Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta."

Transcripción

1 Rentas Fnanceras. Renta fracconada 6. RETA FRACCIOADA Una renta fracconada se caracterza porque su frecuenca no concde con la frecuenca de varacón del térmno de dcha renta. Las característcas de la renta fracconada son las sguentes: Perodo de la renta: P (Frecuenca de la renta: m=/p). Perodo de la varacón del térmno: P (Frecuenca de la varacón del térmno: M=/P ). úmero de térmnos de la renta: n. úmero de térmnos de cuantía dferente en el plazo de la renta:. El térmno general de la renta fracconada es sólo camba veces de cuantía. C r, donde r=,2,..., puesto que el térmno úmero de térmnos de gual cuantía dentro de cada perodo de varacón: k. m P n Se cumple que k = = =. M P El esquema temporal de una renta fracconada, vencda, nmedata y temporal, es el sguente: C C... C C 2 C 2... C 2... C P 2P... kp (k+)p (k+2)p... 2kP... np años Como se desprende del esquema anteror, el térmno de la renta no varía cada perodo sno que lo hace cada k perodos. Así, durante los k prmeros perodos el térmno es el msmo y se smbolza por C, durante los k segundos perodos el térmno tambén es el msmo y se smbolza por C 2, aunque dstnto a los prmeros k perodos y así sucesvamente. Una renta fracconada se puede consderar como un conjunto de rentas constantes. Para hallar el valor actual de la renta fracconada se susttuye, en prmer lugar, cada una de las rentas constantes por su valor fnal:

2 Rentas Fnanceras. Renta fracconada 2 C C... C C 2 C 2... C 2... C P 2P... kp (k+)p (k+2)p... 2kP... np años 2... El valor fnal de una renta de k térmnos de cuantía constante C r y de frecuenca m es: = C s r =,2,..., r r ki m Así, la renta orgnal puede sustturse por otra renta de térmnos de cuantía varable r, r =,2,..., y de perodcdad P', esto es de frecuenca M, cuyo esquema temporal es: 2... P 2P... P =kp (k+)p (k+2)p... 2P =2kP... P =np años El valor actual de la renta fracconada, f, se obtene del sguente modo: 2... P 2P... P años f

3 Rentas Fnanceras. Renta fracconada 3 En defntva, f r r = r ( + M) = r s ( + M) = k Im r= r= k ( + I ) m r IM r = Cr ( + IM) = Cr ( + IM) = Im r= Im r= I M M r M r M auxlar = k Cr ( + IM) = C' r ( + IM) = Im m r= m r = m auxlar I C I f M auxlar = m auxlar es el valor actual de una renta, denomnada auxlar, cuyas característcas son las sguentes: Su frecuenca es gual a la frecuenca de varacón de la renta fracconada: M. El número de térmnos (y, por tanto, el número de perodos) concde con el número de térmnos de cuantía dferente en todo el plazo de la renta fracconada:. El térmno de la renta es C r = k Cr (r=,2,...,) y cada uno de ellos se stúa donde está el últmo térmno de cuantía C r. Así, por ejemplo, el prmer térmno de la renta auxlar C = k C se stúa donde está el últmo térmno de cuantía C. El esquema de la renta auxlar asocada al de la renta fracconada es el sguente: Renta fracconada C C... C C 2 C 2... C 2... C P 2P... kp (k+)p (k+2)p... 2kP... np años Renta auxlar C = k C C 2 = k C 2... C = k C P =kp 2P =2kP... P =nkp años

4 Rentas Fnanceras. Renta fracconada 4 La renta auxlar es una renta varable, vencda, nmedata y temporal y, por tanto, su valor actual se obtene aplcando las fórmulas de las rentas de varacón geométrca o lneal anterormente vstas en los apartados 4. y 5. respectvamente. El cocente M m es el denomnado factor corrector, que permte convertr el valor actual de la renta auxlar en el valor actual de la renta fracconada, vencda, nmedata y temporal. Dcho factor corrector es el cocente entre el tanto nomnal de nterés asocado a la frecuenca de la varacón y el tanto nomnal de nterés asocado a la frecuenca de la renta fracconada. Ejemplo Sea una renta de 2 térmnos mensuales y vencdos, varables a razón de un 5% anual acumulatvo. Hallar su valor actual s el tpo de nterés es el 6% efectvo anual y durante el prmer año cada térmno mensual es de 3.. Las característcas de la renta fracconada son: Perodo de la renta: P = 2 m = 2 Perodo de la varacón: P = M= úmero de térmnos de la renta: n=2 úmero de térmnos de cuantía dferente: = Durante el prmer año, el térmno mensual es de 3. ( C = 3. ). Durante el segundo año se ncrementará dcho térmno un 5% con respecto al del año anteror. Así, C2 =,5 C = 3.5. En defntva, se cumplrá que r r C = C,5 r =,2,3,... úmero de térmnos de gual cuantía dentro de cada perodo de varacón: m n 2 2 K = = = 2 M La renta es vencda, nmedata y temporal Y las característcas de la renta auxlar son: Perodo de la renta: P = M =

