EXPERIMENTO A TRAVÉS DEL SISTEMA DE POLEAS. (Aplicando las Leyes de Newton)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EXPERIMENTO A TRAVÉS DEL SISTEMA DE POLEAS. (Aplicando las Leyes de Newton)"

Transcripción

1 República bolivariana de Venezuela Ministerio del poder popular para la educación universitaria Universidad nacional experimental de los llanos occidentales Ezequiel Zamora Guasdualito Distrito Alto Apure EXPERIMENTO A TRAVÉS DEL SISTEMA DE POLEAS (Aplicando las Leyes de Newton) PROF.: Ing. Yvan Gómez Junio, 2011 INTEGRANTES: 1. Cabello Stephani C.I.: Carrillo Aura C.I.: Reyes Edgar C.I.: Saavedra Javier C.I.: VI Semestre Licdo. Educación Matemáticas

2 Objetivo del experimento El objetivo primordial es verificar la segunda ley y tercera ley de Newton de la dinámica mediante un experimento sencillo que involucra un plano inclinado con respecto a la horizontal y dos masas unidas por una cuerda que pasa por una polea. Además observar la fuerza de roce que ejerce entre la masa2 sobre la rampla determinando µ y el trabajo que realiza referente a la masa1. Realización del experimento Materiales Tablillas de madera, martillo, clavos, lija, serrucho, tornillo, cuerda, juego geométrico, polea, anzuela, ladrillos pequeños, pego blanco, registrador digital de peso, cronometro. Procedimiento Realizamos un plano inclinado con la ayuda de las tablillas, serrucho, martillo y clavos, formando un ángulo de 41, seguidamente en su extremo superior se coloco una polea la cual tiene una función, que en ella pasara una cuerda; que sujeta en un extremo una carga de bloques (esta encima de la rampla)m2 y el otro extremo otra carga de bloque m1 que pasa por dicha polea; los bloques pequeños se pegaron con una mezcla de pego, haciendo una carga más pesada que la otra, lo que permite que la m2 ascienda por el plano inclinado realizando una fuerza de roce en una distancia recorrida al ejercer la fuerza involucrada en la m1 en un tiempo de 0.42 s. Significa entonces, según La Segunda ley de Newton nos dice que la fuerza neta aplicada sobre un cuerpo es proporcional a la aceleración que adquiere dicho cuerpo. Además, La tercera ley, también conocida como principio de acción y reacción nos dice que si un cuerpo A ejerce una acción sobre otro cuerpo B, éste realiza sobre A otra acción igual y de sentido contrario.

3 EJERCICIO DE LA SEGUNDA Y TERCERA LEY DE NEWTON Enunciado: Una carga de bloques de m2=35 g, esta sobre un plano inclinado de 41 con respecto a la horizontal, unida al extremo con una cuerda que cuelga a la carga de bloque de m1=70g, que pasa por una polea. Determinar: µ y trabajo, sabiendo que la distancia recorrida de la m2 es 22,9 cm en un tiempo de 0,42 s. SOLUCION Datos: M1= 70 g, 70g x 1kg/1000g = 0.07kg. M2= 35g, 35g x 1kg/1000g = 0.035kg. T= 0,42s. D= 22.9cm 22.9 x 1m/ 100cm = 0,229m φ= 41 µ=? w=? Calculamos la aceleración: d= v.t +a.t 2 / 2 d= a.t 2 / 2 despejamos la aceleración, obtenemos: a= 2.d/t 2 a= 2(0,229) m/ (0,42s) 2 a= 2,6 m/s 2 Análisis de las componentes de la aceleración: En el eje de las x: Ax= a. cos 41 ax= 2,6. cos 41 ax= 1,96 m/s 2 En el eje de las y: Ay= a. sen 41 ay= 2, 6. m/s 2. sen 41 ay= 1,70 m/s 2 Diagrama de cuerpo libre Para la masa 1 Σfy= m1. ay ecuacion 1

