 1 Una submatriz de A es Operaciones con matrices 1. Suma Sean A,B ŒM mxn (K). A ( a ij ), B ( b ij ) A+B ( c ij ) ŒM mxn (K) con cada c ij a ij +b ij i1,..., m, j1,...,n Ej A, 23( ) B M R A+ B M23 ( ) R

6 (M mxn (K), +): Grupo Abeliano Matrices 6 El elemento neutro La opuesta de A: 0 0 i 1,.., m j 1,.., n 0 (0) a 0 0 a 11 1n A ( aij ) i 1,.., m j 1,.., n am 1 a mn 2. Producto por escalares λœk, A ŒM mxn (K) ( ) ( ) ij ij λ λ λ A a i 1,.., m a i 1,.., m λa11 λa1 n λam 1 λa mn j 1,.., n j 1,.., n Ejemplo (M mxn (K), +, ): Espacio vectorial sobre K

7 3. Producto de matrices Matrices 7 A B: nº de Columnas de A nº Filas de B AŒM mxn, BŒM nxp, se define la matriz producto C A B (c ij ), ŒM mxp c ij a i1 b 1j + a i2 b 2j + a i3 b 3j a in b nj k n aik k 1 b kj Ejemplo

8 Matrices 8 Propiedades Asociativa A(BC)(AB)C Distributiva resp.de la suma A(B+C)AB+AC (A+B)CAC+BC λ (AB)(λ A)BA(λ B) (M n (K), +, ): Anillo unitario Unidad del anillo: I n : A I n I n AA El producto de matrices no es conmutativo: 4. Matriz traspuesta Dada A ( a ij ) ŒM mxn (K), la matriz Traspuesta de A, A t (b ij ) ŒM nxm (K), b ij a ji, i1,..,n; ji,..,m

9 Matrices 9 Propiedades Sean A, BŒM mxn (K),C ŒM nxp (K). (A+B) t A t +B t (AC) t C t A t (A t ) t A (λa) t λ(a) t Una matriz cuadrada es simétrica si A A t, (a ij a ji para todos i, j) Sus elementos tienen simetría respecto de la diagonal principal.

10 Matrices 10 Una matriz cuadrada es antisimétrica si A -A t, (a ij -a ji para todos i, j) Los elementos de la diagonal principal son nulos t A 1 0 1, A A -A t : A Antisimétrica Toda matriz cuadrada se descompone como suma de una matriz simétrica y otra antisimétrica: aij + aji aij aji A(a ij ), aij bij + cij aji + aij La matriz ( bi j) es simetrica : bji bij y 2 aji aij la matriz ( c ) es antisimetrica : c c 2 ij ji ij Luego, (a ij )(b ij )+(c ij )

11 Matrices Determinante de una matriz cuadrada Sea A ŒM n (K), el determinante de A, es un elemento de K dado por la aplicación: det : M n( K) K A det( A) A : sg( σ ) a a an n σ Sn 1 σ(1) 2 σ(2) σ( ) En det(a) aparecen n! sumandos Determinantes de orden dos n 2 S A a a a21 a 22 σ, σ { } σ1 2 ( 1) i sg σ σ 2 (1 2) sg( σ 2) S 2, car(s 2 )2!2

12 A sg( σ ) a a σ S 2 1 σ(1) 2 σ(2) sg( σ1) a1 σ1(1) a2 σ1(2) + sg( σ2) a1 σ2(1) a2 σ2(2) σ σ σ σ 1 2 Matrices 12 ( + 1) a a + ( 1) a a a a a a A a a a a a a a a Ejemplo 2 3 A ( 3) Determinantes de orden tres. Regla de Sarrus n 3 a a a A a a a a a a S 3, car(s 3 )3!6