5 Rentas Fnanceras. Renta fracconada 5 úmero de térmnos: = El prmer térmno es C = k C = 2 C = 36. y está stuado al fnal del prmer año de la renta, que es precsamente donde está stuado el últmo térmno de cuantía C. El segundo térmno es C 2 = k C 2 = 2 C 2 = 2,5 C =,5 2 C =,5 C. Como puede aprecarse, la varacón del térmno de la renta auxlar es la msma que la de la renta fracconada. Este resultado puede generalzarse al resto de los térmnos y ello permte expresar el térmno general como C = C,5 = 2 C,5 con r =,2,3,...,. Así, la renta r r r auxlar es una renta de varacón geométrca a la cual se aplcará la fórmula obtenda en el apartado 4. de este capítulo. Los esquemas temporales correspondentes a las rentas fracconada y auxlar asocadas a la renta descrta en el ejemplo son los sguentes: Renta fracconada C C... C C 2 C 2... C 2... C /2 2/2... 2/2 3/2 4/ /2... 2/2 años Renta auxlar C =2 C C 2=2 C 2... C =2 C 2... años ' C f,6,5,6 = 36. = ,25,584, 6, 5 2 auxlar

6 Rentas Fnanceras. Renta fracconada Renta fracconada antcpada, nmedata y temporal S la renta fracconada es antcpada, nmedata y temporal la valoracón debe hacerse tenendo en cuenta el sguente esquema: Renta fracconada C C... C C 2 C 2... C 2... C P... (k-)p kp (k+)p... (2k-)P... (n-)p np años Renta auxlar C = k C C 2 = k C 2... C = k C -P (k-)p (2k-) P... (n-)p años P (k-)p En el caso de que la renta sea antcpada, el valor actual de la renta auxlar se obtene un perodo, P, antes del orgen de la renta. Por tanto, para tener el valor en el orgen de la operacón deberá captalzarse el resultado obtendo un perodo de la renta fracconada: I ( ) f M auxlar = P + m m

7 Rentas Fnanceras. Renta fracconada 7 Ejemplo Hallar el valor actual de una renta de guales característcas a la del ejemplo anteror pero antcpada. Los esquemas correspondentes a las rentas fracconada y auxlar son los sguentes: Renta fracconada C C... C C 2 C 2... C 2... C /2... /2 2/2 3/ /2... 9/2 2/2 años Renta auxlar C =2 C C 2 =2 C 2... C =2 C -/2 /2 +/ /2 años /2 años Como la renta fracconada es mensual y antcpada, el valor de la renta auxlar se obtene un mes antes del orgen de la renta sendo necesaro captalzar el resultado un mes para poder tener el valor de la renta fracconada en el orgen de la operacón. f,6,5,6 = 36.,4867 = ,6,584,6,5 I + 2 auxlar 2 2 auxlar

TEMA 7 RENTAS FRACCIONADAS

TEMA 7 RENTAS FRACCIONADAS TEMA 7 RENTAS FRACCIONADAS. INTRODUCCIÓN En la actvdad normal de las entdades fnanceras es muy frecuente ue la perodcdad con ue se hacen efectvos los sucesvos térmnos no sean anuales, como hasta ahora

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Undad Central del Valle del Cauca Facultad de Cencas Admnstratvas, Económcas y Contables Programa de Contaduría Públca Curso de Matemátcas Fnanceras Profesor: Javer Hernando Ossa Ossa Ejerccos resueltos