4 T- p = m1. ay despejamos la tensión T= m.ay +P T= 0, 07 kg (1, 70 m/s 2 ) +0, 07 kg (9, 8 m/s 2 ) = 0,805 N Para la masa 2 Σfx= m. ay -m2. g + T. sen 41 + fr. sen41 ecuacion 2 Igualamos la ecuacion 2 con la ecuacion 1 -m2. g + T. sen 41 + fr. sen41 = m1. ay -0,035 kg. (9,8 m/s 2 )+ 0,805 kg m/s 2.sen 41 - fr.sen41 = 0,070 kg.m/s 2.1, 70-0,343 kg m/s 2.0,528 kg m/s 2 - fr. sen 41 = 0,119 kg. m/s 2 Despejamos la fr. (fuerza de roce) Fr= 0,119 kg m/s 2. -0,528 kg m/s 2 + 0,343 sen 41 fr= 0,1 N Calculamos µ Observamos que para calcular µ usamos la formula de la fuerza de roce : Fr= µ. N, Despejamos: µ=fr / N, pero no tenemos la normal (N) entonces resolvemos el debido calculo para la normal a través del siguiente análisis (fig. ): En el eje y: n- py =0 n= py py= 0,343 N. Sen 41 N= 0,225N µ= 0,1N/ 0,225 µ= 0,44 Calculo de W W= f.d.cosα W= m1.g.d. cosα W= 0, 07 kg. (9,8 m/s 2 ). 0,229m. cos 0 W= 0,157 J.

5 Conclusión Finalmente podemos decir que las leyes de newton se cumplen, en otras palabras, que la fuerza aplicada a un objeto es igual al producto de su masa por la aceleración que adquiere, siempre que la masa del objeto sea constante esto con respecto a la segunda ley de newton, ahora bien con la tercera ley de acción y reacción se dice que Cuando un cuerpo ejerce una fuerza sobre otro, éste ejerce sobre el primero una fuerza igual y de sentido opuesto. es el caso de la masa 1 que ejerce una fuerza a la masa 2, obviamente porque una pesa más que la otra, lo que hace que la m2 ascienda a la rampla hasta un punto que se regrese y a su vez se detenga, es por ello la interacción entre dos cuerpos siempre hay dos fuerzas presentes. Visto de otra forma, la m2 peso es una fuerza de acción y la fuerza de reacción. La fuerza de rozamiento es toda fuerza opuesta al movimiento, la cual se manifiesta en la superficie de contacto de dos cuerpos siempre que uno de ellos se mueva o tienda a moverse sobre otro en este caso es ejercida por el movimiento generado por la m1. El Coeficiente de rozamiento de un cuerpo sobre otro es la relación que existe entre la fuerza de rozamiento y la que actúa sobre la carga de bloques perpendicularmente a su plano de deslizamiento. Por su parte, el trabajo es una fuerza escalar producido solo cuando una fuerza mueve un cuerpo en su misma dirección proporcional a ello es ejercido por la masa 1 cuando genera movimiento a la masa 2.

DINÁMICA II - Aplicación de las Leyes de Newton

DINÁMICA II - Aplicación de las Leyes de Newton > INTRODUCCIÓN A EJERCICIOS DE FUERZAS Como ya vimos en el tema anterior, las fuerzas se producen en las interacciones entre los cuerpos. La fuerza es la magnitud física vectorial, que nos informa de esas

Más detalles

Fuerzas de Rozamiento

Fuerzas de Rozamiento Fuerzas de Rozamiento Universidad Nacional General San Martín. Escuela de Ciencia y Tecnología. Baldi, Romina romibaldi@hotmail.com Viale, Tatiana tatianaviale@hotmail.com Objetivos Estudio de las fuerzas

Más detalles

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos

Más detalles

Las leyes de Newton. Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física

Las leyes de Newton. Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física Las leyes de Newton Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física Diagrama de cuerpo libre (DCL) Esquema que sirve para representar y visualizar las fuerzas que actúan en un cuerpo.

Más detalles

Guía de ejercicios Introducción a la lesyes de Newton

Guía de ejercicios Introducción a la lesyes de Newton Guía de ejercicios Introducción a la lesyes de Newton Departamento de Ciencia Profesor David Valenzuela Unidad: II Dinámica Curso: 2 Medio NOMBRE: Para esta guía considere g = 10 m/s 2 1. Un auto de 500

Más detalles

Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción

Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción ísica GUINV0072-A16V1 Guía: Toda acción tiene una reacción ísica - Segundo Medio Tiempo estimado: 15 minutos Sección 1 Observando y reflexionando Actividad A Relacionándonos con la ísica Junto con tu compañero(a),

Más detalles

Física: Dinámica Conceptos básicos y Problemas

Física: Dinámica Conceptos básicos y Problemas Física: Dinámica Conceptos básicos y Problemas Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Mecánica Cinemática Descripción del movimiento. Cómo se mueve? Dinámica Causas del movimiento. Por

