Tema 11.- Autovalores y Autovectores.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 11.- Autovalores y Autovectores."

Transcripción

1 Álgebra Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica Matrices diagonalizables Autovalores y autovectores complejos A lo largo de todo el tema trataremos esencialmente con matrices cuadradas reales (aunque muchos de los resultados que veamos también serán válidos para el caso de matrices cuadradas complejas) De todos modos, aunque se trabaje con matrices reales, será imprescindible hacer referencia a los números complejos puesto que un polinomio con coeficientes reales puede tener raíces complejas no reales Autovalores y Autovectores: Definición y propiedades Definición Sea A una matriz cuadrada de orden m Diremos que un escalar λ K (= R o C) es un autovalor de A si existe un vector v K m, v 0 tal que Av = λv, en cuyo caso se dice que v es un autovector de A asociado al autovalor λ Proposición Sea λ un autovalor de A y v un autovector asociado, entonces: αλ es un autovalor de αa con autovector v (λ µ) es un autovalor de A µi con autovector v 3 λ k es un autovalor de A k con autovector v 4 Si q( ) es un polinomio, entonces q(λ) es un autovalor de q(a) con autovector v (Ejemplo: 3λ 3 + 5λ 7λ + es un autovalor de la matriz 3A 3 + 5A 7A + I) 5 Si A tiene inversa, entonces λ 0 y λ es un autovalor de A con autovector v Definición Sea A una matriz m m y sea λ 0 un autovalor de A Se llama: (a) Multiplicidad algebraica de λ 0, y se denota por m a (λ 0 ), a la multiplicidad de λ 0 como raíz del polinomio característico p(λ) = det(a λi) de A Es decir, p(λ) puede factorizarse como p(λ) = (λ λ 0 ) m a(λ 0 ) q(λ), siendo q(λ) un polinomio (de grado m m a (λ 0 )) que no se anula para λ 0, q(λ 0 ) 0 (b) Multiplicidad geométrica de λ 0, y se denota por m g (λ 0 ), a la dimensión del espacio nulo de A λ 0 I, dim [Nul (A λ 0 I)] = m rango [(A λ 0 I)] Es decir, la multiplicidad geométrica coincide con el número (máximo) de autovectores linealmente independientes asociados al autovalor Lo único que se puede afirmar en general sobre la relación entre las multiplicidades algebraica y geométrica de un autovalor de una matriz viene dado por el siguiente resultado Lema Sea λ 0 un autovalor de una matriz A, entonces m g (λ 0 ) m a (λ 0 ) Proposición Sea A una matriz m m y sean λ, λ,, λ m sus m autovalores (cada uno aparece tantas veces como indique su multiplicidad algebraica) entonces: su polinomio característico es p(λ) = ( ) m (λ λ )(λ λ ) (λ λ m ) el determinante de A coincide con el producto de los autovalores: det(a) = λ λ λ m la traza de A coincide con la suma de los autovalores: Proposición Sea A una matriz m m, entonces: tr(a) := a + + a mm = λ + λ + + λ m