Más detalles

Rentas o Anualidades

Rentas o Anualidades Rentas o Anualdades Patrca Ksbye Profesorado en Matemátca Facultad de Matemátca, Astronomía y Físca 10 de setembre de 2013 Patrca Ksbye (FaMAF) 10 de setembre de 2013 1 / 31 Introduccón Rentas o Anualdades

Más detalles

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO CUESTIONARIO Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO 1. Cuánto vale una Letra del Tesoro, en tanto por cento de nomnal, s calculamos su valor al 3% de nterés y faltan 5 días para su vencmento? A) 97,2

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

1.- Una empresa se plantea una inversión cuyas características financieras son:

1.- Una empresa se plantea una inversión cuyas características financieras son: ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas

Más detalles

Matemática Financiera - Rentas constantes

Matemática Financiera - Rentas constantes Matemátca Fnancera - Rentas constantes Marek Šulsta Jhočeská unverzta v Českých Budějovcích Ekonomcká fakulta Katedra aplkované matematky a nformatky Unversdad de Bohema Sur Faculdad de Economía Departmento

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I CURSO 0/04 PRIMERA SEMANA Día 7/0/04 a las 6 horas MATERIAL AUXILIAR: Calculadora fnancera DURACIÓN: horas. a) Captal fnancero aleatoro: Concepto. Equvalente

Más detalles

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS. En las msmas condcones, qué tpo de anualdades produce un monto mayor: una vencda o una antcpada? Por qué? Las anualdades antcpadas producen un monto mayor

Más detalles

Matemática Financiera Sistemas de Amortización de Deudas

Matemática Financiera Sistemas de Amortización de Deudas Matemátca Fnancera Sstemas de Amortzacón de Deudas 7 Qué aprendemos Sstema Francés: Descomposcón de la cuota. Amortzacones acumuladas. Cálculo del saldo. Evolucón. Representacón gráfca. Expresones recursvas

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Una empresa dedcada al transporte y dstrbucón de mercancías, tene una plantlla de 50 trabajadores. Durante el últmo año se ha observado que 5 trabajadores han faltado un solo día

Más detalles

VP = 1 VF. Anualidad: conjunto de pagos iguales realizados a intervalos iguales de tiempo.

VP = 1 VF. Anualidad: conjunto de pagos iguales realizados a intervalos iguales de tiempo. Ingenería Económca Tema 2.1. Factores de equvalenca y seres de gradentes UNIDAD II. FACTORES USADOS EN LA INGENIERÍA ECONÓMICA Tema 2.1. Factores de equvalenca y seres de gradentes Saber: Descrbr los factores

Más detalles

Capítulo 5 Anualidades.

Capítulo 5 Anualidades. Capítulo 5 Anualdades. Hasta ahora solo hemos estudado operacones fnanceras que se componen de un captal únco (captal ncal o monto), por ejemplo, podemos saber el valor presente de una suma de dnero en

Más detalles

SUPERINTENDENCIA FINANCIERA DE COLOMBIA

SUPERINTENDENCIA FINANCIERA DE COLOMBIA Págna 1 ANEXO 2 Reglas relatvas a la medcón de resgos de mercado aplcables a las socedades fducaras, socedades admnstradoras de fondos de pensones y cesantía, las entdades admnstradoras del régmen soldaro

Más detalles

Rentas financieras. Unidad 5

Rentas financieras. Unidad 5 Undad 5 Rentas fnanceras 5.. Concepto de renta 5.2. Clasfcacón de las rentas 5.3. Valor captal o fnancero de una renta 5.4. Renta constante, nmedata, pospagable y temporal 5.4.. Valor actual 5.4.2. Valor

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemátcas Fnanceras Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Profundzar en los fundamentos del cálculo fnancero, necesaros

Más detalles

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias Crédtos Y Sstemas de Amortzacón: Dferencas, Smltudes e Implcancas Introduccón Cuando los ngresos de un agente económco superan su gasto de consumo, surge el concepto de ahorro, esto es, la parte del ngreso

Más detalles

OFICINA DE CAPACITACIÓN, PRODUCCIÓN DE TECNOLOGÍA Y COOPERACIÓN TÉCNICA BIENVENIDOS(AS) FUNDAMENTOS DE MATEMÁTICAS FINANCIERAS

OFICINA DE CAPACITACIÓN, PRODUCCIÓN DE TECNOLOGÍA Y COOPERACIÓN TÉCNICA BIENVENIDOS(AS) FUNDAMENTOS DE MATEMÁTICAS FINANCIERAS OFICIN DE CPCITCIÓN, PRODUCCIÓN DE TECNOLOGÍ Y COOPERCIÓN TÉCNIC CURSO FUNDMENTOS DE MTEMÁTICS FINNCIERS IH: 30 HORS DURCIÓN: 5 SEMNS MODLIDD: PRESENCIL INICIO Grupo 01: INICIO Grupo 02: martes 4 de novembre

Más detalles

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA.