Más detalles

Laboratorio de Física para Ingeniería

Laboratorio de Física para Ingeniería Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva

Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva 5.46 Un bloque de masa 3 kg es empujado hacia arriba contra una pared por una pared con una fuerza

Más detalles

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO 1 COLEGIO DE LA SAGRADA AMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE ÍSICA II PERIODO ACADEMICO MECANICA CLASICA DINAMICA: UERZA LAS LEYES DE NEWTON Y CONSECUENCIAS DE LAS LEYES DE

Más detalles

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante Ejercicios de Física Dinámica, . Un bloque de 5 kg está sostenido por una cuerda y se tira de él hacia arriba con una aceleración de m/ s. a) Cuál es la tensión de la cuerda? b) Una vez que el bloque se

Más detalles

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una

Más detalles

Guía de Repaso 12: Primera Ley de Newton g=10 m s 2

Guía de Repaso 12: Primera Ley de Newton g=10 m s 2 Guía de Repaso 12: Primera Ley de Newton g=10 m s 2 1) Dos fuerzas F1 y F2 actúan sobre un pequeño cuerpo; F1 es vertical hacia abajo y vale F1=8,0 N, mientras que F2 es horizontal hacia la derecha y vale

Más detalles

DEPARTAMENTO DE FÍSICA Y QUÍMICA 1

DEPARTAMENTO DE FÍSICA Y QUÍMICA 1 Asignatura: FÍSICA Y QUÍMICA EJERCICIOS DE AMPLIACIÓN - SOLUCIONES Fecha finalización: Viernes, 3 de diciembre de 2010 Nombre y Apellidos JRC 1 Resuelve los siguientes apartados: a) Se tiene una fuerza

Más detalles

EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN

EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN 1 Considere los tres bloques conectados que se muestran en el diagrama. Si el plano

Más detalles

Leyes del movimiento de Newton

Leyes del movimiento de Newton Leyes del movimiento de Newton Leyes del movimiento de Newton Estudiaremos las leyes del movimiento de Newton. Estas son principios fundamentales de la física Qué es una fuerza Intuitivamente, consideramos

Más detalles

Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son:

Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son: Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son: R 2 = (20 + 10t)i + (100 4t )j y V = 10i 8t j Calcula: a) osición y velocidad en el instante inicial y a los 4

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz

Más detalles

6. REPRESENTACIÓN DE LAS FUERZAS (DIAGRAMA DE FUERZAS) QUE ACTÚAN SOBRE EL(LOS) SISTEMA(S) DE INTERÉS

6. REPRESENTACIÓN DE LAS FUERZAS (DIAGRAMA DE FUERZAS) QUE ACTÚAN SOBRE EL(LOS) SISTEMA(S) DE INTERÉS Fuerza que ejerce el cenicero sobre el libro (Fuerza Normal): N 1 Fuerza que ejerce la mesa sobre el libro (Fuerza Normal): N 2 Fuerza de atracción que ejerce el planeta tierra sobre el libro (Peso del

Más detalles

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m. Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más

Más detalles

Problemas de Física 1º Bachillerato 2011

Problemas de Física 1º Bachillerato 2011 Un móvil describe un movimiento rectilíneo. En la figura, se representa su velocidad en función del tiempo. Sabiendo que en el instante, parte del origen a. Dibuja una gráfica de la aceleración en función

Más detalles

Ejercicios de Dinámica

Ejercicios de Dinámica Ejercicios de Dinámica 1. Una fuerza de 14 N que forma 35 con la horizontal se quiere descomponer en dos fuerzas perpendiculares, una horizontal y otra vertical. Calcula el módulo de las dos fuerzas perpendiculares

Más detalles

FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile.

FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile. FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile. 1. De acuerdo con la leyenda, un caballo aprendió las leyes de Newton. Cuando se le pidió

Más detalles

PROBLEMAS ESTÁTICA FARMACIA

PROBLEMAS ESTÁTICA FARMACIA PBLEMAS ESÁICA AMACIA PBLEMA 1 La figura muestra el diagrama de fuerzas sobre la cadera izquierda de una persona de 70 kg puesta en pie que apoya todo su peso sobre el pie izquierdo (ha encogido la pierna

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Fuerzas (II)

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Fuerzas (II) 1(5) Ejercicio nº 1 Un bloque de 10 kg se suelta sobre un plano inclinado α = 60º a un altura h = 18 m. El coeficiente de rozamiento es µ = 0 5. Calcula: a) La aceleración del bloque; b) La velocidad final.

