Los números enteros y racionales

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Los números enteros y racionales"

Transcripción

1 Los números enteros y racionales Objetivos En esta quincena aprenderás a: Representar y ordenar números enteros Operar con números enteros Aplicar los conceptos relativos a los números enteros en problemas reales Reconocer y representar número racionales Operar con números racionales Expresar números en notación científica y operar con ellos Antes de empezar..números enteros.. pág. Representación y orden Operaciones Problemas.Fracciones y decimales... pág. Fracciones equivalentes. Expresión decimal. Clasificación.Números racionales... pág. 7 Representación y orden Suma y resta Multiplicación y división Potencias de exponente entero. Operaciones con potencias. Problemas..Notación Científica pág. Definición Operaciones Ejercicios para practicar Para saber más Resumen Autoevaluación MATEMÁTICAS Orientadas a las Enseñanzas Aplicadas º ESO

2 MATEMÁTICAS Orientadas a las Enseñanzas Aplicads º ESO

3 Comienza con un juego de números: Antes de empezar Tienes que rellenar las casillas que están en blanco, con números del al 9, con la única condición de que sumen los números blancos indicados y que no se pueden repetir en la misma fila o columna. Y aquí tienes alguno más para practicar: MATEMÁTICAS Orientadas a las Enseñanzas Aplicadas º ESO

4 . Números enteros Representación y orden El conjunto de los números enteros Z está formado por: Números enteros positivos:,,,... Números enteros negativos: -,-,-,-.. El número cero: 0 El opuesto de un número entero, op(, es el número cambiado de signo: op(=-a, op(-=a El valor absoluto de un número entero, a, es el mismo número si es positivo y su opuesto si es negativo. Los números enteros son un conjunto ordenado. Los números enteros se representan en la recta numérica. Opuesto: op(-)= op(8)=-8 Valor Absoluto: 7 =7 - = Orden: -<-<-<0<<< Suma y resta Para sumar dos números enteros, a+b Si son del mismo signo se suman sus valores absolutos y se pone el mismo signo. Si son de distinto signo se restan sus valores absolutos y se pone el signo del número de mayor valor absoluto. Suma y resta = 7 + = = + = 7 Para restar dos números enteros, a-b, se suma al primero el puesto del segundo: a - b = a + (-. Producto y división Para multiplicar ó dividir dos números enteros, se multiplican ó se dividen sus valores absolutos. El signo será positivo si los dos son del mismo signo y negativo si son de signo contrario. Regla de los signos: Producto ( ) ( ) = ( ) ( + ) = ( + ) ( ) = ( + ) ( + ) = División ( 8) : ( ) = ( 8) : ( + ) = ( + 8) : ( ) = ( + 8) : ( + ) = MATEMÁTICAS Orientadas a las Enseñanzas Aplicads º ESO

5 EJERCICIOS resueltos. Calcular el valor absoluto de -,, 0 = = 0 = 0. Ordena de mayor a menor: -78, -, - > > 78. Calcula el opuesto de -, 7, 0 op( ) = op(7) = 7 op(0) = 0. Calcula: ( 9) + 8( + ) ( 9) + 8( + ) = ( 8) + 8() = + = 9. Calcular: 8(7 + ):( 8) Dividiendo 8(7 + ):( 8) = 8(0):( 8) = 80: 8 = 0x + = 6. Halla el m.c.m. (88,68) 88 = 7 68 = 7 mcm(88,68) = 7 = 8 7. Todos los pasteles que hemos fabricado hoy los hemos metido en cajas de 7 y 89 pasteles y no ha sobrado ninguno. Cuántos pasteles como mínimo henos fabricado hoy? Se han fabricado 7 pasteles 7 = 89 = 7 mcm(7,89) = 7 = 7 8. El pasillo de una casa tiene 0 cm de largo por 9 cm de ancho. Se quieren poner baldosas cuadradas del mayor tamaño posible. Halla las dimensiones que deben tener las baldosas si no queremos cortar ninguna. Las baldosas deben tener 6 cm de lado = 9 = 6 mcd(0,9) = = 6 9. Cuánto tiene que valer x para qué el número 9x7 sea divisible por? 9 + x + 7 = 6 + x tiene que ser múltiplo de x = x = x = 8 0. Escribe un número mayor de 00 y menor 0 que sea múltiplo de 0 0, 0 MATEMÁTICAS Orientadas a las Enseñanzas Aplicadas º ESO

6 . Fracciones y decimales Fracciones equivalentes Una fracción es una expresión de la forma: a b con a y b números enteros y b#0, a se llama numerador y b denominador. Si m.c.d.(a,= la fracción se dice irreducible. Dos fracciones a y c son equivalentes si a d=b c b d El conjunto de los números racionales Q esta formado por todos los números que se pueden expresar en forma de fracción Fracción irreducible mcd(, ) = Fracciones equivalentes 6 = 8 8 = 6 = Expresión decimal. Clasificación Para obtener la expresión decimal de una fracción, se divide el numerador entre el denominador. Al hacer esta división el resultado puede ser: Decimal exacto Periódico puro Periódico mixto Número finito de cifras decimales La parte decimal se repite indefinidamente (periodo) La parte decimal esta formada por una parte que no se repite (ante periodo) seguida del periodo Los únicos divisores del denominador son o Los números o no son divisores del denominador Los divisores del denominador son o y tiene además otros divisores Los decimales exactos y periódicos, puros o mixtos, pueden expresarse ne forma de fracción. = Decimal exacto: 7 ' y al contrario: 87, = = 00 0 Periódico puro: 0'... 0' = = y al contrario: 9, = = = 9 9 Periódico mixto: 0' '6 6 = = y al contrario: 70, = = = MATEMÁTICAS Orientadas a las Enseñanzas Aplicads º ESO