13 S { σ, σ, σ, σ, σ σ } , σ1 3 ( 1) i sg σ σ 2 (2 3) ( 2) sg σ σ 3 (1 2) ( 3) sg σ σ 4 (1 2 3) sg( σ 4) σ 5 (1 3 2) sg( σ 5) σ 6 (1 3) sg( σ 6) det( A) A a21 a22 a23 a a a Matrices 13 sg( σ ) a1 σ(1) a2 σ(2) a3 σ(3) σ S 3 a a a

14 ( + 1) a a a + ( 1) a a a + ( 1) a a a σ σ σ ( 1) a12a23a31 ++ ( 1) a13a21a32 + ( 1) a13a22a31 σ σ σ ( a a a + a a a + a a a ) ( a a a + a a a + a a a ) Matrices 14 Ejemplo (-12) 0+(-8) ( )-( )

15 Propiedades de los determinantes Sea A ŒM n (K) Matrices A A t 2. Si en un determinante hay una fila (o columna) de ceros, el determinante es nulo. 3. a a a a 11 1n 11 λa λ a λ a a i1 in i1 in a a a a n1 nn n1 nn in

16 4. 5. Si se intercambia una fila por otra, el determinante cambia de signo Matrices 16 a a a a a a a + b a + b b b + a a a a a a a a 11 1n 11 1n 11 1n i1 i1 in in i1 in i1 in n1 nn n1 nn n1 nn 6. Si hay dos filas (columnas) iguales, det(a)0 7. Si a una fila se le suma una combinación lineal de las restantes filas, el determinante no varía.

17 8. Si A, BŒM n (K), AB A B 9. Si una fila es combinación lineal de las restantes filas, el determinante es cero Matrices (desarrollo de ÍAÍ a través de los elementos de una fila cualquiera). El ÍAÍ viene dado por la suma de los productos de los elementos de la fila i por sus correspondientes adjuntos: ÍA Í a i1 A i1+ a i2 A i2+ a i3 A i a in A in k n aik A donde los A ik ik son los correspondientes adjuntos k a i1 A j1+ a i2 A j2+ a i3 A j a in A jn 0 (iπj) La suma de los productos de los elementos de una fila -i- por los adjuntos de otra fila -j-, es 0

18 4. Menor complementario y adjunto Matrices 18 Definiciones Sea AŒM n (K), y a ij un elemento de A. Se llama menor complementario del elemento a ij, y se nota α ij, al determinante de la submatriz cuadrada de A que resulta de eliminar la fila i y la columna j de A. Se llama adjunto del elemento a ij, y se nota A ij, al valor: A ij (-1) i+j α ij Matriz adjunta de A, Adj(A)(A ij ), matriz de los adjuntos.

19 α α Ejemplo α A Menores Complementarios α α 13 Matrices α α Adjuntos α α A 11 +α A 12 -α 12 3 A 13 +α 13 1 A 21 -α 21-8 A 22 +α 22 3 A 23 -α 23-1 A 31 +α 31 4 A 32 -α 32-3 A 33 +α 33-1 Adjunta de A: Adj( A)

20 5. Cálculo de determinantes Órdenes dos y tres: Definición / Sarrus Orden mayor o igual tres Matrices 20 Método del Pivote / Desarrollo por la fila del pivote (prop. 10) 1º Elegir un elemento como pivote (±1), (a 11 ) A a 11 1n n1 a a a nn 2º Obtener ceros en la fila (columna) del pivote, sumando combinaciones lineales de la columna (fila) del pivote (prop. 7) A a a 11 n1 0 0 a nn

21 Matrices 21 3º Desarrollar el determinante por la fila (columna) del pivote.(prop. 10) A a11a11 + 0A A1 n a11a11 Orden n Orden n-1 Ejemplo C1+ C3 2C1+ C A ( 1) Por triangulación Transformar el det(a) en el determinante de una matriz triangular a a nn