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Programacón en Pascal 5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Exsten numerosas stuacones que pueden representarse medante relacones de recurrenca; entre ellas menconamos las secuencas y las

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

LECCIÓN Nº 11 y 12 ANUALIDADES VENCIDAS

LECCIÓN Nº 11 y 12 ANUALIDADES VENCIDAS UNIVERSIDAD JOSE CARLOS MARIATEGUI LECCIÓN Nº 11 y 12 ANUALIDADES VENCIDAS OBJETIVO: El objetvo de este captulo es reconocer, defnr y clasfcar los dferentes de tpos de anualdades y en espacal las anualdades

Más detalles

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera Tema - MATEMÁTICAS FINANCIERAS Materal realzado por J. Davd Moreno y María Gutérrez Unversdad Carlos III de Madrd Asgnatura: Economía Fnancera Apuntes realzados por J. Davd Moreno y María Gutérrez Advertenca

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO 12) CAPÍTULO II.- ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA 7.- MEDIDAS DE CONCENTRACIÓN. DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA 1.

Más detalles

I = 2.500 * 8 * 0.08 =$133,33 Respuesta 12 b. $60.000 durante 63 días al 9%. I =$60.000 t =63 días i =0,09

I = 2.500 * 8 * 0.08 =$133,33 Respuesta 12 b. $60.000 durante 63 días al 9%. I =$60.000 t =63 días i =0,09 Problemas resueltos de matemátcas fnancera Indce 1. Problemas de Interés Smple 2. Problemas de Descuento 3. Transformacón de Tasas 4. Problemas de Interés Compuesto 5. Problemas de Anualdades Vencdas 6.

Más detalles

Valoración de Instrumentos del Vector de Precios

Valoración de Instrumentos del Vector de Precios Valoracón de Instrumentos del Vector de Precos VERSIÓN DICIEMBRE VERSIÓN DICIEMBRE CONTENIDO INTRODUCCIÓN.... INSTRUMENTOS FINANCIEROS.... Títulos de Deuda de Emsores Públcos... A) Bonos de Establzacón

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIEAS TEMA: A N U A L I D A D E S CONTENIDO AUTO: Tulo A. Mateo Duval Santo Domngo, D. N. ep. Dom. MATEMÁTICAS FINANCIEAS A N U A L I D A D E S CONTENIDO: 1. Defncón 2. Elementos de una

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIEAS TEMA: A N U A L I D A D E S CONTENIDO AUTO: Tu l o A. Ma teo D u v a l Santo Domngo, D. N. ep. Dom. MATEMÁTICAS FINANCIEAS A N U A L I D A D E S CONTENIDO:. Defncón 2. Elementos

Más detalles

Programa de Asesor Financiero (PAF) Nivel I

Programa de Asesor Financiero (PAF) Nivel I Programa de Asesor Fnancero (PAF) Nvel I MÓDULO 1_Fundamentos de la Inversón SOLUCIÓN_CUESTIONARIOS DEL LIBRO Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO Capítulo 4: TIPOS DE INTERÉS Y RENTABILIDAD Capítulo

Más detalles

PROBLEMAS RESUELTOS DE MATEMÁTICA FINANCIERA 1. PROBLEMAS DE INTERÉS SIMPLE 2.