7 EJERCICIOS resueltos. Escribe la fracción irreducible de: se simplifica por se simplifica por 8 8 se simplifica por. Halla x para que las fracciones sean equivalentes: 7 y x 7 x = 9 7 y x x = 96 x y x =. Escribe la expresión decimal de las siguientes fracciones: , 7 99,, 6. Escribe la fracción generatriz de:, ,68 9, MATEMÁTICAS Orientadas a las Enseñanzas Aplicadas º ESO 7

8 . Números racionales Representación y orden Los números racionales es un conjunto ordenado, para ordenar las fracciones se escriben fracciones equivalentes a ellas con el mismo denominador (reducir a común denominador) y se ordenan los numeradores. Los números racionales se representan de manera exacta en la recta numérica. Antes de representar una fracción hay que saber entre que valores está comprendido 9 = < < Se divide el segmento de extremos y en cuatro partes iguales: Suma y resta Para sumar o restar los números racionales se escriben en forma de fracción y luego se suman o restan las fracciones. Para sumar o restar las fracciones se reducen a común denominador y luego se suman o restan los numeradores. Suma 9 + = + = 6 Resta 9 7 = = 6 Multiplicación y división El producto de dos números racionales es otro número racional que tiene por numerador el producto de los numeradores y por denominador el producto de los denominadores. Para dividir dos números racionales se multiplica la primera fracción por la inversa de la segunda Producto = = 0 Cociente : = = Operaciones con números periódicos 78 7 ' + '78 = + = = + = + = = = ' MATEMÁTICAS Orientadas a las Enseñanzas Aplicads º ESO

9 = = 9 8 = = 7 = = = 8 = = = = 7 = 7 = 7 8 ( ) = = ( ) = = = 6 = = Potencias de exponente entero Si a es un número real y n un número natural, se tiene que: a n = a a n veces a a a n a = = n n veces Además para cualquier valor de a distinto de 0, se cumple: a = a = a a = a 0 Para elevar una fracción a una potencia se elevan el numerador y el denominador. Operaciones con potencias Si m y n son números enteros cualesquiera se cumple: m n m+ n a a = a m a m n = a n a a m n m n ( ) m a = a b a b m m m = (a a = b m m Resolución de problemas En la vida cotidiana aparecen situaciones donde es necesario trabajar con números faccionarios. Para resolver problemas con fracciones debes seguir las mismas pautas que con otros tipos de problemas. Lee atentamente el enunciado. Reflexiona sobre la situación que propone el problema, qué te pide, qué datos tienes,... Organiza la información que tienes, haz un esquema, un dibujo... Una vez que tengas la solución compruébala. Si tres kilos y cuarto de manzanas cuestan 6. Cuánto costaran dos kilos y medio? Calculamos el precio de un kg de manzanas. Para ello se divide le precio pagado entre los kilogramos comprados: 6 0 '6: + : 0'8 /kg = = = 0 0 El precio de dos kilos y medio será: ' 8 + = = = 0 0 Un abuelo deja al morir 0000 para sus nietos Juan, Pedro y Ana. A Juan le toca /, a Pedro / y a Ana el resto. Cuánto le toca a cada uno? 0000 Juan 0000 = = Pedro 0000 = = 0000 Ana = MATEMÁTICAS Orientadas a las Enseñanzas Aplicadas º ESO 9

10 . Ordena de mayor a menor: 6 y EJERCICIOS resueltos 6 > 0 y 0 > 6. Calcula dando el resultado en forma de fracción irreducible: = = = = = : = 7 = + = : 0 = = = = = Calcula dando el resultado en forma decimal:,98+ 6, = = 9, , = =, , 0, = = 0, Calcula dando el resultado en forma decimal: 7 9 :'7 : = : = = 0, = : = = 7, 7 ' , : 0, : = : = =, = Calcula las siguientes potencias: ( ) = 8 ( ) = 8 d) 9 = ( ) = 8 0. Calcula: ( ) ( ) = = : ( 7 ) = 7 = 7 d) (x ) (x ) - x - =x 7 (7 ) = 0 MATEMÁTICAS Orientadas a las Enseñanzas Aplicads º ESO

11 Notación científica 78' = ' = ' 0 0' = ' Definición Para escribir números muy grandes o muy pequeños se emplea la notación científica. Un número escrito en notación científica es de la forma ± a 0 k con a < 0 y k número entero, que se llama orden de magnitud del número. Con la calculadora Para introducir en la calculadora números en notación científica como: 9,00 0 Teclea EXP Aparecerá: , Teclea EXP +/- 8 Aparecerá: Si introduces: 900, 0 Teclea 900. EXP Aparecerá: 900. Y pulsando = sale el nº en notación científica: 9.00 Según el modelo de calculadora la tecla indicada es x0 x Los números escritos en notación científica son fáciles de comparar: Los números essi k>0 el número de cifras enteras es k+. Si k<0 el número de cifras decimales son la suma de las cifras decimales de a más k Diámetro de la galaxia de Andrómeda: 9, km Distancia:, km Diámetro del átomo de oxígeno:, 0-7 mm Diámetro del núcleo: 6, 0 - mm Suma y resta, , 0 9 = = (, ,) 0 9 = =(0,+9,) 0 9 = = 9, 0 9,7 0 8, 0 9 = =(,7, 0 - ) 0 8 = =(,7 0,) 0 8 = =,7 0 8 Operaciones Suma y Resta Si los sumandos son del mismo orden de magnitud sumamos o restamos los números que preceden a las potencias de 0. Si los sumandos no son del mismo orden de magnitud se reducen al mayor de los órdenes, y se suman o se restan los números que preceden a las potencias de 0. Producto y división 7, =,6 0 = =, , 0 Notación 8 : =, 0 científica - Multiplicación y división Para multiplicar o dividir dos números en notación científica, se multiplican o dividen los números que preceden a las potencias de 0 y también dichas potencias. En todos los casos el resultado se da en notación científica. MATEMÁTICAS Orientadas a las Enseñanzas Aplicadas º ESO