22 Ejemplo F1+ F F1+ F Matrices 22 + F2 F Matriz inversa (M n (K),+, ) Anillo Unitario (no cuerpo) AŒM n (K) es regular si existe BŒM n (K) tal que A BB AI n (B es la inversa de A: BA -1 ) En otro caso, A es singular Teorema Sea AŒM n (K). (1)A posee inversa si y sólo si ΩAΩπ0 1 1 (2)En ese caso, A adj( A t ) A

23 Ejemplo Matrices Rango de una matriz Sea AŒM mxn (K). Un menor de A es el determinante de cualquier submatriz cuadrada de A. se llama rango de A al mayor orden posible de un menor no nulo de A. Propiedades r(a)r(a t ) r(a) min{m,n} Si a una fila (columna) se le suma una c.l.del resto (o un múltiplo de otra), el rango no varía.

24 Matrices 24 Si una fila (columna) es c.l. del resto, el r(a) coincide con el de la submatriz obtenida al eliminar dicha fila (columna) de A En resumen, el rango de A no varía al realizar operaciones elementales sobre A, tales como: Intercambio de filas, multiplicar una fila por un escalar, sumar a una fila un múltiplo de otra o una c.l. de las restantes.. Matriz escalonada: Ceros bajo la diagonal principal: a ij 0, i>j. Su rangonºfilas no nulas completamente Ejemplos de matrices escalonadas: A, r ( A ) B r(b) Matrices triangulares

25 Método de Gauss Para obtener el rango de una matriz A Transformar A A escalonada Operaciones elementales Matrices 25 Ejemplo F 1+ F2 3 A F1+ F F + 2 F A r(a)r(a )2

26 Algoritmo de cálculo del rango Matrices 26 Rango dos? Ω1Ωπ0fir(A) 1 fir(a) 2 Rango tres? Luego el rango es dos

Matemá'cas generales

Matemá'cas generales Matemá'cas generales Matrices y Sistemas Patricia Gómez García José Antonio Álvarez García DPTO. DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN Este tema se publica bajo Licencia: Crea've Commons

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES CONCEPTO MATRICES Se llama matriz de orden (dimensión) m n a un conjunto de m n elementos dispuestos en m filas y n columnas Se representa por A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn j=1,2,,n

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

Tema 1: MATRICES. OPERACIONES CON MATRICES

Tema 1: MATRICES. OPERACIONES CON MATRICES Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Resumen 3: Matrices, determinantes y sistemas de ecuaciones

Resumen 3: Matrices, determinantes y sistemas de ecuaciones Resumen 3: Matrices, determinantes y sistemas de ecuaciones lineales 1 Matrices Una matriz con coeficientes sobre un cuerpo K (normalmente K R) consiste en una colección de números (o escalares) del cuerpo

Más detalles

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. TEMA 1.- MATRICES 1.-Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21

Más detalles

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A).

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno a 11 = a 11 5 = 5 Determinante

Más detalles

MATRICES. M(n) ó M nxn A =

MATRICES. M(n) ó M nxn A = MTRICES Definición de matriz. Una matriz de orden m n es un conjunto de m n elementos pertenecientes a un conjunto, que para nosotros tendrá estructura de cuerpo conmutativo y lo denotaremos por K, dispuestos

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 1 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

Matrices y Determinantes

Matrices y Determinantes Capítulo 1 Matrices y Determinantes 11 Matrices Generalidades Definición 11 Sea E un conjunto cualquiera, m, n N Definimos matriz de orden m n sobre E a una expresión de la forma: a 11 a 12 a 1n a 21 a

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

Matrices y Determinantes.