Más detalles

BIOESTATICA. Llamamos componente X de una fuerza al valor de la X del punto que determina el extremo de la fuerza

BIOESTATICA. Llamamos componente X de una fuerza al valor de la X del punto que determina el extremo de la fuerza UERZAS BIOESTATICA Las fuerzas se representan con flechas. La información que proporcionan es: El tamaño de la flecha es proporcional al módulo, de manera que cuando más intensa sea la fuerza mayor tamaño

Más detalles

4 Dinámica: fuerzas F = 0. v P. v B F = 0. v A. 4.1 Fuerza y leyes de Newton. 4.2 Primera ley de Newton

4 Dinámica: fuerzas F = 0. v P. v B F = 0. v A. 4.1 Fuerza y leyes de Newton. 4.2 Primera ley de Newton 4 Dinámica: fuerzas 4.1 Fuerza y leyes de Newton Hasta el momento, hemos hecho únicamente una descripción del movimiento, sin considerar sus causas. En mecánica clásica, para describir las interacciones

Más detalles

ALGUNOS PROBLEMAS RESULETOS DE DINÁMICA PRIMERO DE BACHILLERATO

ALGUNOS PROBLEMAS RESULETOS DE DINÁMICA PRIMERO DE BACHILLERATO http://www.juntadeandalucia.es/averroes/copernico/fisica.htm Ronda de las Huertas. Écija. e-mail: emc2@tiscali.es ALGUNOS PROBLEMAS RESULETOS DE DINÁMICA PRIMERO DE BACHILLERATO 1. Sobre un cuerpo de 20

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que Guía práctica Dinámica I: fuerza y leyes de Newton Física Estándar Anual Nº Ejercicios PSU Para esta guía considere que la magnitud de la aceleración de gravedad (g) es 10 1. 2. GUICES016CB32-A16V1 m.

Más detalles

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA.

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA. TRABAJO Y ENERGIA. El problema fundamental de la Mecánica es describir como se moverán los cuerpos si se conocen las fuerzas aplicadas sobre él. La forma de hacerlo es aplicando la segunda Ley de Newton,

Más detalles

La primera condición de equilibrio requiere que Σ F = 0, o bien, en forma de componentes, que:

La primera condición de equilibrio requiere que Σ F = 0, o bien, en forma de componentes, que: Las fuerzas concurrentes son todas las fuerzas que actúan cuyas líneas de acción pasan a través de un punto común. Las fuerzas que actúan sobre un objeto puntual son concurrentes porque toas ellas pasan

Más detalles

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CAPITULO 7 FISICA I CUARTA, QUINTA Y SEXTA EDICION SERWAY Raymond A. Serway Sección 7.1 Trabajo hecho por una fuerza constante Sección 7. El producto escalar de dos

Más detalles

Universidad Nacional Experimental De los Llanos Experimentales Occidentales Ezequiel Zamora Guasdualito-Estado Apure

Universidad Nacional Experimental De los Llanos Experimentales Occidentales Ezequiel Zamora Guasdualito-Estado Apure Universidad Nacional Experimental De los Llanos Experimentales Occidentales Ezequiel Zamora Guasdualito-Estado Apure LABORATORIO: CONSERVACION DE LA CANTIDAD DE MOVIMIENTO LINEAL DESPUES DE UNA COLISION.

Más detalles

LAS LEYES DE NEWTON Y SUS EFECTOS.

LAS LEYES DE NEWTON Y SUS EFECTOS. 14 LAS LEYES DE NEWTON Y SUS EFECTOS. Explica las leyes de Newton.. En Presentación de Contenidos se explican las leyes de Newton. En Ejercicios resuelven problemas de este tipo. En Aplico demuestran con

Más detalles

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg.

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg. CAPIULO 1 COMPOSICIO Y DESCOMPOSICIO DE VECORES Problema 1.2 SEARS ZEMASKY Una caja es empujada sobre el suelo por una fuerza de 20 kg. que forma un ángulo de con la horizontal. Encontrar las componentes

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

y d dos vectores de igual módulo, dirección y sentido contrario.

y d dos vectores de igual módulo, dirección y sentido contrario. MINI ENSAYO DE FÍSICA Nº 1 1. Sean c r r y d dos vectores de igual módulo, dirección y sentido contrario. r El vector resultante c - d r tiene A) dirección y sentido igual a c r y el cuádruplo del módulo