12 EJERCICIOS resueltos. Escribe en notación científica: 0' ' ' 0. Escribe la expresión decimal de: 8 8' ' 0 0'000. Cuántas cifras decimales tiene el número: 9 ' '7 0. Cuántas cifras enteras tiene el número: ' 0 ' 0. Realiza las siguientes operaciones: ' 0 + ' 0 ( ) ( ) d) ' 0 + ' 0 = ' + ' 0 0 = ' + 0' 0 = ' 0 ' 0 ' 0 ( ) ( ) ' 0 ' 0 = ' 0 ' 0 = 0' ' 0 = '9 0 ' 0 0 ' 0 0 = 8' 0 6 ' ' 0 = 0 ' 0 ( 6 ' 0 e) ) ( ) 6 ' 0 = 8' 0 = ' MATEMÁTICAS Orientadas a las Enseñanzas Aplicads º ESO

13 Para practicar. Calcula: 6 6( ) ( ( + ) ) ( ( 7) + ) d) 6 ( + ( ) ) 6. Escribe la fracción generatriz:,,, d),9. Calcula: 6 : ( ) ( 6) : 0 : ( ( )) + d) (: ):. Indica si los siguientes pares de fracciones son equivalentes: y y 9 y 7. Indica qué tipo de número decimal es: Ordena de menor a mayor: 7 y 67 0 y y. Halla x para que las fracciones sean equivalentes: y x x 0 y 8 y x 8. Escribe la expresión decimal: Calcula y simplifica: d) + + e) + + MATEMÁTICAS Orientadas a las Enseñanzas Aplicadas º ESO

14 0. Calcula y simplifica: 76 7 : : :. Calcula y simplifica: + + : + 6 d) 9. Calcula y simplifica: ' + '7 ' ' ':'7. Calcula y simplifica: d) :. Escribe en notación científica: '0 0' 0. Calcula y escribe el resultado en notación científica: d) 7 8 ' 0 + ' ' 8 0 ' ' 0 ' 0 ' 0 ' Sonia bebe diariamente un litro de leche. Si la leche la compra en botellas de un cuarto de litro. Cuántas botellas debe comprar para días? 7. Si medio kilo de fruta cuesta. cuánto costarán tres kilos y medio? 8. Al morir Juan deja una fortuna de A su mujer le deja la mitad y el resto a sus tres hijos en partes iguales. Cuánto le toca a cada uno?. 9. En un laboratorio se ha observado que la población de un cultivo de bacterias se multiplica por cada hora. Si el número inicial era de, 0 6 bacterias, cuántas habrá al cabo de horas?. 0. Un microorganismo mide, micras; sabiendo que una micra es la millonésima parte de m, expresa en metros y en notación científica la longitud que ocupan 7 millones de microorganismos puestos en fila.. Un embalse que abastece a una población tiene 07,8 dam de agua. Si una persona gasta por término medio 770 litros de agua anuales. A qué población podrá abastecer en un año?. MATEMÁTICAS Orientadas a las Enseñanzas Aplicads º ESO

15 Para saber más Algoritmo de Euclides para hallar el m.c.d. de dos números El m.c.d. de dos números se puede calcular dividiendo los números, luego se divide el divisor entre el resto y así hasta que el resto es cero. El último cociente es el m.c.d. Fíjate en estos dos ejemplos. Sudokus Al comienzo del tema se proponía un juego con números, este tipo de pasatiempos se ha hecho muy popular en los últimos años. Posiblemente el más famoso sea el "sudoku", que tiene verdaderos adeptos en todo el mundo. Suele ser un cuadrado 9x9, en el que hay que colocar las cifras del al 9 sin repetir en la misma fila o columna, ni en cada región x en que se divide el cuadrado grande. Aquí tienes dos, tamaño x, para entrenarte, el de colores está resuelto, completa el de números, es muy fácil, qué te diviertas!. MATEMÁTICAS Orientadas a las Enseñanzas Aplicadas º ESO

16 Recuerda lo más importante Números enteros Números enteros positivos: +,+,+,.. Números enteros negativos: -,-,-,-,.. El número cero Valor absoluto +a =a -a =a 0 =0 Opuesto Op (-)= Op ()=. Números Racionales Son los que pueden expresarse en forma de fracción. Números enteros Positivos Negativos El cero Números decimales Exactos, Periódicos Puros ' Mixtos ' Potencia positiva de un número entero n a n veces = a a a... a Potencia positiva de una fracción n n a a = b n b Potencia negativa de un número entero n a = n a Potencia negativa de una fracción n n a b = b n a Notación científica 6 MATEMÁTICAS Orientadas a las Enseñanzas Aplicads º ESO

17 Autoevaluación. Calcular (8 7) + ( 9 + ) :. Cuál es el mayor valor que puede tener x para qué el número x6 sea divisible por. Halla x para qué las fracciones 0 80 y x 6 sean equivalentes. Encuentra el periodo de Escribe en forma de fracción irreducible el número 6 ' 6. Calcular: 8'667 '8 7. Calcular: Cuántas botellas de dos tercio de litro se pueden llenar con 8 litros de agua? 9. Calcular: 6 ' 0 6 ' Calcular: MATEMÁTICAS Orientadas a las Enseñanzas Aplicadas º ESO 7