Matrices y Determinantes. Matrices y Determinantes. Definición [Matriz] Sea E un conjunto cualquiera, m, n N. Matrices. Generalidades Matriz de orden m n sobre E: a 11 a 12... a 1n a 21 a 22... a 2n...... a m1 a m2... a mn a ij

Más detalles

PRUEBA MÚLTIPLE ELECCIÓN MATRICES Y DETERMINANTES

PRUEBA MÚLTIPLE ELECCIÓN MATRICES Y DETERMINANTES PRUEBA MÚLTIPLE ELECCIÓN MATRICES Y DETERMINANTES 1. Sea una matriz A M n n (R) nilpotente de índice p. r(a) n 1 r(a) =p 1 8 4 2 2. Sea la matriz A = 2 1 1 0 5 2 1 1 r(a) =2 r(a) =3 r(a) =4 3. Sea una

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

Una matriz es un arreglo rectangular de elementos. Por ejemplo:

Una matriz es un arreglo rectangular de elementos. Por ejemplo: 1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con

Más detalles

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria T.3: MATRICES Y DETERMINANTES 3.1 Determinantes de segundo orden Se llama determinante de a: 3.2 Determinantes de tercer orden Se llama determinante de a: Ejercicio 1: Halla los determinantes de las siguientes

Más detalles

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ... MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

Determinante de una matriz

Determinante de una matriz 25 Matemáticas I : Preliminares Tema 3 Determinante de una matriz 31 Determinante de una matriz cuadrada Definición 67- Sea A una matriz cuadrada de orden n Llamaremos producto elemental en A al producto

Más detalles

Capitulo 6. Matrices y determinantes

Capitulo 6. Matrices y determinantes Capitulo 6. Matrices y determinantes Objetivo. El alumno aplicará los conceptos fundamentales de las matrices, determinantes y sus propiedades a problemas que requieran de ellos para su resolución. Contenido.

Más detalles

Curso cero Matemáticas en informática :

Curso cero Matemáticas en informática : y Curso cero Matemáticas en informática : y Septiembre 2007 y y Se llama matriz de orden m n a cualquier conjunto de elementos dispuestos en m filas y n columnas: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n

Más detalles

Ejemplo 1. Ejemplo introductorio

Ejemplo 1. Ejemplo introductorio . -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo

Más detalles

Teoría de Matrices. Julio Yarasca. 30 de junio de 2015. Julio Yarasca

Teoría de Matrices. Julio Yarasca. 30 de junio de 2015. Julio Yarasca 30 de junio de 2015 Matriz de m por n Definimeros a una matriz A de orden m por n como un arreglo de números de m filas y n columnas. a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = a 31 a 32 a 33 a 3n....

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

2 - Matrices y Determinantes

2 - Matrices y Determinantes Nivelación de Matemática MTHA UNLP 1 2 - Matrices y Determinantes 1 Matrices 11 Definición Una matriz A es cualquier ordenamiento rectangular de números o funciones a 11 a 12 a 1n a 21 a 22 a 2n A a m1

Más detalles

3.- DETERMINANTES. a 11 a 22 a 12 a 21

3.- DETERMINANTES. a 11 a 22 a 12 a 21 3.- DETERMINANTES. 3.1. -DEFINICIÓN Dada una matriz cuadrada de orden n, se llama determinante de esta matriz (y se representa por A o deta al polinomio cuyos términos son todos los productos posibles

Más detalles

EJERCICIOS RESUELTOS DE MATRICES

EJERCICIOS RESUELTOS DE MATRICES EJERCICIOS RESUELTOS DE MATRICES. Dadas las matrices A - 3, B 0 - y C 3 -, calcular si es posible: a) A + B b) AC c) CB y C t B d) (A+B)C a) A + B - 3 + 0 - b) AC - 3 3 - +0 -+ 3+ +(-) 0 7 0.+(-).3+(-)(-).+(-)

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de E.T.S. DE INGENIERÍA INFORMÁTICA Apuntes de ÁLGEBRA LINEAL para la titulación de INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN Fco. Javier Cobos Gavala Amparo Osuna Lucena Rafael Robles Arias Beatriz Silva

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

Determinantes. Primera definición. Consecuencias inmediatas de la definición

Determinantes. Primera definición. Consecuencias inmediatas de la definición Determinantes Primera definición Para calcular el determinante de una matriz cuadrada de orden n tenemos que saber elegir n elementos de la matriz de forma que tomemos solo un elemento de cada fila y de