2 A t tiene los mismos autovalores que A (en general los autovectores asociados serán distintos) Si A es real y v es un autovector de A asociado a λ, entonces v también es autovector de A asociado al autovalor λ Además, las multiplicidades algebraicas y geométricas respectivas de λ y λ coinciden Matrices diagonalizables Definición Se dice que una matriz A m m es diagonalizable si existe alguna matriz P no singular tal que P AP es una matriz diagonal Notemos que si d d 0 0 P AP = D = 0 0 d d m entonces cada columna de P es un autovector de P asociado al correspondiente elemento diagonal de D que será un autovalor de A Además, puesto que existe la matriz inversa de P, las m columnas de P son linealmente independientes Teorema Sea A una matriz m m Se verifica: () A es diagonalizable si y sólo si tiene m autovectores linealmente independientes () A autovalores distintos de A le corresponden autovectores linealmente independientes, es decir, si v,, v k son autovectores de A asociados respectivamente a los autovalores λ,, λ k y estos son distintos dos a dos, entonces v,, v k son linealmente independientes (3) Si A tiene todos sus autovalores simples, entonces es diagonalizable (4) A es diagonalizable si y sólo si para cada autovalor λ se verifica que m a (λ) = m g (λ) Matrices semejantes y aplicaciones lineales Consideremos una aplicación lineal T : R m R m Fijada lase canónica B c = {e,, e m } de R m, esta aplicación lineal tiene asociada una matriz A, cuyas columnas son los vectores T (e ), T (e ), T (e m ) Si fijamos otrase B = {v,, v m } de R m, la aplicación lineal T tiene asociada una matriz B respecto a dicha base, la matriz cuyas columnas son las coordenadas de los vectores T (v ), T (v ), T (v m ) respecto a lase B, es decir, [T (v )] B,, [T (v m )] B v m Las matrices A y B verifican que B = P AP siendo P = v En general, dicha relación se formaliza mediante la siguiente definición Definición Se dice que dos matrices m m A y B son semejantes si existe alguna matriz no singular P tal que B = P AP La matriz P se suele denominar matriz de paso A la vista de la definición es obvio que una matriz es diagonalizable si es semejante a una matriz diagonal Proposición Si A y B son semejantes, entonces: A y B tienen el mismo polinomio característico y, por tanto, los mismos autovalores con las mismas multiplicidades algebraicas Si v es un autovector de A asociado a un autovalor λ, entonces P v es un autovector de B asociado al mismo autovalor λ (siendo P la matriz no singular tal que B = P AP ) det(a) = det(b) y tr(a)=tr(b) Cada autovalor (de A y B) tiene la misma multiplicidad geométrica para ambas matrices, es decir, dim [Nul (A λi)] = dim [Nul (B λi)]

3 3 Para cada exponente k =,, se verifica que dim [ Nul ( (A λi) k)] = dim [ Nul ( (B λi) k)] Notemos por otra parte que el que dos matrices tengan los mismos autovalores no conlleva, en general, el que sean semejantes; por ejemplo, las matrices [ ] [ ] y B = tienen como único autovector a λ = 0 pero no son semejantes Si V es un espacio vectorial, B = {v,, v m } unase del mismo, y f : V V una aplicación lineal, nótese entonces que la matriz de f en B es semejante a la matriz de f en cualquier otrase B = {v,, v m} de V Por lo tanto, a la vista de los resultados anteriores, se pueden definir, los autovalores, la traza y el determinante de f como los autovalores, traza y determinante de f en cualquier base Lo mismo ocurre con el polinomio característico Autovalores y autovectores complejos Ampliamos en estas líneas lo tratado en la sección 55 del libro (Lay) En dicha sección se muestra cómo una matriz real diagonalizable en C (es decir, con un par de autovalores complejos conjugados, a ± bi) se puede escribir en una forma no diagonal, pero con una estructura muy sencilla (ver teorema 9 de la página 334) [ ] En el caso de tener una matriz real diagonalizable de mayor dimensión con autovalores complejos podemos proceder de un modo similar para obtener una matriz real no diagonal, pero sí diagonal por bloques, con una estructura similar a la anterior Así, una matriz diagonalizable pero con algún autovalor complejo no real (con lo cual la matriz de paso tendrá algunos elementos no reales) será semejante, a través de una matriz de paso real, a una matriz diagonal por bloques C C 0 0 C = 0 0 C C k [ ] donde cada C j es o bien un autovalor real o bien una submatriz de la forma, donde a y b son respectivamente la parte real e imaginaria de un autovalor complejo (no real) de A Si λ = a + bi, a, b R es un autovalor de A (matriz cuadrada real) y v = u + iu (u, u R m ) es un autovector de A asociado a λ, entonces v = u iu es autovector de A asociado a λ = a bi y, por tanto, tenemos las igualdades Av = λv = (a + bi) (u + iu ) Au + iau = (au bu ) + i (bu + au ) A v = λ v = (a bi) (u iu ) Au iau = (au bu ) i (bu + au ) y por tanto, identificando las partes real e imaginaria en cualquiera de las dos igualdades anteriores tenemos, } Au = au bu Au = bu + au Expresando estas igualdades de forma matricial tenemos [ A u u = u u ] Así, si multiplicamos A por una matriz en la que los autovectores complejos v y v sean dos vectores columna tenemos A v v = v v λ 0 0 λ