PROBLEMAS RESUELTOS DE MATEMÁTICA FINANCIERA 1. PROBLEMAS DE INTERÉS SIMPLE 2. Indce 1. Problemas de Interés Smple 2. Problemas de Descuento 3. Transformacón de Tasas 4. Problemas de Interés Compuesto 5. Problemas de Anualdades Vencdas 6. Problemas de Anualdades Antcpadas 7. Problemas

Más detalles

Ejercicios y problemas (páginas 131/133)

Ejercicios y problemas (páginas 131/133) 7 Calcula el opuesto y el conjugado de los sguentes números complejos, expresándolos en forma polar: a) z b) z (cos 00 sen 00 ) c) z Expresamos en prmer lugar los números complejos en forma Calcula las

Más detalles

TÍTULO I Aspectos Generales TÍTULO II Alcance TÍTULO III Metodología de Cálculo de FECF... 3

TÍTULO I Aspectos Generales TÍTULO II Alcance TÍTULO III Metodología de Cálculo de FECF... 3 PROCEDIMIENTO DO DESEMPEÑO DEL CONTROL DE FRECUENCIA EN EL SIC DIRECCIÓN DE OPERACIÓN ÍNDICE TÍTULO I Aspectos Generales... 3 TÍTULO II Alcance... 3 TÍTULO III Metodología de Cálculo de FECF... 3 TÍTULO

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF)

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF) ANEXO I EVALUACIÓN DE LA ENERGIA REGULANTE COMENSABLE (RRmj) OR ROORCIONAR RESERVA ROTANTE ARA EFECTUAR LA REGULACIÓN RIMARIA DE FRECUENCIA ( RF) REMISAS DE LA METODOLOGÍA Las pruebas dnámcas para la Regulacón

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

= 1. junio-2007 Matemáticas Financieras LADE (Móstoles)

= 1. junio-2007 Matemáticas Financieras LADE (Móstoles) juno-007 Matemátca Fnancera LADE (Mótole Problema En el mercado cotzan lo guente bono: Bono A: Bono Cupón Cero a año y TIR del 0% Bono B: Bono Cupón Cero a año y TIR del 9% Bono C: Bono Cupón Explícto

Más detalles

CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO. Como se explica en el capítulo 4, una anualidad es una serie de pagos que se realizan

CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO. Como se explica en el capítulo 4, una anualidad es una serie de pagos que se realizan CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO 7. Anualdad de Vda Como se elca en el caítulo 4, una anualdad es una sere de agos que se realzan durante un temo determnado, nombrándose a esta

Más detalles

DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO

DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO Clascacón: Emtdo para Observacones de los Coordnados Versón: 1.0 DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO Autor Dreccón de Operacón Fecha Creacón 06-04-2010 Últma Impresón 06-04-2010 Correlatvo

Más detalles

1.- Objetivo Alcance Metodología...3

1.- Objetivo Alcance Metodología...3 PROCEDIMIENTO DO PARA EL CÁLCULO DEL FACTOR DE DESEMPEÑO DEL CONTROL DE FRECUENCIA (FECF) EN EL SIC DIRECCIÓN DE OPERACIÓN ÍNDICE 1.- Objetvo...3 2.- Alcance...3 3.- Metodología...3 3.1.- Cálculo de la

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

EJERCICIOS REPASO I. Profesor: Juan Antonio González Díaz. Departamento Métodos Cuantitativos Universidad Pablo de Olavide

EJERCICIOS REPASO I. Profesor: Juan Antonio González Díaz. Departamento Métodos Cuantitativos Universidad Pablo de Olavide EJERCICIOS REPASO I Profesor: Juan Antono González Díaz Departamento Métodos Cuanttatvos Unversdad Pablo de Olavde 1 EJERCICIO 1: Un nversor se plantea realzar varas operacones de las que desea obtener

Más detalles

PRECIOS MEDIOS ANUALES DE LAS TIERRAS DE USO AGRARIO (METODOLOGÍA)

PRECIOS MEDIOS ANUALES DE LAS TIERRAS DE USO AGRARIO (METODOLOGÍA) SECREARÍA EERAL ÉCCA MSERO DE ARCULURA, ALMEACÓ Y MEDO AMBEE SUBDRECCÓ EERAL DE ESADÍSCA PRECOS MEDOS AUALES DE LAS ERRAS DE USO ARARO (MEODOLOÍA) OBJEVO: Desde 1983 el Mnstero de Agrcultura, Almentacón

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

MANUAL DE METODOLOGÍAS

MANUAL DE METODOLOGÍAS REV-0_2909204 II 2.3 de 5 II.2...3. BOOS DE PROTECCIÓ AL AHORRO Y BOOS DE DESARROLLO DEL GOBIERO FEDERAL A. CARACTERÍSTICAS GEERALES Tpo de Instrumento: Emsor: Tpo de Mercado: Mercado donde cotza: Fuentes