18 Soluciones de los ejercicios para practicar d) d). si no no '6 ' d) ' 0' d), decimal exacto periódico mixto periódico puro 8. 7 < 67 0 < < d) 0 0 e) 60, 0 8.,8 0 6, 0 0 6, y , ,0 0 m., Soluciones AUTOEVALUACIÓN / ' ' MATEMÁTICAS Orientadas a las Enseñanzas Aplicads º ESO

Matemáticas Orientadas a las Enseñanzas Aplicadas IES

Matemáticas Orientadas a las Enseñanzas Aplicadas IES Matemáticas Orientadas a las Enseñanzas Aplicadas IES Los números enteros y racionales. Contenidos 1. Números enteros. Representación y orden. Operaciones. Problemas. 2. Fracciones y decimales. Fracciones

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Conjunto de Números Racionales.

Conjunto de Números Racionales. Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números

Más detalles

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales 1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 } LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:

Más detalles

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad

Más detalles

Números fraccionarios y decimales

Números fraccionarios y decimales Unidad didáctica Números fraccionarios y decimales 1.- Las fracciones. a Una fracción es un número racional, escrito en la forma, tal que b 0 y representa una parte b de un total. El denominador (el número

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas 1. Fracciones Una fracción es una expresión del tipo a b, donde a y b son números naturales llamados numerador y denominador, respectivamente. 1.1. Interpretación de una fracción a) Fracción como parte

Más detalles

TEMA 4: LAS FRACCIONES

TEMA 4: LAS FRACCIONES TEMA : LAS FRACCIONES Hasta ahora has trabajado con números naturales, enteros y decimales, pero sigue habiendo situaciones que no podemos expresar con estos números, por ejemplo, cuando decimos: Medio

Más detalles

2.4. Notación científica. Operaciones.

2.4. Notación científica. Operaciones. Potencias de números reales 17 E. Zamora, C. Barrilero, M. Álvarez 2.. Notación científica. Operaciones. El Sol es una estrella cuyo diámetro mide 9 veces el diámetro de la Tierra. Cuánto mide el diámetro

Más detalles

1. NUMEROS REALES a. Los Números Reales

1. NUMEROS REALES a. Los Números Reales 1. NUMEROS REALES a. Los Números Reales Los números reales comprenden todo el campo de números que utilizamos en las matemáticas, a excepción de los números complejos que veremos en capítulos superiores.

Más detalles

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS UNIDAD 1: NÚMEROS RACIONALES Distinguir las distintas interpretaciones de una fracción. Reconocer fracciones equivalentes. Amplificar fracciones. Simplificar fracciones hasta obtener la fracción irreducible.

Más detalles

PASAPALABRA BLOQUE NÚMEROS

PASAPALABRA BLOQUE NÚMEROS EMPIEZA POR A 1) Rama de las Matemáticas que se encarga del estudio de los números y sus propiedades: ARITMÉTICA 2) Valor de una cifra, independientemente del lugar que ocupe o del signo que la precede:

Más detalles

Operaciones con fracciones I

Operaciones con fracciones I Matemáticas.º ESO Unidad Ficha 1 Operaciones con fracciones I La suma y resta de fracciones con igual denominador es otra fracción que tiene por: - Numerador: la suma o resta de los numeradores. - Denominador:

Más detalles

RESUMEN DE CONCEPTOS

RESUMEN DE CONCEPTOS RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales. Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos

Más detalles

Operaciones de números racionales

Operaciones de números racionales Operaciones de números racionales Yuitza T. Humarán Martínez Adapatado por Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo El conjunto de los números racionales consiste

Más detalles

EJERCICIOS REFUERZO MATEMÁTICAS 3 ESO 1º TRIMESTRE

EJERCICIOS REFUERZO MATEMÁTICAS 3 ESO 1º TRIMESTRE EJERCICIOS REFUERZO MATEMÁTICAS ESO º TRIMESTRE NÚMEROS RACIONALES º. Amplifica las siguientes fracciones para que todas tengan denominador º. Cuál de las siguientes fracciones es una fracción amplificada

Más detalles

Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS

Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS 8 _ 0-088.qxd //0 09: Página Números decimales INTRODUCCIÓN El estudio de los números decimales comienza recordando el sistema de numeración decimal, que es la base de la expresión escrita de los números

Más detalles

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número

Más detalles

Concepto de fracción. Unidad fraccionaria. Concepto de fracción. Representación de fracciones

Concepto de fracción. Unidad fraccionaria. Concepto de fracción. Representación de fracciones Unidad fraccionaria Concepto de fracción La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Concepto de fracción Una fracción es el cociente de dos

Más detalles

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b,

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b, Unidad fraccionaria La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Definición de fracción Una fracción es el cociente de dos números enteros

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

NÚMEROS RACIONALES. Tendremos en cuenta el cociente de potencias de la misma base: ( b ) b 12 ( 6)

NÚMEROS RACIONALES. Tendremos en cuenta el cociente de potencias de la misma base: ( b ) b 12 ( 6) NÚMEROS RACIONALES 3 4 2 3 1. ( b ) /( b ) es igual a: a) b -18 b) b 18 c) b -6 (Convocatoria junio 2001. Examen tipo E) Tendremos en cuenta el cociente de potencias de la misma base: 3 4 12 3 4 2 3 (

Más detalles

Los Conjuntos de Números

Los Conjuntos de Números Héctor W. Pagán Profesor de Matemática Mate 40 Debemos recordar.. Los conjuntos de números 2. Opuesto. Valor absoluto 4. Operaciones de números con signo Los Conjuntos de Números Conjuntos importantes

Más detalles

DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE

DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN DESARROLLADOS EN EL TRIMESTRE OBJETIVOS Realizar las operaciones con números naturales

Más detalles

TEMA 4: EXPRESIONES ALGEBRAICAS.