4 4 mientras que si sustituimos dichas columnas por la parte real y la parte imaginaria de v tendremos 0 A u u = u u 0 con lo cual, si multiplicamos A por una matriz real P cuyas columnas forman unase de R n y en la que u y u sean dos vectores columna y los restantes vectores columna sean autovectores reales o vectores obtenidos a partir de la parte real y de la parte imaginaria (por parejas) de un autovector complejo, tendremos 0 0 AP = u u = u u 0 0 = P C 0 0 [ ] y por tanto P AP = C, donde la diagonal de la submatriz está sobre la de la matriz C que será una matriz real casi-diagonal (diagonal por cajas) Veámoslo con ejemplos Ejemplo Obtener una matriz casi-diagonal real (y la correspondiente matriz de paso) semejante a la matriz Su ecuación característica es Sus autovalores y sus autovectores asociados son λ =, v = 0 0 ; λ =, v = 0 λ 4 5λ 3 + 3λ 9λ + 0 = 0 ; λ 3 = i, v 3 = + i + i Al ser la matriz diagonalizable, si construimos Q = [v, v, v 3, v 4 ], obtenemos: Q AQ = D = i 0, i ; λ 4 = + i, v 4 = donde los autovalores aparecen en la matriz diagonal D en el orden en que se coloquen los autovectores correspondientes en la matriz Q El inconveniente de esa expresión es que tanto D como Q son matrices complejas aunque A es real Para evitar trabajar con matrices complejas se procede como sigue (aunque, en este caso, ya no se va a obtener una matriz diagonal sino diagonal por bloques) Por tanto, construyendo la matriz P = [v, v, Re (v 3 ), Im (v 3 )], obtenemos: C = P AP = i i Ejemplo Obtener una matriz casi-diagonal real (y la correspondiente matriz de paso) semejante a la matriz

5 5 Su ecuación característica es Sus autovalores y sus autovectores asociados son λ = i, v = λ 3 = i, v 3 = i + i λ 4 + 5λ + 4 = 0 i + i ; λ = i, v = ; λ 4 = i, v 4 = Al ser la matriz diagonalizable, si construimos Q = [v, v, v 3, v 4 ], obtenemos: i Q AQ = D = 0 i i 0, i + i i i i donde los autovalores aparecen en la matriz diagonal D en el orden en que se coloquen los autovectores correspondientes en la matriz Q El inconveniente de esa expresión es que tanto D como Q son matrices complejas aunque A es real Para evitar trabajar con matrices complejas se procede como sigue (aunque, en este caso, ya no se va a obtener una matriz diagonal sino diagonal por bloques) Por tanto, construyendo la matriz P = [Re (v ), Im (v ), Re (v 3 ), Im (v 3 )], obtenemos: C = P AP = Ejemplo Obtener una matriz casi-diagonal real (y la correspondiente matriz de paso) semejante a la matriz Su ecuación característica es λ 3 + λ + λ 39 = 0 Sus autovalores y sus autovectores asociados son i λ = 3i, v = + i, λ = + 3i, v = i i Al ser la matriz diagonalizable, si construimos Q = [v, v, v 3 ], obtenemos: 3i 0 0 Q AQ = D = 0 + 3i 0, ; ; λ 3 = 3, v 3 = donde los autovalores aparecen en la matriz diagonal D en el orden en que se coloquen los autovectores correspondientes en la matriz Q El inconveniente de esa expresión es que tanto D como Q son matrices complejas aunque A es real Para evitar trabajar con matrices complejas se procede como sigue (aunque, en este caso, ya no se va a obtener una matriz diagonal sino diagonal por bloques) Por tanto, construyendo la matriz P = [Re (v ), Im (v ), v 3 ], obtenemos: C = P AP =