Más detalles

ESTADÍSTICA. Definiciones

ESTADÍSTICA. Definiciones ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

www.fisicaeingenieria.es

www.fisicaeingenieria.es 2.- PRIMER PRINCIPIO DE LA TERMODINÁMICA. 2.1.- Experencas de Joule. Las experencas de Joule, conssteron en colocar una determnada cantdad de agua en un calorímetro y realzar un trabajo, medante paletas

Más detalles

Valoración de Instrumentos del Vector de Precios

Valoración de Instrumentos del Vector de Precios Valoracón de Instrumentos del Vector de Precos VERSIÓN SEPTIEMBRE 9 VERSIÓN SEPTIEMBRE 9 CONTENIDO INTRODUCCIÓN.... INSTRUMENTOS FINANCIEROS.... Títulos de Deuda de Emsores Públcos... A) Bonos de Establzacón

Más detalles

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED Modelo en red para la smulacón de procesos de agua en suelos agrícolas. CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED IV.1 Modelo matemátco 2-D Exsten dos posbldades, no ndependentes, de acuerdo con

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

TEMA 5: SISTEMAS ARITMÉTICOS Y LÓGICOS.

TEMA 5: SISTEMAS ARITMÉTICOS Y LÓGICOS. TENOLOÍ DE OMUTDORES URSO 7/8 Inocente Sánchez udad TEM 5: SISTEMS RITMÉTIOS Y LÓIOS 5 Sumadores bnaros as todo se hace con sumas: sumas, restas, productos, oncepto de acarreo 5 Semsumador Half dder (H)

Más detalles

PRECIOS MEDIOS ANUALES DE LAS TIERRAS DE USO AGRARIO (METODOLOGÍA)

PRECIOS MEDIOS ANUALES DE LAS TIERRAS DE USO AGRARIO (METODOLOGÍA) SECREARÍA ENERAL ÉCNICA MINISERIO DE ARICULURA, ALIMENACIÓN Y MEDIO AMBIENE SUBDIRECCIÓN ENERAL DE ESADÍSICA PRECIOS MEDIOS ANUALES DE LAS IERRAS DE USO ARARIO (MEODOLOÍA) OBJEIVO: Desde 1983 el Mnstero

Más detalles

ESTADÍSTICA. x es el cociente entre la frecuencia absoluta del valor

ESTADÍSTICA. x es el cociente entre la frecuencia absoluta del valor el blog de mate de ada: ESTADÍSTICA pág. 1 ESTADÍSTICA La estadístca es la cenca que permte acer estudos de grandes poblacones escogendo sólo un pequeño grupo de ndvduos, lo que aorra tempo y dnero. Poblacón

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1.

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1. Objetvos y orentacones metodológcas SISTEMA DIÉDRICO I Interseccón de planos y de recta con plano TEMA 8 Como prmer problema del espaco que presenta la geometría descrptva, el alumno obtendrá la nterseccón

Más detalles

Ingeniería Económica y Análisis Financiero Finanzas y Negocios Internacionales Parcial 3 Diciembre 10 de Nombre Código.

Ingeniería Económica y Análisis Financiero Finanzas y Negocios Internacionales Parcial 3 Diciembre 10 de Nombre Código. Ingenería Económca y Análss Fnancero Fnanzas y Negocos Internaconales Parcal 3 Dcembre 0 de 20 Nombre Códgo Profesor: Escrba el nombre de sus compañeros Al frente Izquerda Atrás Derecha Se puede consultar

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

Elaboración de Tablas ó Cuadros. La elaboración de tablas o cuadros, facilita el análisis y la presentación de la información.

Elaboración de Tablas ó Cuadros. La elaboración de tablas o cuadros, facilita el análisis y la presentación de la información. Elaboracón de Tablas ó Cuadros La elaboracón de tablas o cuadros, faclta el análss la presentacón de la nformacón. Para elaborar los cuadros, se debe, antes que todo, dentfcar las varables, característcas

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Diseño de la Muestra. Introducción. Tipo de muestreo y estratificación

Diseño de la Muestra. Introducción. Tipo de muestreo y estratificación Dseño de la Muestra A Introduccón Sguendo las orentacones dadas por la Ofcna Estadístca de la Unón Europea (EUROSTAT) se a selecconado una muestra probablístca representatva de la poblacón de los ogares