TEMA 4: EXPRESIONES ALGEBRAICAS. TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso

Más detalles

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón 2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción

Más detalles

Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares.

Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares. 1.- Divisibilidad Teoría (resumen) Múltiplos de un número. Son aquellos que se obtienen al multiplicar dicho número por los números naturales 1, 2, 3,. Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12,

Más detalles

Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2009 Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León. mgdl 0/0/2009 INDICE: 0. UNIDADES DECIMALES: 02. DESCOMPOSICIÓN

Más detalles

FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador.

FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador. FRACCIONES Una fracción, en general, es la expresión de una cantidad dividida por otra, y una fracción propia representa las partes que tomamos de un todo. El ejemplo clásico es el de un queso que partimos

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

Fracciones numéricas enteras

Fracciones numéricas enteras Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El

Más detalles

MATEMÁTICAS 2º ESO. TEMA 1

MATEMÁTICAS 2º ESO. TEMA 1 MATEMÁTICAS 2º ESO. TEMA 1 1. DIVISIBILIDAD Y NÚMEROS ENTEROS 1. Los divisores son siempre menores o iguales que el número. 2. Los múltiplos siempre son mayores o iguales que el número. 3. Para saber si

Más detalles

Tema 1: NUMEROS ENTEROS

Tema 1: NUMEROS ENTEROS COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS 1º ESO. NÚMEROS ENTEROS Tema 1: NUMEROS ENTEROS Los números enteros (representados por la letra Z), son un conjunto de número

Más detalles

Tema 6: Fracciones. Fracciones

Tema 6: Fracciones. Fracciones Fracciones Un quebrado o número fraccionario se expresa por dos números naturales, el denominador que indica en cuántas partes se ha dividido la unidad y el numerador, que indica cuántas partes de esta

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales

Más detalles

NÚMEROS ENTEROS. Representa en la recta los números enteros 2, 0 +2, +5 y 7 y ordénalos de mayor a menor. +5 > +2 > 0 > 2 > 7

NÚMEROS ENTEROS. Representa en la recta los números enteros 2, 0 +2, +5 y 7 y ordénalos de mayor a menor. +5 > +2 > 0 > 2 > 7 1 Números reales NÚMEROS ENTEROS El número opuesto de un número es el mismo número cambiado de signo. Opuesto Opuesto + El valor absoluto de un número es el mismo número sin signo. I I I+I Un número entero

Más detalles

3 Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Significado de los números decimales. Representación en la recta numérica.

3 Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Significado de los números decimales. Representación en la recta numérica. 829485 _ 024-008.qxd 12/9/07 15:10 Página 27 Números decimales INTRODUCCIÓN RESUMEN DE LA UNIDAD En esta unidad estudiamos el sistema de numeración decimal, e introducimos las denominaciones de la parte

Más detalles

Contenido 1. Definición Tipos de fracciones Fracción igual a la unidad 9 4. Fracción propia Fracción impropia Frac

Contenido 1. Definición Tipos de fracciones Fracción igual a la unidad 9 4. Fracción propia Fracción impropia Frac FRACCIÓN Contenido 1. Definición... 3 2. Tipos de fracciones..... 8 3. Fracción igual a la unidad 9 4. Fracción propia... 10 5. Fracción impropia... 11 6. Fracciones decimales... 14 7. Fracciones equivalentes...

Más detalles

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. Fracciones Pon, al menos tres ejemplos de 1ª Forma: utilización de fracciones en el lenguaje habitual. Uno original

Más detalles

TEMA 2: POTENCIAS Y RAÍCES. Matemáticas 3º de la E.S.O.

TEMA 2: POTENCIAS Y RAÍCES. Matemáticas 3º de la E.S.O. TEMA 2: POTENCIAS Y RAÍCES Matemáticas 3º de la E.S.O. 1. Potencias con exponente entero Potencias de exponente negativo a n = 1 a n Las potencias de exponente negativo cumplen las mismas propiedades que

Más detalles

El estudiante de Pitágoras

El estudiante de Pitágoras COLEGIO INTEGRADO SIMÓN BOLÍVAR GUÍA PARA EL ESTUDIANTE MBP354 FORMATO 1 ASIGNATURA: ARITMÉTICA DOCENTE: CLAUDIA RODRIGUEZ PERIODO: SEGUNDO VALORACIÓN TEMA:NUMEROS RACIONALES. I ESTUDIANTE: FECHA: GRADO:SEPTIMO

Más detalles

INSTITUCION EDUCATIVA DISTRITAL SIERRA MORENA

INSTITUCION EDUCATIVA DISTRITAL SIERRA MORENA INSTITUCION EDUCATIVA DISTRITAL SIERRA MORENA Por una escuela activa, viva, planeada y proyectada al siglo XXI FEPARTAMENTO; MATEMATICAS SEDE: A JORNADA: FIN DE SEMANA Ciclo; _ II_ Asignatura; MATEMATICAS

Más detalles

13 ESO. «Es imposible aprender matemáticas sin resolver ejercicios» Godement. Matemático

13 ESO. «Es imposible aprender matemáticas sin resolver ejercicios» Godement. Matemático «Es imposible aprender matemáticas sin resolver ejercicios» 1 ESO Godement. Matemático ÍNDICE: 1. NÚMEROS RACIONALES 2. OPERACIONES CON FRACCIONES. NÚMEROS DECIMALES 4. FRACCIÓN GENERATRIZ DE UN NÚMERO