6 6 Aplicación a recurrencias vectoriales Definición Sea A una matriz cuadrada de orden m y sea u, u,, u n, una sucesión de vectores en R m definidos de manera recurrente por u n = Au n, n =,, a partir de un vector inicial u 0 R m Una relación de recurrencia vectorial de esta forma se llama sistema de ecuaciones en diferencias lineal homogéneo de primer orden con coeficientes constantes Si u n = Au n es un sistema de ecuaciones en diferencias, se tiene, razonando por inducción, que u n = A n u 0 Con esta expresión podemos hallar u n para cualquier valor de n Si A diagonaliza, podemos dar una expresión más simple para u n que nos permitirá ahorrar tiempo de cálculo y también estudiar el comportamiento a largo plazo de la sucesión u n Proposición Sea A una matriz cuadrada de orden m diagonalizable y u 0 R m Entonces la solución del sistema de ecuaciones en diferencias u n = Au n con vector inicial u 0 es u n = A n u 0 = P D n P u 0, n =,, siendo P la matriz cuyas columnas forman unase de autovectores de A y D la matriz diagonal cuyos elementos diagonales son los autovalores correspondientes Observaciones Nótese que si A no es diagonalizable no es posible, en general, aplicar la técnica anterior para calcular la solución del sistema de ecuaciones en diferencias asociado Sin embargo, hay un caso especialmente fácil de resolver; si u 0 es combinación lineal de autovectores de A, podemos calcular u n = A n u 0 aunque no sepamos calcular A n : Siu 0 = α v + + α k v k y Av j = λ j v j para cada j =,, k, entonces A n u 0 = α λ n v + α k λ n kv k Ejercicios propuestos Se sugieren los siguientes ejercicios del capítulo 5 del texto (Lay): - Sección 5: todos los impares hasta el 7, 6, 8, 0,, 4 - Sección 5: todos los impares hasta el 7, 0,, 4 - Sección 53: todos los impares hasta el 7,, 4, 6 - Sección 54: todos los ejercicios hasta el 4 - Sección 55: todos los impares hasta el - Sección 56:,, 7 - Ejercicios suplementarios (pág 364): del al 3 Ejercicio Dada la matriz 3 b 3 0 a 0 c Calcular A de forma que (, 0, ) t sea un autovector cuyo autovalor correspondiente es λ = Hallar los demás autovalores y autovectores Ejercicio Sabiendo que la matriz: 0 c a 0 b 0 es diagonalizable y tiene un autovalor doble, calcular a, b y c

7 7 Ejercicio 3 Para qué valores de a R tiene la siguiente matriz A tres autovectores linealmente independientes? (es decir, estudiar cuándo A es diagonalizable) a Ejercicio 4 Dada la matriz 0 a 3 0 Calcular los valores de a para los que A es diagonalizable, a R Para dichos valores de a, calcular los autovalores y los autovectores de A 3 Para dichos valores de a, calcular A n Ejercicio 5 Estudiar la diagonalizabilidad de las siguientes matrices en función de los parámetros que aparecen a + 3 b 0 a 0, B = b, C = a 0 0 a b d 0 c a a c e f Ejercicio 6 Sea f : R 4 R 4 la aplicación lineal dada por f(x) = Ax, donde a 0 b 0 3 c 0 0 d Hallar A sabiendo que f(s ) = S, donde S { x x = 0 x 3 + x 4 = 0 y S = Gen{(,,, ) t, (0, 3,, ) t } Probar que A no es diagonalizable Ejercicio 7 Consideremos la matriz a b c b c 0 b 3 c 3 (a) Determinar los elementos de A sabiendo que sus autovalores son λ = y λ = 3 (doble), que v = (,, ) t es un autovector asociado a λ = 3 y v = (,, 0) t satisface que Av = 3v + v (b) Estudiar si A es diagonalizable (c) Calcular las soluciones del sistema de ecuaciones en diferencias u n = Au n para los vectores iniciales u 0 = (,, ) t y u 0 = (, 3, ) t Ejercicio 8 Dado el sistema de ecuaciones en diferencias u n = Au n, siendo 0 α 0 0 α α, 0 0 α 0 Obtener la expresión general de u n, según los valores de α R Calcular u 0, dado el vector inicial u 0 = (0,, 0, ) t