Más detalles

Guía de Ejercicios en Aula: N 3

Guía de Ejercicios en Aula: N 3 Guía de Ejercicios en Aula: N 3 Tema: LEYES DE NEWTON Aprendizajes Esperados Opera con los Principios de Newton y da explicación de las fuerzas a las cuales están sometidos los cuerpos de un sistema proponiendo

Más detalles

Segunda y Tercera Ley de Newton. Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret

Segunda y Tercera Ley de Newton. Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret Segunda y Tercera Ley de Newton Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret NASA El transbordador espacial Endeavor despega para una misión de 11 días

Más detalles

Fuerza, masa y aceleración. Segunda Ley de Newton

Fuerza, masa y aceleración. Segunda Ley de Newton Fuerza, masa y aceleración. Segunda Ley de Newton La aceleración se produce cuando una fuerza desequilibrada actúa sobre un cuerpo. Hay dos factores que influyen en la aceleración de un objeto: La fuerza

Más detalles

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores. PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:

Más detalles

Física y Química 4º ESO. Dinámica 22/11/11. Tipo A Tipo B

Física y Química 4º ESO. Dinámica 22/11/11. Tipo A Tipo B Física y Química 4º ESO Dinámica /11/11 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Problemas [6 Ptos] Tipo A Tipo B 1. Se lanza horizontalmente un objeto de 400 g con una velocidad de 14,0 m/s sobre una

Más detalles

EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 18 del 2014 (08h30-10h30)

EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 18 del 2014 (08h30-10h30) EXAMEN DE RECUPERACIÓN DE FÍSICA Septiembre 18 del 2014 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE:

Más detalles

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m.

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m. 1 1. De los extremos de una cuerda que pasa por la garganta de una polea sin rozamiento y de masa despreciable, cuelgan dos masas iguales de 200 gramos cada una. Hallar la masa que habrá de añadirse a

Más detalles

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES.

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. 1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. a) CONCEPTO DE FUERZA La fuerza es una magnitud asociada a las interacciones entre los sistemas materiales (cuerpos). Para que se

Más detalles

GUIA DIDACTICA FISICA 4to INTERACCIONES MECANICAS

GUIA DIDACTICA FISICA 4to INTERACCIONES MECANICAS UNIDAD EDUCATIVA COLEGIO LOS PIRINEOS DON BOSCO INSCRITO EN EL M.P.P.L N S2991D2023 RIF: J-09009977-8 GUIA DIDACTICA FISICA 4to INTERACCIONES MECANICAS Asignatura: Física Año Escolar: 2014-2015 Lapso:

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo Guía 3 Fuerza y Momentum Nombre: Fecha: Concepto de Fuerza Por nuestra experiencia diaria sabemos que el movimiento de un cuerpo

Más detalles

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010 PROBLEMAS RESUELOS DE PLANO INCLINADO Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 010 Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere006@yahoo.com

Más detalles

Fuerzas: Ejercicios resueltos

Fuerzas: Ejercicios resueltos Fuerzas: Ejercicios resueltos 1) Un hombre, usando una cuerda, tira de una caja de 2,5 Kg con una fuerza de 10N, mientras la cuerda forma un ángulo de 60º con la horizontal. b) Calcula la fuerza resultante.

Más detalles

FASE ESPECÍFICA RESPUESTAS FÍSICA

FASE ESPECÍFICA RESPUESTAS FÍSICA UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS Convocatoria 2013 FASE ESPECÍFICA RESPUESTAS FÍSICA En cada Bloque elija una Opción: Bloque 1.- Teoría

Más detalles

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas.

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas. Dos masas de 1 y 2 kg están unidas por una cuerda inextensible y sin masa que pasa por una polea sin rozamientos. La polea es izada con velocidad constante con una fuerza de 40 Nw. Calcular la tensión

Más detalles

Dinámica de la partícula: Leyes de Newton

Dinámica de la partícula: Leyes de Newton Dinámica de la partícula: Leyes de Newton Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2013/2014 Dpto.Física Aplicada III Universidad de Sevilla Índice

Más detalles

DEPARTAMENTO DE FÍSICA Y QUÍMICA IES CASTILLO DE LUNA

DEPARTAMENTO DE FÍSICA Y QUÍMICA IES CASTILLO DE LUNA PROBLEMAS DE DINÁMICA 1º BACHILLERATO Curso 12-13 1. Se arrastra un cuerpo de 20 Kg por una mesa horizontal sin rozamiento tirando de una cuerda sujeta a él con una fuerza de 30 N. Con qué aceleración