Más detalles

TEMA 1: NÚMEROS REALES 1.1 Numeros racionales Ejemplo:

TEMA 1: NÚMEROS REALES 1.1 Numeros racionales Ejemplo: TEMA : NÚMEROS REALES. Numeros racionales Ejemplo: 4... Entonces puedo expresar el "" de infinitas formas, siendo su fracción generatriz la que es irreducible. En nuestro caso Otro ejemplo de número racional

Más detalles

UNIDAD DIDÁCTICA #1 CONTENIDO

UNIDAD DIDÁCTICA #1 CONTENIDO UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA

Más detalles

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales Ámbito Científico y Tecnológico. Repaso de números enteros y racionales 1 Prioridad de las operaciones Si en una operación aparecen sumas, o restas y multiplicaciones o divisiones, el resultado varía según

Más detalles

NÚMEROS RACIONALES Y DECIMALES

NÚMEROS RACIONALES Y DECIMALES UNIDAD DE TRABAJO Unidad de trabajo. Números racionales y decimales NÚMEROS RACIONALES Y DECIMALES CONTENIDOS Fracciones definición. Fracciones equivalentes Amplificar fracciones. Simplificar fracciones

Más detalles

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números SCUACAC026MT22-A16V1 0 SOLUCIONARIO Ejercitación Generalidades de números 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN GENERALIDADES DE NÚMEROS Ítem Alternativa 1 E 2 D 3 B 4 E 5 A 6 E 7 B 8 D 9 D

Más detalles

UNIDAD DIDÁCTICA : LOS NÚMEROS DECIMALES Autora: Isabel Mª Picón Jaramillo

UNIDAD DIDÁCTICA : LOS NÚMEROS DECIMALES Autora: Isabel Mª Picón Jaramillo UNIDAD DIDÁCTICA : LOS NÚMEROS DECIMALES Autora: Isabel Mª Picón Jaramillo Alumno/a, nombre: Fecha de comienzo Fecha de finalización Entra en Descartes y dentro de aplicaciones, en el bloque de álgebra;

Más detalles

Ejercicios Pendientes Matemáticas 2º ESO Curso Números Enteros Los Números Enteros

Ejercicios Pendientes Matemáticas 2º ESO Curso Números Enteros Los Números Enteros Los 1) 2) 1 3) 4) 5) 9) ) 2 11) 12) 16) 3 17) 18) 19) 4 20) 21) En qué orden se realizan las operaciones con números enteros Para resolver varias operaciones combinadas con números enteros, se debe seguir

Más detalles

Operaciones con fracciones

Operaciones con fracciones Operaciones con fracciones Para efectuar operaciones con fracciones, o con números enteros y fracciones, no podemos actuar como cuando todos los números que intervienen son enteros; hemos de tener en cuenta

Más detalles

El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así:

El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así: b) Distribución temporal de las unidades didácticas El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así: 1ª EVALUACIÓN Tema 1 Tema 2 Tema

Más detalles

TEMA 1 NÚMEROS NATURALES

TEMA 1 NÚMEROS NATURALES TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado

Más detalles

CONJUNTO DE LOS NÚMEROS NATURALES

CONJUNTO DE LOS NÚMEROS NATURALES CONJUNTO DE LOS NÚMEROS NATURALES NÚMEROS: Hace referencia a los signos o conjunto de signos que permiten expresar una cantidad con relación a su unidad. Existen distintos grupos de números, como los números

Más detalles

UNIDAD 3: NÚMEROS DECIMALES

UNIDAD 3: NÚMEROS DECIMALES UNIDAD 3: NÚMEROS DECIMALES Si dividimos la unidad en 10 partes iguales, cada parte es una DÉCIMA. Cuando necesitamos expresar cantidades más pequeñas que la unidad, utilizamos LAS UNIDADES DECIMALES.

Más detalles

MATEMÁTICAS 4. º CURSO UNIDAD 7: DIVISIÓN

MATEMÁTICAS 4. º CURSO UNIDAD 7: DIVISIÓN MATEMÁTICAS 4. º CURSO UNIDAD 7: DIVISIÓN OBJETIVOS Calcular divisiones cuyo divisor es un número dígito. Reconocer si una división es exacta o entera. Conocer y aplicar la relación entre los términos

Más detalles

TEMA 2 POTENCIAS NOMBRE Y APELLIDOS... HOJA 1 - FECHA...

TEMA 2 POTENCIAS NOMBRE Y APELLIDOS... HOJA 1 - FECHA... Nueva del Carmen,. 011 Valladolid. Tel: 1 Fax: 1 Matemáticas º ESO TEMA POTENCIAS NOMBRE Y APELLIDOS... HOJA 1 - FECHA... Comenzamos a trabajar con potencias. Son muy fáciles si las cogemos el tranquillo

Más detalles

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama 3. NÚMEROS RACIONALES. 3.1. Introducción. Expresiones comunes tales como "un tercio de cerveza", "medio litro de agua", "tres cuartos de kilo de carne", "son las doce cuarto",... no pueden ser representadas,

Más detalles

Fracciones, Decimales, Redondeo

Fracciones, Decimales, Redondeo Fracciones, Decimales, Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido : Contenido Discutiremos: fracción aritmética : Contenido Discutiremos: fracción aritmética clasificación de fracciones

Más detalles

2º ESO. matemáticas IES Montevil tema 3: NÚMEROS RACIONALES curso 2010/2011

2º ESO. matemáticas IES Montevil tema 3: NÚMEROS RACIONALES curso 2010/2011 º ESO. matemáticas IES Montevil tema : NÚMEROS RACIONALES curso 00/0 nombre: apellidos: números racionales El conjunto de los números racionales es el que está formado por los números que se pueden expresar

Más detalles

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS UNIDAD 1: NÚMEROS NATURALES Realizar las operaciones con números naturales (suma, resta, multiplicación y división) y operaciones combinadas de las anteriores. Diferenciar entre división exacta y entera,

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros.

Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros. Los números enteros Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS. o Los números de siete y

Más detalles

CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS

CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS Fecha: Caja de herramientas 2014 CPM Educational Program. All rights reserved. 22 Capítulo 3: Porciones y números enteros Fecha: 23 2014 CPM Educational Program.

Más detalles

Matemáticas y Tecnología. Unidad 2 Los números racionales

Matemáticas y Tecnología. Unidad 2 Los números racionales CENTRO PÚBLICO DE EDUCACIÓN DE PERSONAS ADULTAS ESPA Matemáticas y Tecnología Unidad Los números racionales Nota Al final del texto se encuentra la solución de los ejercicios de la página del libro Concepto

Más detalles

MATEMATICA GRADO 9 II PERIODO PROF. LIC. ESP. BLANCA NIEVES CASTILLO R. CORREO: cel

MATEMATICA GRADO 9 II PERIODO PROF. LIC. ESP. BLANCA NIEVES CASTILLO R. CORREO: cel GUIA DE TEORIA NO. 1 LO QUE DEBO SABER Regla de Cramer Un sistema de ecuaciones lineales se dice de Cramer cuando cumple las siguientes condiciones: Es un sistema cuadrado, con igual número de ecuaciones

Más detalles

ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA OBJETIVOS CONTENIDOS CRITERIOS DE EVALUACIÓN

ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA OBJETIVOS CONTENIDOS CRITERIOS DE EVALUACIÓN ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA Conocer los nueve primeros órdenes de unidades y las equivalencias entre ellos. Leer, escribir y descomponer números de hasta nueve cifras.

Más detalles

PROGRAMACIÓN DE AULA MATEMÁTICAS 4º EP CENTRO EDUCATIVO LA AMISTAD. PLAN DE TRABAJO TRIMESTRAL MATEMÁTICAS 4º EP TRIMESTRE 1º REG0801 Pág.

PROGRAMACIÓN DE AULA MATEMÁTICAS 4º EP CENTRO EDUCATIVO LA AMISTAD. PLAN DE TRABAJO TRIMESTRAL MATEMÁTICAS 4º EP TRIMESTRE 1º REG0801 Pág. GRUPO: 4ºEP PLAN DE TRABAJO Y ACTIVIDADES PROGRAMADAS 1 er TRIMESTRE CURSO 2016-17 Temas: 1, 2, 3, 4 Y 5 ÁREA: MATEMATICAS CONTENIDOS CRITERIOS DE EVALUACIÓN ESTÁNDARES DE APRENDIZAJE COMPETENCIAS TEMA

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto En esta unidad vas a comenzar el estudio del álgebra, el lenguaje de las matemáticas. Vas a aprender

Más detalles

EJERCICIOS PARA NAVIDAD (RECUPERACIÓN PRIMERA EVALUACIÓN). CURSO: Fecha de entrega: Viernes. 14 de enero. Fecha de examen: Viernes, 21 de enero.

EJERCICIOS PARA NAVIDAD (RECUPERACIÓN PRIMERA EVALUACIÓN). CURSO: Fecha de entrega: Viernes. 14 de enero. Fecha de examen: Viernes, 21 de enero. º E.S.O. MATEMÁTICAS I.E.S. LOSADA EJERCICIOS PARA NAVIDAD (RECUPERACIÓN PRIMERA EVALUACIÓN). CURSO: 10-11 Fecha de entrega: Viernes. 1 de enero. Fecha de examen: Viernes 1 de enero. Alumno/a:. Grupo:

Más detalles

UNIDAD DE APRENDIZAJE I

UNIDAD DE APRENDIZAJE I UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.

Más detalles

En una recta numérica el punto que representa el cero recibe el nombre de origen.

En una recta numérica el punto que representa el cero recibe el nombre de origen. 1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se van ampliando a medida que se necesita resolver ciertas problemáticas de la

Más detalles

Expresiones Algebraicas Racionales en los Números Reales

Expresiones Algebraicas Racionales en los Números Reales en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido cional nales Algebraica Racional ales : Contenido Discutiremos: qué es una expresión algebraica racional : Contenido

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

Tema 3: Números racionales

Tema 3: Números racionales Tema 3: Números racionales SELECCIÓN DE EJERCICIOS RESUELTOS EJERCICIOS DEL CAPÍTULO 4 (Fracciones y números racionales positivos) (Pág. 9) 22. Al examen de junio de matemáticas se presentan 3 de cada

Más detalles

POTENCIAS Y RAÍCES. Signo de la base + * Expresa en forma de potencia: a) 100 = b) 16 = c) 81 = d) 49 =

POTENCIAS Y RAÍCES. Signo de la base + * Expresa en forma de potencia: a) 100 = b) 16 = c) 81 = d) 49 = POTENCIAS Y RAÍCES Potencias. Una potencia es una multiplicación de varios factores iguales. Los términos de una potencia son la base, que es el factor que se multiplica, y el exponente, que indica el