Más detalles

UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE CIENCIAS ADMINISTRATIVAS MODALIDAD A DISTANCIA SEMESTRE OCTUBRE - FEBRERO 2017 UNIDAD DIDÁCTICA

UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE CIENCIAS ADMINISTRATIVAS MODALIDAD A DISTANCIA SEMESTRE OCTUBRE - FEBRERO 2017 UNIDAD DIDÁCTICA UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE CIENCIAS ADMINISTRATIVAS MODALIDAD A DISTANCIA SEMESTRE OCTUBRE - FEBRERO 2017 UNIDAD DIDÁCTICA MATEMÀTICA FINANCIERA II AUTOR: Ing. Flavo Parra T. Quto - Ecuador

Más detalles

TEMA 2: PROBLEMAS RESUELTOS DE CELOSÍAS

TEMA 2: PROBLEMAS RESUELTOS DE CELOSÍAS Problemas elosías TEM : PROBLEMS RESUELTOS DE ELOSÍS.. La fgura muestra una celosía formada por dversas barras de un msmo materal, un acero de módulo de elastcdad E= GPa. La seccón de las barras del cordón

Más detalles

El Modelo IS-LM. El modelo IS-LM

El Modelo IS-LM. El modelo IS-LM El Modelo IS-LM El modelo IS-LM 4. Introduccón 4.2 La demanda agregada: La funcón de nversón 4.3 Equlbro del mercado de benes: La curva IS 4.4 Equlbro del mercado de dnero: La curva LM 4.5 Equlbro de la

Más detalles

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística Facultad de Ingenería Dvsón de Cencas Báscas Coordnacón de Cencas Aplcadas Departamento de Probabldad y Estadístca Probabldad y Estadístca Prmer Eamen Fnal Tpo A Semestre: 00- Duracón máma:. h. Consderar

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

PRÁCTICA 11. AMPLIFICADOR OPERACIONAL I

PRÁCTICA 11. AMPLIFICADOR OPERACIONAL I PRÁCTICA 11. AMPLIFICADOR OPERACIONAL I 1. Objetvo El objetvo de esta práctca es el estudo del funconamento del amplfcador operaconal, en partcular de dos de sus montajes típcos que son como amplfcador

Más detalles

ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES UNIVERSIDAD DE SEVILLA

ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES UNIVERSIDAD DE SEVILLA ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES UNIVERSIDAD DE SEVILLA DEPARTAMENTO DE ECONOMÍA APLICADA I RENTAS (reumen de teoría y boletne de problema) MATEMATICAS DE LAS OPERACIONES FINANCIERAS 2004/2005

Más detalles

GANTT, PERT y CPM INDICE

GANTT, PERT y CPM INDICE GANTT, PERT y CPM INDICE 1 Antecedentes hstórcos...2 2 Conceptos báscos: actvdad y suceso...2 3 Prelacones entre actvdades...3 4 Cuadro de prelacones y matrz de encadenamento...3 5 Construccón del grafo...4

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS

METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS SIARGAF 4.0 FEBRERO 008 CONTENIDO..... Valor en Resgo aramétrco... A) Meddas de Sensbldad... B) Meddas Estadístcas... 6 C) Volatldad... 7 D) Valor

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles

Resuelve. Unidad 6. Números complejos. BACHILLERATO Matemáticas I. [x ( )][x (2 3 1)] = Cómo operar con 1? Página 147

Resuelve. Unidad 6. Números complejos. BACHILLERATO Matemáticas I. [x ( )][x (2 3 1)] = Cómo operar con 1? Página 147 Undad. Números complejos Matemátcas I Resuelve Págna 7 Cómo operar con? Vamos a proceder como los antguos algebrstas: cuando nos encontremos con seguremos adelante operando con ella con naturaldad y tenendo

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Estadística Descriptiva y Analisis de Datos con la Hoja de Cálculo Excel. Números Índices

Estadística Descriptiva y Analisis de Datos con la Hoja de Cálculo Excel. Números Índices Estadístca Descrptva y Analss de Datos con la Hoja de Cálculo Excel úmeros Índces úmeros Índces El número índce es un recurso estadístco para medr dferencas entre grupos de datos. Un número índce se puede