Más detalles

CONSIDERACIONES GENERALES SOBRE ESTÁTICA

CONSIDERACIONES GENERALES SOBRE ESTÁTICA CONSIDERACIONES GENERALES SOBRE ESTÁTICA Índice 1. CONCEPTOS ÚTILES 2 1.1. Configuración geométrica de un sistema....................... 2 1.2. Ligaduras....................................... 2 1.3. Coordenadas

Más detalles

CONTENIDO DINÁMICA DE LA PARTÍCULA. Conceptos fundamentales: masa y fuerza. Leyes de Newton

CONTENIDO DINÁMICA DE LA PARTÍCULA. Conceptos fundamentales: masa y fuerza. Leyes de Newton CONTENIDO Conceptos fundamentales: masa y fuerza Leyes de Newton Ejemplos de fuerzas: peso, fuerza elástica, rozamiento, etc. Diagrama de cuerpo libre Momento lineal y conservación del momento lineal Momento

Más detalles

GUIA DE EJERCICIOS DE FISICA TERCER PARCIAL

GUIA DE EJERCICIOS DE FISICA TERCER PARCIAL GUIA DE EJERCICIOS DE FISICA TERCER PARCIAL 1.- Un helicóptero contra incendios transporta un recipiente para agua de 620kg en el extremo de un cable de 20m de largo, al volar de regreso de un incendio

Más detalles

Tema 1. Leyes de Newton

Tema 1. Leyes de Newton Tema 1. Leyes de Newton Tercera parte: Sistemas de masa variable Los sistemas de masa variable, es decir, sistemas en los que la masa que se encuentra en movimiento depende del tiempo, no conservan la

Más detalles

TALLER 4 TEMA : Fuerza-Trabajo Potencia-Energía. Realiza estos ejercicios desarrollando todos los procesos necesarios

TALLER 4 TEMA : Fuerza-Trabajo Potencia-Energía. Realiza estos ejercicios desarrollando todos los procesos necesarios TALLER 4 TEMA : Fuerza-Trabajo Potencia-Energía Recuerda : trabajar en este taller te representa centrarnos y conocer el tema a tratar, lo que se va a explicar y evaluar El practicar y repasar el tema

Más detalles

LABORATORIO DE MECÁNICA FRICCIÓN ESTÁTICA Y DINÁMICA

LABORATORIO DE MECÁNICA FRICCIÓN ESTÁTICA Y DINÁMICA No 5 LABORATORIO DE MECÁNICA FRICCIÓN ESTÁTICA Y DINÁMICA DEPARTAMENTO DE FÍSICA Y GEOLOGÍA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos OBJETIVOS Objetivo general. El propósito de esta

Más detalles

5 Aplicaciones de las leyes

5 Aplicaciones de las leyes 5 Aplicaciones de las leyes de la dinámica ACIVIDADES Actividades DELdel DESARROLLO interiorde de LAla UIDAD unidad 1. Indica con qué interacciona cada uno de los siguientes cuerpos y dibuja las fuerzas

Más detalles

Marzo 2012

Marzo 2012 Marzo 2012 http:///wpmu/gispud/ Para determinar la carga transferida a través del tiempo a un elemento, es posible hacerlo de varias formas: 1. Utilizando la ecuación de carga, evaluando en los tiempos

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

ASOCIACIÓN DE POLEAS

ASOCIACIÓN DE POLEAS ASOCIACIÓN DE POLEAS Dos objetos de masas m 1 y m 2 cuelgan de un conjunto de poleas combinadas de dos formas distintas (asociación A y B). Calcula en qué condiciones el conjunto se encuentra en equilibrio.calcula

Más detalles

ESCUELA S UPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS EXAMEN DE UBICACIÓN DE FÍSICA ADMISIONES 2012: GRUPO # 2

ESCUELA S UPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS EXAMEN DE UBICACIÓN DE FÍSICA ADMISIONES 2012: GRUPO # 2 ESCUELA S UPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS EXAMEN DE UBICACIÓN DE FÍSICA ADMISIONES 2012: GRUPO # 2 VERSIÓN 0 NOMBRE: Este examen consta de 26 preguntas, entre preguntas conceptuales

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I TRABAJO Y ENERGIA COEFICIENTE DE FRICCIÒN

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I TRABAJO Y ENERGIA COEFICIENTE DE FRICCIÒN GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I TRABAJO Y ENERGIA COEFICIENTE DE FRICCIÒN SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS COEFICIENTE DE FRICCIÓN 1. OBJETIVO Estudio