Más detalles

Lección 5.1: Matrices y determinantes. Primeros conceptos. Objetivos de esta lección

Lección 5.1: Matrices y determinantes. Primeros conceptos. Objetivos de esta lección Matemáticas Tema 5: Conceptos básicos sobre matrices y vectores Objetivos Lección 5.: y determinantes Philippe Bechouche Departamento de Matemática Aplicada Universidad de Granada 3 4 phbe@ugr.es 5 Qué

Más detalles

Matrices y Determinantes

Matrices y Determinantes Matrices y Determinantes Definición de matriz Matriz Una matriz es un ente matemático equivalente a una tabla; es decir, es un arreglo de elementos de cualquier naturaleza (aunque, en general, suelen ser

Más detalles

Matrices y Determinantes. Sistemas Ec. Lineales

Matrices y Determinantes. Sistemas Ec. Lineales Matrices y Determinantes. Sistemas Ec. Lineales Matrices.- Definiciones.- Se llama matriz de orden nxm a toda ordenación de n.m números ordenados en n filas y m columnas. Se suelen llamar con letras mayúsculas

Más detalles

MATRICES DETERMINANTES

MATRICES DETERMINANTES MATRICES Y DETERMINANTES INTRODUCCIÓN, MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 5 de Abril de 2 MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clase ) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela Puntos a tratar. Definición

Más detalles

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra)

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra) MATEMÁTICAS II 1 José M. Ramos González Este libro es totalmente gratuito y solo vale la tinta y el papel en que se imprima. Es de libre divulgación y no está sometido a ningún copyright. Tan solo se

Más detalles

Matemáticas Aplicadas a los Negocios

Matemáticas Aplicadas a los Negocios LICENCIATURA EN NEGOCIOS INTERNACIONALES Matemáticas Aplicadas a los Negocios Unidad 4. Aplicación de Matrices OBJETIVOS PARTICULARES DE LA UNIDAD Al finalizar esta unidad, el estudiante será capaz de:

Más detalles

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj.

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj. Matrices Introducción Una matriz de m filas y n columnas con elementos en el cuerpo K es un rectángulo de elementos de K (es decir, números) del tipo a a 2 a n a 2 a 22 a 2n A = (a ij ) = a m a m2 a mn

Más detalles

Una matriz es una arreglo rectangular ordenado de elementos, comúnmente llamados escalares, dispuestos en m renglones y n columnas.

Una matriz es una arreglo rectangular ordenado de elementos, comúnmente llamados escalares, dispuestos en m renglones y n columnas. MATRICES Las matrices tienen una importancia fundamental en el análisis económico sobre todo en el estudio de sistemas de ecuaciones lineales, como en el modelo insumo-producto. Cuando trabajamos con modelos

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

Matrices y Determinantes

Matrices y Determinantes Apuntes de Álgebra Lineal Capítulo 3 Matrices y Determinantes 31 Operaciones con matrices 311 Suma, resta y multiplicación por escalares Las matrices de un tamaño fijo m n se pueden sumar entre sí y esta

Más detalles

Tema 5: Sistemas de ecuaciones lineales.

Tema 5: Sistemas de ecuaciones lineales. TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1

Más detalles

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. A1.- Determina a y b sabiendo que el sistema de ecuaciones x + 3y +z = 1 -x + y +z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. Para que el sistema tenga, al menos, dos soluciones distintas

Más detalles

CURSO CERO DE MATEMÁTICAS

CURSO CERO DE MATEMÁTICAS CURSO CERO DE MATEMÁTICAS Dr. García Alonso, Fernando Luis. Dr. García Ferrández, Pedro Antonio. -- RESUMEN TEORÍA DE ÁLGEBRA Matrices Las matrices constituyen una herramienta fundamental para la ejecución