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso Fundamentos Matemáticos de la Ingeniería Tema 4 Hoja Escuela Técnica Superior de Ingeniería Civil e Industrial Esp en Hidrología Fundamentos Matemáticos de la Ingeniería Tema 4: Diagonaliación de matrices

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Algebra Lineal Tarea No 22: Valores y vectores propios Solución a algunos problemas de la tarea (al 29 de junio de 2014)

Algebra Lineal Tarea No 22: Valores y vectores propios Solución a algunos problemas de la tarea (al 29 de junio de 2014) Algebra Lineal Tarea No : Valores y vectores propios a algunos problemas de la tarea (al 9 de junio de 04. Para la matriz A A Indique cuáles vectores son vectores propios: ( ( ( v, v, v 3 3 Recordemos

Más detalles

Problemas de exámenes de Aplicaciones Lineales y Matrices

Problemas de exámenes de Aplicaciones Lineales y Matrices 1 Problemas de exámenes de Aplicaciones Lineales y Matrices 1. Consideramos f End(R n ), que tiene matriz A respecto la base canónica. Cuál de las siguientes afirmaciones es incorrecta? a) Si v es un vector

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas.

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas. TEMA 11 F MATEMÁTICOS TEMA 11 Autovalores y autovectores Diagonalización y formas canónicas 1 Introducción Definición 1 (Matrices semejantes) Sean A y B dos matrices cuadradas de orden n Decimos que A

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Diagonalización de matrices.

Diagonalización de matrices. Diagonalización de matrices. 1. Diagonalización de matrices. Definición 1.1 Sea A una matriz cuadrada,, decimos que es un autovalor de A si existe un vector no nulo tal que En esta situación decimos que

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior L. A. Núñez * Centro de Astrofísica Teórica, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

Tema 5: Sistemas de ecuaciones lineales.

Tema 5: Sistemas de ecuaciones lineales. TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales ALBERTO VIGNERON TENORIO Dpto. de Matemáticas Universidad de Cádiz Índice general 1. Sistemas de ecuaciones lineales 1 1.1. Sistemas de ecuaciones lineales. Definiciones..........

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS CC SOCIALES CAPÍTULO 2 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

!MATRICES INVERTIBLES

!MATRICES INVERTIBLES Tema 4.- MATRICES INVERTIBLES!MATRICES INVERTIBLES!TÉCNICAS PARA CALCULAR LA INVERSA DE UNA MATRIZ REGULAR 1 Hemos hablado anteriormente de la matriz cuadrada unidad de orden n (I n ).. Es posible encontrar

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

TEMA 8.- NORMAS DE MATRICES Y

TEMA 8.- NORMAS DE MATRICES Y Álgebra II: Tema 8. TEMA 8.- NORMAS DE MATRICES Y NúMERO DE CONDICIóN Índice. Introducción 2. Norma vectorial y norma matricial. 2 2.. Norma matricial inducida por normas vectoriales......... 4 2.2. Algunos

Más detalles

Ecuaciones de la recta en el espacio

Ecuaciones de la recta en el espacio Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