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: FECHA:

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE:   FECHA: ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: E-MAIL: FECHA: ACÚSTICA Resuelva cada uno de los siguientes problemas haciendo el proceso completo. 1. Un estudiante golpea

Más detalles

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui TEMA I.2 Movimiento Ondulatorio Simple Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

5. APLICACIONES DE LAS LEYES DE NEWTON

5. APLICACIONES DE LAS LEYES DE NEWTON 5. APLICACIONES DE LAS LEYES DE NEWTON En este capítulo extenderemos las leyes de Newton al estudio del movimiento en trayectorias curvas e incluiremos los efectos cuantitativos del rozamiento Rozamiento

Más detalles

Universidad Técnica de Machala Facultad de Ciencias Químicas y de la Salud Escuela Bioquímica y Farmacia FÍSICA

Universidad Técnica de Machala Facultad de Ciencias Químicas y de la Salud Escuela Bioquímica y Farmacia FÍSICA Universidad Técnica de Machala Facultad de Ciencias Químicas y de la Salud Escuela Bioquímica y Farmacia FÍSICA PROYECTO DE INVESTIGACIÓN TEMA: LEY DE LA ACELERACIÓN, PESO Y MOMENTUM, LEY DE LA ACCIÓN

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

DINAMICA. donde la fuerza neta de la que hablamos antes sería la suma vectorial de todas las fuerzas que puedan actuar separadamente sobre el cuerpo.

DINAMICA. donde la fuerza neta de la que hablamos antes sería la suma vectorial de todas las fuerzas que puedan actuar separadamente sobre el cuerpo. DINAMICA Introducción Así como la cinemática se encarga de la descripción del movimiento de los cuerpos, aunque sin entrar en detalles de la causa que hace mover a éstos, la dinámica estudia precisamente

Más detalles

Alianza MSP-UNE junio 2012 Instituto de Verano. Damaris Cruz Andreu Isabel Ortiz Ortiz

Alianza MSP-UNE junio 2012 Instituto de Verano. Damaris Cruz Andreu Isabel Ortiz Ortiz Alianza MSP-UNE junio 2012 Instituto de Verano Damaris Cruz Andreu Isabel Ortiz Ortiz Expectativa: I.8.2 Expresa que las fuerzas al interactuar producen cambios en la materia. Especificidad: I.8.2.2 Identifica

Más detalles

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal

Más detalles

LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON

LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON I. LOGROS Comprobar e interpretar la segunda ley de Newton. Comprobar la relación que existe entre fuerza, masa y aceleración. Analizar e interpretar las gráficas

Más detalles

Tablero Juego de masas Dinamómetro Poleas Aro de fuerzas Escala graduada Cuerda Pivote Balancín

Tablero Juego de masas Dinamómetro Poleas Aro de fuerzas Escala graduada Cuerda Pivote Balancín UNIVERSIDAD COOPERATIVA DE COLOMBIA CURSO FISICA MECANICA PRACTICA DE LABORATORIO PRACTICA No. 10: SUMA DE TORQUES Y EQUILIBRIO ROTACIONAL 1. INTRODUCCION. La aplicación de fuerzas sobre un cuerpo puede

Más detalles

12 Funciones de proporcionalidad

12 Funciones de proporcionalidad 8 _ 09-088.qxd //0 : Página 9 Funciones de proporcionalidad INTRODUCCIÓN La representación gráfica de funciones de proporcionalidad es una de las formas más directas de entender y verificar la relación

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

= = 11,11. Actividades resueltas de Dinámica

= = 11,11. Actividades resueltas de Dinámica Actividades resueltas de Dináica Sobre un cuerpo de 5 kg actúa una uerza de 0 N durante 3 s. Calcular: a) El ipulso de la uerza. b) La variación de la cantidad de oviiento del cuerpo. c) Su velocidad inal

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre... La figura muestra una leva de disco con seguidor de traslación, radial, de rodillo. La leva es un círculo de radio R=20 mm, articulado al elemento fijo

Más detalles

Ayudantía 4. Ignacio Reyes Dinámica, Trabajo y Energía

Ayudantía 4. Ignacio Reyes Dinámica, Trabajo y Energía P. Universidad Católica de Chile Facultad de Física Estática y Dinámica Profesor Rafael Benguria Ayudantía 4 Ignacio Reyes (iareyes@uc.cl). Prob. 2/I--200 Dinámica, Trabajo y Energía Una partícula de masa