Más detalles

Operaciones básicas con números enteros y con fracciones

Operaciones básicas con números enteros y con fracciones Curso de Acceso CFGS Operaciones básicas con números enteros y con fracciones OPEACIONES CON NÚMEOS ENTEOS Suma de números enteros Cuando tienen el mismo signo Se suman los valores y se deja el signo que

Más detalles

3 FRACCIONES Y DECIMALES

3 FRACCIONES Y DECIMALES FRACCIONES Y DECIMALES EJERCICIOS PROPUESTOS. Comprueba de dos formas distintas si y son equivalentes..ª forma: y son equivalentes..ª forma: y y son equivalentes.. Halla tres fracciones equivalentes ampliadas

Más detalles

Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B

Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B Números Racionales Repaso para la prueba Profesora: Jennipher Ferreira Curso: 7 B Tipos de Fracciones Fracciones propias: Son aquellas en las que el denominador es mayor al numerador, y su valor es menor

Más detalles

. De R (Reales) a C (Complejos)

. De R (Reales) a C (Complejos) INTRODUCCIÓN Los números complejos se introducen para dar sentido a la raíz cuadrada de números negativos. Así se abre la puerta a un curioso y sorprendente mundo en el que todas las operaciones (salvo

Más detalles

2º Se lee número que hay antes de la coma, se añade la palabra coma y luego se lee la parte decimal

2º Se lee número que hay antes de la coma, se añade la palabra coma y luego se lee la parte decimal Qué son los decimales? Los decimales son una manera distinta de escribir fracciones con denominadores como 10, 100 y 1,000. Tanto los decimales como las fracciones indican una parte de un entero. Un decimal

Más detalles

a, donde a NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE

a, donde a NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE Que se pueden escribir de la forma b a, donde a y b son enteros y b 0. Operaciones: suma,

Más detalles

Lección 2: Notación exponencial

Lección 2: Notación exponencial GUÍA DE MATEMÁTICAS III Lección 2: Notación exponencial En la lección anterior hemos visto cómo trabajar con números reales y cómo para facilitar el trabajo con ellos es conveniente utilizar aproximaciones,

Más detalles

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 10: División de Polinomios Dra. Noemí L. Ruiz Limardo 009 Objetivos de la lección Al finalizar esta lección los estudiantes: Dividirán polinomios de dos o más términos por polinomios de uno y dos

Más detalles

Potencias. Potencias con exponente entero. Con exponente racional o fraccionario

Potencias. Potencias con exponente entero. Con exponente racional o fraccionario Potencias con exponente entero Potencias Con exponente racional o fraccionario Propiedades 1.a 0 = 1 2.a 1 = a 3.Producto de potencias con la misma base: Es otra potencia con la misma base y cuyo exponente

Más detalles

a) 25 b) 81 c) d) 8 e) 16 f) 8 g) 16 Solución: Calcula: a) 33 2 b) 2,5 2 c) 0,7 3 d) 1,2 3 Solución: Solución:

a) 25 b) 81 c) d) 8 e) 16 f) 8 g) 16 Solución: Calcula: a) 33 2 b) 2,5 2 c) 0,7 3 d) 1,2 3 Solución: Solución: Potencias y raíces. Potencias de exponente entero Calcula mentalmente las siguientes potencias: a) 5 2 b) 4 c) 0 6 d) ( 2) e) ( 2) 4 f) 2 g) 2 4 a) 25 b) 8 c) 000 000 d) 8 e) 6 f) 8 g) 6 P I E N S A Y

Más detalles

Unidad 1 Los números de todos los días

Unidad 1 Los números de todos los días CUENTAS ÚTILES Módulo nivel intermedio. 3ra. Edición. Primaria Unidad 1 Los números de todos los días Los números naturales son aquellos que utilizamos para contar: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

Más detalles

Tema 2. Divisibilidad 1º de Educación Secundaria Obligatoria

Tema 2. Divisibilidad 1º de Educación Secundaria Obligatoria Tema 2. Divisibilidad 1º de Educación Secundaria Obligatoria Contenidos 1. Múltiplos y divisores 1.1. Múltiplos y divisores 1.2. Propiedades de múltiplos y divisores 2. Números primos y compuestos 2.1.

Más detalles

Victoria Aguilera Fernández

Victoria Aguilera Fernández Victoria Aguilera Fernández G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Fracciones.- / 1 FRACCIÓN Una fracción es la expresión numérica que representa la división de un todo

Más detalles

( ) ( ) a) 8 2. b) 9 12 c) 625 : 5 d) 10 : 6. a) 8 2 = 8 2 = 16 = 4. b) 9 12 = 9 12 = c) 625 : 5 = = 125 = d) 10 : 6 = = 6 3

( ) ( ) a) 8 2. b) 9 12 c) 625 : 5 d) 10 : 6. a) 8 2 = 8 2 = 16 = 4. b) 9 12 = 9 12 = c) 625 : 5 = = 125 = d) 10 : 6 = = 6 3 Tema - Hoja : Cálculo de potencias y raíces Calcula las siguientes multiplicaciones y divisiones de radicales: a) 8 9 c) 6 : d) 0 : 6 a) 8 = 8 = 6 = 9 = 9 = 08 6 c) 6 : = = = 0 d) 0 : 6 = = 6 Realiza las

Más detalles

TEMA 1: NÚMEROS ENTEROS Y RACIONALES

TEMA 1: NÚMEROS ENTEROS Y RACIONALES TEMA : NÚMEROS ENTEROS Y RACIONALES. Números naturales Actividades página 9. Calcula a) 0 0 0 0 000 c) f) 000000 0 0 0 0 Tareas -09-0: todos los ejercicios que faltan del.. Números enteros Ejemplo de valor

Más detalles