1 Aplicaciones lineales

1 Aplicaciones lineales UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Aplicaciones lineales y diagonalización. El objetivo principal de este tema será la obtención de una matriz diagonal

Más detalles

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. A1.- Determina a y b sabiendo que el sistema de ecuaciones x + 3y +z = 1 -x + y +z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. Para que el sistema tenga, al menos, dos soluciones distintas

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

Sistem as de ecuaciones lineales

Sistem as de ecuaciones lineales Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:

Más detalles

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano ELEMENTOS DE GEOMETRÍA Eduardo P. Serrano Este Apunte de Clase está dirigido a los alumnos de la materia Elementos de Cálculo Numérico para Biólogos. Tiene por objeto exponer algunos conceptos básicos

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

Álgebra Lineal VII: Independencia Lineal.

Álgebra Lineal VII: Independencia Lineal. Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21 Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)

Más detalles

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A.

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A. ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; A = A. 2. La inversa de A 1 es A; A 1 1 = A. 3. AB = B A. 4. Las matrices A A y AA son simétricas. 5. AB 1 = B 1 A 1, si A y B son no singulares. 6. Los escalares

Más detalles

Tema 6.- Autovalores y autovectores.

Tema 6.- Autovalores y autovectores. Ingeniería Civil. Matemáticas I. -3. Departamento de Matemática Aplicada II. Escuela Superior de Ingenieros. Universidad de Sevilla. Tema 6.- Autovalores autovectores. 6..- Autovalores autovectores. Definición

Más detalles

Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS

Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS 1 Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS 1.1 Los Números Naturales. Los números naturales aparecen por la necesidad que tiene el hombre (primitivo) tanto de contar como de ordenar

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

Teoría Tema 9 Ecuaciones del plano

Teoría Tema 9 Ecuaciones del plano página 1/11 Teoría Tema 9 Ecuaciones del plano Índice de contenido Determinación lineal de un plano. Ecuación vectorial y paramétrica...2 Ecuación general o implícita del plano...6 Ecuación segmentaria

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

1. SISTEMAS DE ECUACIONES DIFERENCIALES

1. SISTEMAS DE ECUACIONES DIFERENCIALES 1 1 SISTEMAS DE ECUACIONES DIFERENCIALES 11 SISTEMAS LINEALES DE PRIMER ORDEN Un sistema de ecuaciones diferenciales del tipo dx 1 dt a 11 tx 1 + a 1n tx n + f 1 t dx n dt a n1 tx 1 + a nn tx n + f n t

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

Tema 1: MATRICES. OPERACIONES CON MATRICES

Tema 1: MATRICES. OPERACIONES CON MATRICES Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos

Más detalles

Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal

Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal Conferencia clase Al desacoplar las ecuaciones se tiene stemas de ecuaciones diferenciales lineales usando álgebra lineal Contenido. 1. stemas de ecuaciones diferenciales de primer orden. 2. Forma matricial

Más detalles

ECUACIONES EN DIFERENCIAS LINEALES CON COEFICIENTES CONSTANTES

ECUACIONES EN DIFERENCIAS LINEALES CON COEFICIENTES CONSTANTES ECUACIONES EN DIFERENCIAS LINEALES CON COEFICIENTES CONSTANTES Alejandro Lugon 008-1 1. Ecuaciones De Segundo Orden Consideremos la ecuación: x t+ + ax t+1 + bx t = 0 (1) la cual podemos escribir como:

Más detalles

TEMA 11. VECTORES EN EL ESPACIO

TEMA 11. VECTORES EN EL ESPACIO TEMA 11. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. Dos vectores son equipolentes si tienen el mismo