Más detalles

III. comprende la utilidad práctica de las leyes del movimiento de Isaac Newton. Leyes de Newton

III. comprende la utilidad práctica de las leyes del movimiento de Isaac Newton. Leyes de Newton ASIGNATURA: GRADO: BLOQUE SABERES DECLARATIVOS PROPÓSITOS Física I Tercer Semestre de Bachillerato III. comprende la utilidad práctica de las leyes del movimiento de Isaac Newton. Define las tres leyes

Más detalles

b) Si los tres vectores corresponden a los lados de un triangulo, la proyección escalar de (AxB) sobre C es diferente de cero.

b) Si los tres vectores corresponden a los lados de un triangulo, la proyección escalar de (AxB) sobre C es diferente de cero. 1. Sean los vectores que se encuentran en el paralelepípedo tal como se muestran en la figura, escoja la alternativa correcta: a) b) c) d) e) 2. Sean tres vectores A, B y C diferentes del vector nulo,

Más detalles

Práctico 2: Mecánica lagrangeana

Práctico 2: Mecánica lagrangeana Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las

Más detalles

2. Dado el campo de fuerzas F x, Solución: W = 6 J

2. Dado el campo de fuerzas F x, Solución: W = 6 J UNIVERSIDD DE OVIEDO Escuela Politécnica de Ingeniería de Gijón Curso 013-4 1. Dos objetos, uno con masa doble que el otro, cuelgan de los extremos de la cuerda de una polea fija de masa despreciable y

Más detalles

Capítulo 18. Biomagnetismo

Capítulo 18. Biomagnetismo Capítulo 18 Biomagnetismo 1 Fuerza magnética sobre una carga La fuerza que un campo magnético B ejerce sobre una partícula con velocidad v y carga Q es: F = Q v B El campo magnético se mide en teslas,

Más detalles

PROBLEMAS RESUELTOS LEYES DE NEWTON

PROBLEMAS RESUELTOS LEYES DE NEWTON PROBLEMAS RESUELOS LEYES DE NEWON "No sé cómo puedo ser visto por el mundo, pero en mi opinión, me he comportado como un niño que juega al borde del mar, y que se divierte buscando de vez en cuando una

Más detalles

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton.

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton. 1. Introducción. 2. Leyes de Newton: 2.1 Primera Ley de Newton o Ley de Inercia. 2.2 Segunda Ley de Newton o Principio Fundamental de la Dinámica. 2.3 Tercera Ley de Newton o Principio de Acción o Reacción.

Más detalles

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante Problemas sobre Trabajo y Energía Trabajo hecho por una fuerza constante 1. Si una persona saca de un pozo una cubeta de 20 g y realiza un trabajo equivalente a 6.00 J, Cuál es la profundidad del pozo?

Más detalles

1.4 La primera ley de Newton

1.4 La primera ley de Newton Componente: Procesos físicos 1.4 La primera ley de Newton 1.4.1 El principio de inercia Todos los cuerpos que nos rodean están sometidos a la acción de una o varias fuerzas, algunas de ellas a distancia

Más detalles

ROZAMIENTO = FRICCION

ROZAMIENTO = FRICCION ROZAMIENTO Introducción. En la mayor parte de los problemas de física se supuso que las superficies eran lisas, esto para hacer el problema mas sencillo, sin embargo no existe ninguna superficie perfectamente

Más detalles

FUERZA DE ROZAMIENTO POR DESLIZAMIENTO

FUERZA DE ROZAMIENTO POR DESLIZAMIENTO FUERZA DE ROZAMIEO OR DESLIZAMIEO Un hombre tira de una caja de 20 Kg por medio de una cuerda de masa despreciable que forma un ángulo de 30º con la horizontal. Si el coeficiente de rozamiento por deslizamiento

Más detalles

Wilfrido Massieu ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5

Wilfrido Massieu ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5 INSTITUTO POLITÉCNICO NACIONAL Centro De Estudios Científicos Y Tecnológicos Wilfrido Massieu LABORATORIO DE FÍSICA I ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5 1. NOMBRE: FUERZAS CONCURRENTES

Más detalles

LABORATORIO No. 6. Segunda ley de Newton

LABORATORIO No. 6. Segunda ley de Newton LABORATORIO No. 6 Segunda ley de Newton 6.1. Introducción No hay nada obvio acerca de las relaciones que gobiernan el movimiento de los cuerpos. En efecto, tomó alrededor de 4000 años de civilización para

Más detalles