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 6 Sistemas de ecuaciones lineales 61 Sistemas de ecuaciones lineales Se llama ecuación lineal en n incógnitas sobre R a una expresión de la forma a 1 x 1 + a 2 x 2 + + a n x n = b con los a i en R para

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

Matemáticas. D e t e r m i n a n t e s

Matemáticas. D e t e r m i n a n t e s Matemáticas D e t e r m i n a n t e s El determinante de una matriz cuadrada es un número que se obtiene a partir de los elementos de la matriz. Su estudio se justifica en cuanto que simplifica la resolución

Más detalles

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución: 3 Determinantes. Determinantes de orden y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 4 4 = 0 Aplica la teoría. Calcula

Más detalles

Sistema de ecuaciones algebraicas

Sistema de ecuaciones algebraicas Sistema de ecuaciones algebraicas Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM

Más detalles

on muchas las actividades en las que conviene disponer las informaciones numéricas

on muchas las actividades en las que conviene disponer las informaciones numéricas UNIDAD 1 Matrices on muchas las actividades en las que conviene disponer las informaciones numéricas S ordenadas en tablas de doble entrada. Por ejemplo, se conocen las distancias entre las siguientes

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:

Más detalles

Apuntes de álgebra lineal. Eduardo Liz Marzán. Enero de 2015.

Apuntes de álgebra lineal. Eduardo Liz Marzán. Enero de 2015. Apuntes de álgebra lineal Eduardo Liz Marzán Enero de 2015 Índice general 1 Introducción 7 11 Operaciones internas y estructura de cuerpo 7 12 Números complejos 8 13 Vectores 10 2 Matrices y determinantes

Más detalles

Las matrices Parte 1-2 o bachillerato

Las matrices Parte 1-2 o bachillerato Parte 1-2 o bachillerato wwwmathandmatesurlph 2014 1 Introducción Generalidades 2 Definición Ejercicio 1 : Suma de dos matrices cuadradas 2x2 Ejercicio 2 : Suma de dos matrices cuadradas 3x3 Propiedades

Más detalles

CAPITULO 2: MATRICES Y DETERMINANTES

CAPITULO 2: MATRICES Y DETERMINANTES CAPITULO : MATRICES Y DETERMINANTES Cuando los sistemas de ecuaciones lineales son extensos, mayormente se utiliza matrices por su facilidad de manejo. Las matrices son ordenamientos de datos y se usan

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

!MATRICES INVERTIBLES

!MATRICES INVERTIBLES Tema 4.- MATRICES INVERTIBLES!MATRICES INVERTIBLES!TÉCNICAS PARA CALCULAR LA INVERSA DE UNA MATRIZ REGULAR 1 Hemos hablado anteriormente de la matriz cuadrada unidad de orden n (I n ).. Es posible encontrar

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A.

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A. ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; A = A. 2. La inversa de A 1 es A; A 1 1 = A. 3. AB = B A. 4. Las matrices A A y AA son simétricas. 5. AB 1 = B 1 A 1, si A y B son no singulares. 6. Los escalares

Más detalles

MATRICES. Producción Nacional (Tn) Producción Rio Negro (Tn) Caolín 8.490 Halita 199.856 Yeso Bentonita 123.092 33.804 Diatomita 15.

MATRICES. Producción Nacional (Tn) Producción Rio Negro (Tn) Caolín 8.490 Halita 199.856 Yeso Bentonita 123.092 33.804 Diatomita 15. MATRICES Las siguientes tablas muestran la producción de distintos minerales en la provincia de Río Negro y en el país durante los años,,,, y. Año Nacional Negro Caolín 8.9 Halita 99.86 Yeso Bentonita.9.8

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Temario de Matemáticas

Temario de Matemáticas Temario de Matemáticas BLOQUE I: ÁLGEBRA LINEAL Y GEOMETRÍA 1 o Grado en Biología Alma Luisa Albujer Brotons Índice general 1. Matrices 1 1.1. Conceptos básicos y ejemplos...............................