Más detalles

Reaseguro finite risk en ambiente financiero estocástico

Reaseguro finite risk en ambiente financiero estocástico easeguro fnte rsk en ambente fnancero estocástco easeguro fnte rsk en ambente fnancero estocástco Pons Cardell, M.A.; Sarrasí Vzcarra, F.J. mapons@ub.edu; sarras@ub.edu Departamento de Matemátca Económca,

Más detalles

OSCILACIONES 1.- INTRODUCCIÓN

OSCILACIONES 1.- INTRODUCCIÓN OSCILACIONES 1.- INTRODUCCIÓN Una parte relevante de la asgnatura trata del estudo de las perturbacones, entenddas como varacones de alguna magntud mportante de un sstema respecto de su valor de equlbro.

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS 1 MATEMÁTIAS FINANIERAS LEIÓN 4: Valoracón de rentas fnanceras. 1. Introduccón. Las rentas no son operacones fnanceras propaente dchas. No realzareos consderacones de tpo econóco o jurídco respecto a la

Más detalles

Robótica Tema 4. Modelo Cinemático Directo

Robótica Tema 4. Modelo Cinemático Directo UNIVERSIDAD POLITÉCNICA DE MADRID E.U.I.T. Industral ASIGNATURA: Robótca TEMA: Modelo Cnemátco Ttulacón: Grado en Ingenería Electrónca y Automátca Área: Ingenería de Sstemas y Automátca Departamento de

Más detalles

CIRCULAR Nº 1.294. Rentabilidad de la Cuota y de la Cuenta de Capitalización Individual y Costo Previsional. Deroga la Circular N 736.

CIRCULAR Nº 1.294. Rentabilidad de la Cuota y de la Cuenta de Capitalización Individual y Costo Previsional. Deroga la Circular N 736. CIRCULAR Nº 1.294 VISTOS: Las facultades que confere la ley a esta Superntendenca, se mparten las sguentes nstruccones de cumplmento oblgatoro para todas las Admnstradoras de Fondos de Pensones. REF.:

Más detalles

Valoración de opciones financieras por diferencias finitas

Valoración de opciones financieras por diferencias finitas Valoracón de opcones fnanceras por dferencas fntas José Mª Pesquero Fernández Dpto. Nuevos Productos - Tesorería BBVA mpesquero@grupobbva.com Indce INDICE. Introduccón. La ecuacón dferencal 3. Dferencas

Más detalles

En este caso, el valor actual de una unidad monetaria pagadera al final del año de fallecimiento de

En este caso, el valor actual de una unidad monetaria pagadera al final del año de fallecimiento de Parte III: Análss de la determnacón de las prmas en los seguros de vda y de la solvenca dnámca del asegurador cuando los tpos de nterés de valoracón venen estmados a través de números borrosos.4. SEGURO

Más detalles

MEDIDAS DESCRIPTIVAS

MEDIDAS DESCRIPTIVAS Tema 2: MEDIDAS DESCRIPTIVAS DE LOS DATOS 1. MEDIDAS DE CETRALIZACIÓ: Meda Medana Moda Cuantles Otras 2. MEDIDAS DE DISPERSIÓ: Desvacón típca Varanza Rango Otras 3. MEDIDAS DE FORMA: Asmetría Apuntamento

Más detalles

Grafos. Conceptos básicos

Grafos. Conceptos básicos Grafos Se presenta en este módulo, como lectura complementara a los capítulos de Grafos del texto de clase: una lsta de conceptos que deben ser defndos con precsón por los alumnos, los elementos necesaros

Más detalles

Algoritmo para la ubicación de un nodo por su representación binaria

Algoritmo para la ubicación de un nodo por su representación binaria Título: Ubcacón de un Nodo por su Representacón Bnara Autor: Lus R. Morera González En este artículo ntroducremos un algortmo de carácter netamente geométrco para ubcar en un árbol natural la representacón

Más detalles

Santiago, CIRCULAR N. Para todas las entidades aseguradoras y reaseguradoras del segundo grupo

Santiago, CIRCULAR N. Para todas las entidades aseguradoras y reaseguradoras del segundo grupo REF.: Modfca Crcular N 2062 que nsruye respeco al raameno de recálculo de pensón, en pólzas de seguros de rena valca del D.L. N 3.500, de 1980. Sanago, CIRCULAR N Para odas las endades aseguradoras y reaseguradoras

Más detalles