Más detalles

TEMA 6. EIGENVALORES Y EIGENVECTORES

TEMA 6. EIGENVALORES Y EIGENVECTORES TEMA 6. EIGENVALORES Y EIGENVECTORES M. C. Roberto Rosales Flores INSTITUTO TECNOLÓGICO SUPERIOR DE TLAXCO Ingeniería en Logística M. C. Roberto Rosales Flores (ITST TEMA 6. EIGENVALORES Y EIGENVECTORES

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía Prueba de Evaluación Continua Grupo A 9-04-14 ESPACIOS VECTORIALES-DIAGONALIZACIÓN (parte sin DERIVE) 1. a) Definir sistema ligado de vectores de un espacio vectorial V. b) Demostrar que si un sistema

Más detalles

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1 PRODUCTO ESCALAR INTRODUCCIÓN El espacio vectorial de los vectores libres del plano se caracteriza por tener definidas dos operaciones: una interna, suma de vectores, y otra externa, producto de un número

Más detalles

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A).

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno a 11 = a 11 5 = 5 Determinante

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 1 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U.

2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U. 2 Ortogonalidad En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U 1 Vectores ortogonales Definición 11 Dos vectores x, ȳ U se dicen ortogonales si: x ȳ = 0 Veamos algunas propiedades

Más detalles

TEMA 4: CALCULO NUMERICO DE AUTOVALORES

TEMA 4: CALCULO NUMERICO DE AUTOVALORES Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 4: CALCULO NUMERICO DE AUTOVALORES 1 INTRODUCCION La determinación de autovalores y autovectores de una matriz cuadrada A de orden n es un problema

Más detalles

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Empresariales II Manuel León Navarro 2 Capítulo 1 Ejercicios lección 1 1. Sea el conjunto de las matrices cuadradas de orden 2

Más detalles

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada ETS Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Octubre

Más detalles

Teoría Tema 6 Ecuaciones de la recta

Teoría Tema 6 Ecuaciones de la recta página 1/14 Teoría Tema 6 Ecuaciones de la recta Índice de contenido Base canónica en dos dimensiones como sistema referencial...2 Ecuación vectorial de la recta...4 Ecuación paramétrica de la recta...6

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Ejemplo 1 Sea V un espacio con producto interno sobre un cuerpo K. A las transformaciones lineales T : V K las llamamos funcionales lineales.

Ejemplo 1 Sea V un espacio con producto interno sobre un cuerpo K. A las transformaciones lineales T : V K las llamamos funcionales lineales. Facultad de Ingeniería - IMERL - Geometría y Álgebra Lineal 2 - Curso 2008. 1 Transformaciones lineales en espacios con producto interno Notas para el curso de Geometría y Algebra Lineal 2 de la Facultad

Más detalles

Algebra Lineal XXVI: La Regla de Cramer.

Algebra Lineal XXVI: La Regla de Cramer. Algebra Lineal XXVI: La Regla de Cramer José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

El Teorema Fundamental del Álgebra

El Teorema Fundamental del Álgebra El Teorema Fundamental del Álgebra 1. Repaso de polinomios Definiciones básicas Un monomio en una indeterminada x es una expresión de la forma ax n que representa el producto de un número, a, por una potencia

Más detalles

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL.

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL. UNIDAD V: ESPACIOS VECTORIALES Estamos acostumbrados a representar un punto en la recta como un número real; un punto en el plano como un par ordenado y un punto en el espacio tridimensional como una terna

Más detalles

Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional

Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional página 1/11 Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional Índice de contenido Ecuación vectorial, paramétrica y continua de la recta...2 Ecuación general o implícita de la recta...5

Más detalles

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253 Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían

Más detalles

Vectores y matrices. v 1 v 2. = [v. v = v n. Herramientas de A.L. p.1/64

Vectores y matrices. v 1 v 2. = [v. v = v n. Herramientas de A.L. p.1/64 Vectores y matrices Los elementos básicos en teoría de sistemas lineales son vectores n 1 (columna) o 1 n (fila) y matrices n m con elementos reales (i.e. v R n y A R n m ). Denotamos el elemento i del