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales ALBERTO VIGNERON TENORIO Dpto. de Matemáticas Universidad de Cádiz Índice general 1. Sistemas de ecuaciones lineales 1 1.1. Sistemas de ecuaciones lineales. Definiciones..........

Más detalles

Matrices y Determinantes para Matemáticas II. 2n BAT. Prof. Ximo Beneyto IES Sant Blai Alacant

Matrices y Determinantes para Matemáticas II. 2n BAT. Prof. Ximo Beneyto IES Sant Blai Alacant Matrices y Determinantes para Matemáticas II. 2n BAT * Definición de matriz * Tipos de matrices * Operaciones con matrices * Matriz inversa * Rango de una matriz * Determinante de una matriz * Propiedades

Más detalles

1.1 Primeras definiciones. Una matriz A es una colección de m n escalares, organizados en m filas y n columnas de la forma que se indica

1.1 Primeras definiciones. Una matriz A es una colección de m n escalares, organizados en m filas y n columnas de la forma que se indica Matrices Las Matrices se consideran en este primer Capítulo independientemente de lo que pueden representar. Se dan aquí las primeras definiciones; se aprende a operar con matrices, tanto reales como complejas

Más detalles

Matrices y sus operaciones

Matrices y sus operaciones Capítulo 1 Matrices y sus operaciones 1.1. Definiciones Dados dos enteros m, n 1 y un cuerpo conmutativo IK, llamamos matriz de m filas y n columnas con coeficientes en IK a un conjunto ordenado de n vectores

Más detalles

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES Ana Morata Gasca 1 DEFINICIÓN DE VECTOR Un vector es todo segmento de recta dirigido en el espacio. CARACTERÍSTICAS DE UN VECTOR Origen o Punto de aplicación:

Más detalles

Propiedades de las operaciones lineales con matrices

Propiedades de las operaciones lineales con matrices Propiedades de las operaciones lineales con matrices Ejercicios Objetivos. Aprender a demostrar propiedades de las operaciones lineales en M m n (R). Requisitos. Operaciones lineales en R n, definición

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

TEMA 3: Matrices y sistemas de ecuaciones lineales. Álgebra y estructuras finitas/discretas (Grupos A)

TEMA 3: Matrices y sistemas de ecuaciones lineales. Álgebra y estructuras finitas/discretas (Grupos A) TEMA 3: Matrices y sistemas de ecuaciones lineales Álgebra y estructuras finitas/discretas Grupos A Curso 2007-2008 1 2 1 Anillos y cuerpos Definición 1 Un anillo viene dado por un conjunto R y por dos

Más detalles

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad

Más detalles

Matrices, Determinantes y Sistemas de ecuaciones lineales

Matrices, Determinantes y Sistemas de ecuaciones lineales Tema 1 Matrices, Determinantes y Sistemas de ecuaciones lineales 1.1. Matrices Definición: Una MATRIZ es un conjunto de números reales dispuestos en forma de rectángulo, que usualmente se delimitan por

Más detalles

Dr. Horacio Martínez Alfaro Centro de Sistemas Inteligentes

Dr. Horacio Martínez Alfaro Centro de Sistemas Inteligentes Material de apoyo al curso Dr. Horacio Martínez Alfaro Centro de Sistemas Inteligentes Tecnológico de Monterrey Campus Monterrey Agosto de ii y Álgebra Lineal Material de apoyo al curso Este material fue

Más detalles

Determinantes. Profesores Omar Darío Saldarriaga Ortíz. Hernán Giraldo

Determinantes. Profesores Omar Darío Saldarriaga Ortíz. Hernán Giraldo Determinantes Profesores Omar Darío Saldarriaga Ortíz Iván Dario Gómez Hernán Giraldo 2009 Definición Sea A una matriz de tamaño m n, para 1 i m y 1 j n, definimos el ij-ésimo menor de A, al cual denotaremos

Más detalles

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla.