Más detalles

Polaridad. Tangentes. Estudio geométrico de cónicas y cuádricas

Polaridad. Tangentes. Estudio geométrico de cónicas y cuádricas Tema 6- Polaridad Tangentes Estudio geométrico de cónicas y cuádricas En este tema pretendemos estudiar propiedades de V(Q), especialmente en los casos real y complejo, con n =2,3 Para ello, necesitamos

Más detalles

Sistemas de ecuaciones diferenciales lineales J.L. Mancilla Aguilar

Sistemas de ecuaciones diferenciales lineales J.L. Mancilla Aguilar Sistemas de ecuaciones diferenciales lineales JL Mancilla Aguilar Sistemas de ecuaciones diferenciales A lo largo de estas notas consideraremos sistemas de ecuaciones diferenciales lineales a coeficientes

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

Tema 5: Sistemas de Ecuaciones Lineales

Tema 5: Sistemas de Ecuaciones Lineales Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones

Más detalles

MATRICES DETERMINANTES

MATRICES DETERMINANTES MATRICES Y DETERMINANTES INTRODUCCIÓN, MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de

Más detalles

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

TEMA 4: Sistemas de ecuaciones lineales II

TEMA 4: Sistemas de ecuaciones lineales II TEM 4: Sistemas de ecuaciones lineales II ) Teorema de Rouché-Frobenius. ) Sistemas de Cramer: regla de Cramer. 3) Sistemas homogeneos. 4) Eliminación de parámetros. 5) Métodos de factorización. 5) Métodos

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas Un sistema de dos ecuaciones lineales de primer grado con dos incógnitas tiene la siguiente forma Ax + By + C = 0 A x + B y + C (1) = 0 Ya sabemos que una ecuación lineal de primer grado con dos incógnitas

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular.

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. 1. Definiciones previas 1.1. Wronskiano Diremos que el Wronskiano de un conjunto

Más detalles

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño ALGEBRA 1. LETRAS EN VEZ DE NÚMEROS En muchas tareas de las matemáticas es preciso trabajar con números de valor desconocido o indeterminado. En esos casos, los números se representan por letras y se operan

Más detalles

Capítulo 8: Vectores

Capítulo 8: Vectores Capítulo 8: Vectores 1. Lección 30. Operaciones con vectores 1.1. Vectores El concepto de vector aparece en Física para describir magnitudes, tales como la fuerza que actúa sobre un punto, en las que no

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

Matemá'cas generales

Matemá'cas generales Matemá'cas generales Matrices y Sistemas Patricia Gómez García José Antonio Álvarez García DPTO. DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN Este tema se publica bajo Licencia: Crea've Commons

Más detalles

Apuntes de álgebra lineal. Eduardo Liz Marzán. Enero de 2015.

Apuntes de álgebra lineal. Eduardo Liz Marzán. Enero de 2015. Apuntes de álgebra lineal Eduardo Liz Marzán Enero de 2015 Índice general 1 Introducción 7 11 Operaciones internas y estructura de cuerpo 7 12 Números complejos 8 13 Vectores 10 2 Matrices y determinantes

Más detalles

Espacios vectoriales y aplicaciones lineales.

Espacios vectoriales y aplicaciones lineales. Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en

Más detalles

Tema 3: Aplicaciones de la diagonalización

Tema 3: Aplicaciones de la diagonalización TEORÍA DE ÁLGEBRA II: Tema 3. DIPLOMATURA DE ESTADÍSTICA 1 Tema 3: Aplicaciones de la diagonalización 1 Ecuaciones en diferencias Estudiando la cría de conejos, Fibonacci llegó a las siguientes conclusiones:

Más detalles

10. 1 Definición de espacio euclídeo.

10. 1 Definición de espacio euclídeo. ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS 10. ESPACIOS EUCLÍDEOS 10. 1 Definición de espacio euclídeo. Producto escalar

Más detalles