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla. ÁLGEBRA LINEAL Apuntes elaborados por Juan González-Meneses López. Curso 2008/2009 Departamento de Álgebra. Universidad de Sevilla. Índice general Tema 1. Matrices. Determinantes. Sistemas de ecuaciones

Más detalles

Tema 1. Álgebra lineal. Matrices

Tema 1. Álgebra lineal. Matrices 1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos

Más detalles

2 Matrices. 1. Tipos de matrices. Piensa y calcula. Aplica la teoría

2 Matrices. 1. Tipos de matrices. Piensa y calcula. Aplica la teoría 2 Matrices 1. Tipos de matrices Piensa y calcula Escribe en forma de tabla el siguiente enunciado: «Una familia gasta en enero 400 en comida y 150 en vestir; en febrero, 500 en comida y 100 en vestir;

Más detalles

ÁLGEBRA. Vol. I. Enrique Izquierdo

ÁLGEBRA. Vol. I. Enrique Izquierdo ÁLGEBRA Vol. I Enrique Izquierdo Título: Álgebra. Vol. I Autor: Enrique Izquierdo Guallar ISBN: 978-84-8454-751-8 Depósito legal: A-2-2010 Edita: Editorial Club Universitario Telf.: 96 567 61 33 C/. Cottolengo,

Más detalles

Apuntes de Álgebra. Publicación Valentín Barros Puertas

Apuntes de Álgebra. Publicación Valentín Barros Puertas Apuntes de Álgebra Publicación 0.0.1 Valentín Barros Puertas 16 de January de 2015 Índice general 1. Tema 1 2 1.1. Cuerpo.................................................. 2 1.2. Matriz..................................................

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 47 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

Matrices 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales

Matrices 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales MATRICES Índice:. Introducción-------------------------------------------------------------------------------------- 2. Definición de matriz-----------------------------------------------------------------------------

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Matrices Tema MATRICES Y DETERMINANTES. DEFINICIÓN Y DESCRIPCIÓN DE MATRICES Una matriz es una ordenación rectangular de elementos dispuestos en filas y columnas encerrados entre paréntesis, por ejemplo

Más detalles

ÁLGEBRA LINEAL, RESUMEN Y EJEMPLOS

ÁLGEBRA LINEAL, RESUMEN Y EJEMPLOS ÁLGEBRA LINEAL, RESUMEN Y EJEMPLOS Héctor Manuel Mora Escobar hectormora@yahoo.com www.hectormora.info July 2, 2015 i ÍNDICE GENERAL Notación iv 1 Matrices 1 1.1 Definiciones iniciales.......................................

Más detalles

Apéndice A. Repaso de Matrices

Apéndice A. Repaso de Matrices Apéndice A. Repaso de Matrices.-Definición: Una matriz es una arreglo rectangular de números reales dispuestos en filas y columnas. Una matriz com m filas y n columnas se dice que es de orden m x n de

Más detalles

Inversas de las matrices triangulares superiores

Inversas de las matrices triangulares superiores Inversas de las matrices triangulares superiores Ejercicios Objetivos. Demostrar que la inversa a una matriz triangular superior también es triangular superior. Requisitos. Algoritmo de inversión de una

Más detalles

ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012. Guía de Estudio y Ejercitación propuesta

ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012. Guía de Estudio y Ejercitación propuesta ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012 1 Guía de Estudio y Ejercitación propuesta Esta selección de Temas y Ejercicios están extraídos del texto FUNDAMENTOS DE ALGEBRA LINEAL de R. Larson y D. Falvo.

Más detalles

Í N D I C E MATRICES Y DETERMINANTES.

Í N D I C E MATRICES Y DETERMINANTES. MATRICES Y DETERMINANTES Año escolar: 5to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles