SEGUNDA LEY DE LA TERMODINAMICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SEGUNDA LEY DE LA TERMODINAMICA"

Transcripción

1 U n i v e r s i d a d C a t ó l i c a d e l N o r t e E s c u e l a d e I n g e n i e r í a Unidad 4 SEGUNDA EY DE A ERMODINAMICA Segunda ey a 2 ey de la ermodinámica nos permite establecer la direc ción de los procesos naturales. En combinación con la ey, perm ite predecir la dirección natural de cualquier proceso y con ello pronosticar el estado de equilibrio. Por ejemplo, el agua fluye desde el cerro hacia abajo, el calor fluye desde un cuerpo caliente a un cuerpo frío, el fluido fluye desde una región de alta presión a una región de baja presión, y lamentablemente todos envejecemos. Nuestras experiencias en la vida sugieren que los procesos tienen una dirección definida. Este hecho tiene tal importancia que su replanteamiento sirve como una expresión aceptable de la 2 ey.

2 Segunda ey a primera ley establece las relaciones entre trabajo, calor y diferencias de energía interna en los sistemas, pero no establece que procesos son efectivamente posibles. Así se puede pensar en muchos procesos que respetarían la primera ley, pero no son posibles en la naturaleza. Por ejemplo cuando un auto frena, la mayor parte de su energía cinética de traslación se transforma en energía interna, la cual calienta los frenos y el pavimento, cumpliéndose la conservación de energía (primera ley). Sin embargo, es impensable el proceso inverso, según el cual uno podría enfriar los frenos del automóvil y trasformar ese energía en energía cinética (o sea movimiento) del vehículo. A pesar que ellos no estaría en contra la primera ley, porque habría conservación de energía. a segunda ley establece cuales relaciones, de todas las que respetan la primera ley son realmente posibles Segunda ey De la misma manera que la formulación de la primera ley dio origen a la energía interna, el segundo principio permite la definición de una nueva función de estado denominada entropía (S). Están función de estado mide el desorden de un sistema físico o químico y por tanto es una representación de su proximidad al equilibrio térmico a entropía es una magnitud física de carácter extensivo, que mediante cálculo, permite determinar la parte de la energía que no puede utilizarse para producir trabajo. 2

3 Segunda ey a segunda ley puede establecerse de diversas formas. a siguiente ecuación es la representación matemática de esta: S 0 a igualdad se cumple para procesos reversibles, mientras que la desigualdad para procesos irreversibles os procesos reversibles son aquellos que en un momento dado pueden detenerse e invertir la secuencia de estados recorridos para hacer retornar al sistema y a los alrededores a su estado original. Por ejemplo, el proceso de compresión adiabática a través de un pistón ejercido sobre un gas que se encuentra dentro de un cilindro. Si la compresión se realiza lentamente, el proceso puede invertirse en cualquier momento y recuperar, en la expansión, todo el trabajo requerido en la compresión, un proceso con este comportamiento es reversible. Esta ultima ecuación establece que la entropía neta debe siempre aumentar en procesos cíclicos irreversibles. Segunda ey Si consideramos dos reservas de calor, una a temperatura y otra a (con < ) la variación de entropía de ambas reservas vendrá dada por: S S S total + : Calor transferido desde la reserva mas caliente a la mas fría 3

4 Enunciados de la segunda ey a segunda ley de la termodinámica puede establecerse en diferentes formas. En este curso se enfocara en el concept de maquinas térmicas, donde se presentaran dos enunciados mas comunes: ) Enunciado de Clausius (físico alemán, ) Es imposible construir un dispositivo el cual opere en un ciclo y cuyo único efecto sea la transferencia de calor desde un cuerpo mas frio a uno mas caliente. Este enunciado esta asociado a un refrigerador (o a una bomba de calor). Establece que es imposible construir un refrigerador que transfiera energía desde un cuerpo mas frio a uno mas caliente sin el ingreso de trabajo. Esta violación se mostrara en la figura siguiente) Dicho en otras palabras, a segunda ley elimina la posibilidad de que fluya en forma natural del cuerpo frio al cuerpo caliente y así determina la dirección de la transmisión de la energía Enunciados de la segunda ey Enunciado de Clausius: o bomba de calor 4

5 Enunciados de la segunda ey 2) Enunciado de Kelvin-Plank (físico alemán, ; fisico británico ) Es imposible construir una maquina cíclica que tenga una eficiencia térmica de 00%, es decir, es imposible construir un dispositivo que opere cíclicamente y cuyo único efecto sea la generación de trabajo y la transferencia de calor desde un único cuerpo. Es decir, es imposible construir una máquina de calor que extraiga energía desde un reservorio, genere trabajo y no transfiera calor a un reservorio de menor temperatura. Reservorio: sistema termodinámico que cede energía en forma de calor o trabajo, o que proporciona partículas. Enunciados de la segunda ey Enunciado de Kelvin-Plank: Máquina de calor En este curso nos referiremos a dispositivos que operan cíclicamente, como son: Máquinas de calor, bomba de calor y refrigerador 5

6 Máquinas y Bombas de Calor, ) Maquina de calor: su objetivo es efectuar trabajo. Este sistema termodinámico recibe calor desde un recipiente o baño cliente,, cede calor a un baño frio,, y genera trabajo W. odo ello ocurre en un proceso cíclico, por ejemplo en un central eléctrica ingresa a la caldera, sale del condensador y el trabajo es el que ingresa por la bomba y sale por la turbina En un motor real, el foco caliente está representado por la caldera de vapor que suministra el calor, el sistema cilindroémbolo produce el trabajo, y se cede calor al foco frío que es la atmósfera. Máquinas y Bombas de Calor, 2) Bomba de calor: su objetivo es suministrar calor aun cuerpo. Esta maquina térmica permite transferir energía en forma de calor en un ambiente a otro, según se requiera. Para lograr esta acción es necesario un aporte de trabajo acorde a la segunda ley de la termodinámica, según la cual el calor se dirige de manera espontanea de un foco cliente a otro frio, y no al revés, hasta que sus temperaturas se igualan. 6

7 Máquinas y Bombas de Calor, 3) : su objetivo es extraer energía de un cuerpo a operación de refrigeradores y acondicionadores de aire son inversas a la de una maquina térmica, se realiza trabajo para extraer calor de una región fría y expulsarla hacia una región con temperatura mas alta. Máquinas y Bombas de Calor, El rendimiento o eficiencia de una maquina se define entre el cuociente de lo que se desea obtener, en este caso trabajo y lo que se gasta, que en este caso es. a cual viene dada por la siguiente expresión: Wneto η Si los procesos son reversibles: S S Siendo posible expresar la ultima ecuación en términos de las temperaturas: Aplicando la primera ley de la termodinámica, -W U, como el proceso es cíclico U0, por lo tanto W; -, de este modo: η W El valor de la eficienciaηes menor que, no puede ser igual a ya que eso implicaría que 0 y por lo tanto todo el calor se ha convertido en trabajo, lo cual hemos visto que es imposible de ocurrir. 7

8 Máquinas y Bombas de Calor, Respecto a los refrigeradores y bombas de calor, como hemos visto son maquinas térmicas que funcionan en dirección opuesta, esto es gastan trabajo, se extrae energía desde un baño frio, y se cede calor,, por tanto >. Según se utilice para enfriar el baño frio o calentar el caliente, se llama refrigerador o bomba de calor respectivamente. os acondicionadores de aire funcionan de ambas formas, mediante un sistema de control, de modo que en invierno enfrían la calle para calentar la casa y en el verano al revés. Si se extrae energía desde un cuerpo, el objetivo será generar la máxima transferencia de calor con el mínimo trabajo de entrada. Para medir esto se define el coeficiente de desempeño de operación o de rendimiento COP. Máquinas y Bombas de Calor, Si la maquina se utiliza para refrigerar un ambiente, el efecto útil es el calor extraído del foco frio, obteniéndose la expresión para el refrigerador: El cuociente define la energía deseada/coste COP energético. W neto es el trabajo necesario para Wneto remover el calor del área con la temperatura baja. El COP puede ser mayor que Ahora si la bomba de calor se esta utilizando para calentar una zona, el efecto útil es el calor introducido y en este caso se obtiene: COP W neto El cuociente define la energía deseada/coste energético. El cual siempre es mayor que a siguiente igualdad puede aplicarse a cualquier maquina reversible o refrigerador: 8

9 Máquinas y Bombas de Calor, Por lo tanto, podemos expresar las ecuaciones anteriores en términos de las temperaturas η W neto neto COP W COP W neto neto W + W neto / / Maquina de calor Bomba de calor Una maquina de calor tiene un COP entre 2 y 6, dependiendo de la diferencia entren las temperaturas de ambos focos. Máquinas y Bombas de Calor, Par una maquina térmica cíclica: S S S total + 9

10 Reversibilidad Cuando se estudio la primera ey, se utilizo el concepto de equilibrio (o cuasiequilibrio) con referencia únicamente al sistema. Ahora se introducirá el concepto de reversibilidad, el cual permitirá tratar la maquina de mayor eficiencia que pueda construirse, una maquina que opere con procesos únicamente reversibles. al maquina se llama maquina reversible. Un proceso reversible se define un proceso el cual habiendo tomado lugar, puede ser revertido, sin variar la salida, tanto en el sistema como en los alrededores El proceso esta en cuasiequilibrio los requerimientos son: No hay fricción a transferencia de calor ocurre debido a un cambio infinitesimal de temperatura Maquina y Ciclo de Carnot a máquina de calor de mayor eficiencia que opera entre un recipiente de alta y otro de baja temperatura, es la maquina de Carnot. Es una maquina térmica ideal que utiliza procesos reversibles para lograr el ciclo, también se conoce como máquina reversible. a máquina de Carnot debe su importancia a que es considerada la máquina de mayor eficiencia posible frente a cualquier máquina real bajo las mismas condiciones de temperatura. Además por ser reversible puede recorrer en el otro sentido, comportándose como un refrigerador o bomba de calor. El ciclo de Carnot consta de 4 etapas: dos procesos isotérmicos y 2 procesos adiabáticos (aislados térmicamente). Considerando un gas ideal como la sustancia de trabajo tenemos los siguientes procesos: 0

11 Maquina y Ciclo de Carnot -2: Expansión isotérmica: el calor es transferido reversiblemente desde un recipiente de alta temperatura a temperatura constante,. El pistón en el cilindro provoca un incremento en el volumen. 2-3: Expansión adiabática reversible: el cilindro es completamente aislado de modo que no hay transferencia de calor en este proceso reversible. El pistón provoca otro aumento en el volumen. 3-4: Compresión isotérmica: El calor es transferido reversiblemente al recipiente de baja temperatura a temperatura constante,. El pistón comprime la sustancia de trabajo,. Provocando una disminución del volumen. 4-: Compresión adiabática reversible: el cilindro esta completamente aislado y por lo tanto no hay transferencia de calor durante este proceso reversible. El pistón continua comprimiendo la sustancia de trabajo hasta su volumen original, temperatura y presión iniciales, completando el ciclo. Maquina y Ciclo de Carnot

12 Maquina y Ciclo de Carnot Maquina y Ciclo de Carnot 2

13 Maquina y Ciclo de Carnot Aplicando la primera ley de la termodinámica, al clico de Carnot, se obtiene: W neto a eficiencia térmica del ciclo de Carnot se define como: η Donde se asumirá como un valor positivo para la transferencia de calor al recipiente de baja temperatura PRINCIPIO DE CARNO El principio de Carnot es una consecuencia de la segunda ley de la termodinámica y establece que:. El rendimiento de una maquina térmica que siga un proceso irreversible que opere entre dos zonas de temperatura distinta es menor que el rendimiento de cualquier maquina termica que siga un proceso reversible que opere entre las mismas zonas de temperatura. 2. odas las máquinas térmicas que sigan un proceso reversible poseen la misma eficiencia (rendimiento) si operan entre las mismas regiones de temperatura. Nicolás Carnot, ingeniero y oficial en el ejercito francés ) 3

14 Eficiencia de maquina de Carnot a eficiencia de la maquina de Carnot depende solo de las dos temperaturas de los reservorios. El fluido de trabajo es un gas ideal, a continuación se obtiene las ecuaciones para cada proceso involucrado en el ciclo. Proceso - 2: como es gas ideal e isotérmico U0 Y W V2 W pdv mr 2 ln V V V 2 Proceso 2-3:como es adiabático 23 0 u w 2 u 23 c ( 23 v ) Eficiencia de maquina de Carnot Proceso 3-4: como es gas ideal e isotérmico U0 Y W V 4 V4 W 34 pdv mr ln V V 3 3 Proceso 4 - :como es adiabático 4 0 w u 4 u 4 c ( 4 v ) 4

15 Eficiencia de maquina de Carnot η + ln( V ln( V 4 2 / V3) / V ) Eficiencia térmica Durante los procesos adiabáticos reversibles 2-3 y 4 V V 2 3 k V V Igualando estas dos ultimas expresiones y sustituyéndolas en la eficiencia térmica, se obtiene: η Esta ultima expresión es aplicable a toda maquina o refrigerador reversible. a eficiencia de una maquina de Carnot depende únicamente de la temperatura de los dos recipientes. El que se haya ocupado un gas ideal para efectuar los cálculos, no es importante, ya que la eficiencia es independiente de la sustancia de trabajo. 4 k Eficiencia de maquina de Carnot emos visto que un maquina de Carnot opera entre dos reservas de calor. Cualquier maquina reversible que trabaje entre dos reservas de calor es una maquina de Carnot, dada su característica de reversible es que es posible trabajar en sentido inverso, el ciclo de Carnot se recorre en dirección opuesta, convirtiéndose en una maquina frigorífica y dando lugar a un ciclo de refrigeración (o bomba de calor), donde los valores,, y W son los mismos pero en dirección opuesta. En esta maquina se extrae calor del foco frio y se suministra al foco caliente a costa de realizar un trabajo contra el sistema. odas las maquinas térmicas reversibles que operan entre as mismas fuentes de temperatura tiene el mismo rendimiento. En el caso de dos maquinas térmicas, una que actué en un ciclo reversible y otra en ciclo irreversible, se cumplirá que: η rev > η irrev 5

16 Eficiencia de maquina de Carnot a maquina de calor, cuando es operada en reversa, dará a lugar a un refrigerador o bomba de calor, dependiendo de la transferencia de calor deseada. a bomba de calor es una maquina térmica invertida, utilizada para calentar casas y edificios comerciales en invierno y enfriar en verano. En invierno absorbe calor del ambiente y lo expulsa hacia el edificio, en veranos el proceso es al revés, absorbe calor del edificio y lo expulsa hacia los alrededores Eficiencia de maquina de Carnot El COP para una bomba de calor será: COP / COPRe frigerador + Wneto Y para un refrigerador: COP COPbomba de calor W / neto 6

17 Ejemplo a temperatura del foco frio de una maquina térmica reversible con una eficiencia del 22% es 0 C. Por cada ciclo la maquina cede 90 kcal al foco frio. Determine: a) El calor cedido por el foco caliente en kcal b) a variación de entropía del foco caliente por cada ciclo de funcionamiento c) a variación de entropía del universo 7

Capítulo 5: La segunda ley de la termodinámica.

Capítulo 5: La segunda ley de la termodinámica. Capítulo 5: La segunda ley de la termodinámica. 5.1 Introducción Por qué es necesario un segundo principio de la termodinámica? Hay muchos procesos en la naturaleza que aunque son compatibles con la conservación

Más detalles

SEGUNDA LEY DE LA TERMODINÁMICA

SEGUNDA LEY DE LA TERMODINÁMICA Tema 2 SEGUNDA EY DE A TERMODINÁMICA ING. JOANNA KRIJNEN CONTENIDO 1. Introducción a la segunda ley de la termodinámica. 2. Máquinas térmicas (MT) Concepto Descripción del ciclo termodinámico. Eficiencia

Más detalles

UNEFA Ext. La Isabelica TERMODINÁMICA I. Ing. Petroquímica Unidad 4: Segunda ley de la termodinámica

UNEFA Ext. La Isabelica TERMODINÁMICA I. Ing. Petroquímica Unidad 4: Segunda ley de la termodinámica UNEFA Ext. La Isabelica TERMODINÁMICA I Ing. Petroquímica Unidad 4: Segunda ley de la termodinámica 4to Semestre Objetivo: Interpretar la segunda ley de la termodinámica. Materia: Termodinámica I Docente:

Más detalles

F. Tipos de transformaciones. Ciclos termodinámicos. Rendimientos de una máquina térmica

F. Tipos de transformaciones. Ciclos termodinámicos. Rendimientos de una máquina térmica F. Tipos de transformaciones. Ciclos termodinámicos. Rendimientos de una máquina térmica El trabajo no depende solamente del estado energético inicial y final del sistema, sino también depende del camino

Más detalles

Termodinámica: Segunda Ley

Termodinámica: Segunda Ley Termodinámica: Segunda Ley Presenta: M. I. Ruiz Gasca Marco Antonio Instituto Tecnológico de Tláhuac II Octubre, 2015 Marco Antonio (ITT II) México D.F., Tláhuac Octubre, 2015 1 / 20 1 Introducción y objetivo

Más detalles

VI. Segunda ley de la termodinámica

VI. Segunda ley de la termodinámica Objetivos: 1. Introducir la segunda ley de la. 2. Identificar los procesos validos como aquellos que satisfacen tanto la primera ley como la segunda ley de la. 3. Discutir fuentes y sumideros de energía

Más detalles

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la parte de la física que se ocupa de las relaciones existentes entre el calor y el trabajo. El calor es una

Más detalles

F. Aclarando conceptos sobre termodinámica

F. Aclarando conceptos sobre termodinámica F. Aclarando conceptos sobre termodinámica Termodinámica La termodinámica es la parte de la física que analiza los fenómenos en los que interviene el calor, estudiando transformaciones de energía y las

Más detalles

Motores térmicos o maquinas de calor

Motores térmicos o maquinas de calor Cómo funciona una maquina térmica? Motores térmicos o maquinas de calor conversión energía mecánica a eléctrica En nuestra sociedad tecnológica la energía muscular para desarrollar un trabajo mecánico

Más detalles

Capítulo 5: la segunda ley de la termodinámica. La segunda ley de la termodinámica establece que los procesos ocurren en una cierta

Capítulo 5: la segunda ley de la termodinámica. La segunda ley de la termodinámica establece que los procesos ocurren en una cierta Capítulo 5: la segunda ley de la termodinámica a segunda ley de la termodinámica establece que los procesos ocurren en una cierta dirección, no en cualquiera. os procesos de naturaleza física pueden dirigirse

Más detalles

III Tema Segunda ley de la termodinámica

III Tema Segunda ley de la termodinámica UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA PESQUERA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA III Tema Segunda ley de

Más detalles

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21*

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21* Nota: Los ejercicios 7.14, 7.20, 7.21. 7.26, 7.59, 7.62, 7.67, 7.109 y 7.115 tienen agregados y/o sufrieron modificaciones respecto al Van Wylen. 7.2* Considere una máquina térmica con ciclo de Carnot

Más detalles

F. Aclarando conceptos sobre termodinámica

F. Aclarando conceptos sobre termodinámica IES Antonio Glez Glez Principios de máquinas Página 1 F. Aclarando conceptos sobre termodinámica Termodinámica La termodinámica es la parte de la física que analiza los fenómenos en los que interviene

Más detalles

2011 II TERMODINAMICA - I

2011 II TERMODINAMICA - I TERMODINAMICA I 2011 II UNIDAD Nº 2 SESION Nº 2 LA SEGUNDA LEY DE LA TERMODINAMICA 1.- GENERALIDADES.- La primera ley de la termodinámica establece que el calor es una forma de energía que puede transformarse

Más detalles

SEGUNDA LEY DE LA TERMODINÁMICA

SEGUNDA LEY DE LA TERMODINÁMICA EGUND LEY DE L TERMODINÁMIC EXPERIENCI: Q Dos consecuencias empíricas y el sentido de evolución de los procesos: iempre se observa transferencia de energía térmica desde un sistema de mayor temperatura

Más detalles

Módulo 2: Termodinámica Segundo principio de la Termodinámica

Módulo 2: Termodinámica Segundo principio de la Termodinámica Módulo 2: Termodinámica Segundo principio de la Termodinámica 1 Transferencias de energía Sabemos por el primer principio de la Termodinámica que la energía de un sistema se conserva. Sólo que en diferentes

Más detalles

Elaboró: Efrén Giraldo MSc.

Elaboró: Efrén Giraldo MSc. TERMODINÁMICA ENTROPÍA II. Elaboró: Efrén Giraldo MSc. evisó: Carlos A. Acevedo Ph.D Presentación hecha exclusívamente con el fin de facilitar el estudio Medellín 2016 Contenido: Entropía en procesos Reversibles

Más detalles

Procesos reversibles e irrevesibles

Procesos reversibles e irrevesibles Procesos reversibles e irrevesibles Procesos reversibles e irrevesibles tiempo Máquinas térmicas y la segunda ley de la termodinámica La segunda ley de la termodinámica establece cuáles procesos pueden

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE CIENCIAS. NOMBRE DE LA UNIDAD DE APRENDIZAJE: FÍSICA TÉRMICA

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE CIENCIAS. NOMBRE DE LA UNIDAD DE APRENDIZAJE: FÍSICA TÉRMICA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE CIENCIAS. NOMBRE DE LA UNIDAD DE APRENDIZAJE: FÍSICA TÉRMICA UNIDAD DE COMPETENCIA V: MÁQUINAS TÉRMICAS, ENTROPÍA Y SEGUNDA LEY DE LA TERMODINÁMICA.

Más detalles

TEMA 3: CIRCUITO FRIGORÍFICO. BOMBA DE CALOR

TEMA 3: CIRCUITO FRIGORÍFICO. BOMBA DE CALOR TEMA 3: CIRCUITO FRIGORÍFICO. BOMBA DE CALOR 1. Introducción a. Ecuación de los gases perfectos b. Principios de la termodinámica y ley de Joule de los gases ideales 2. Principio de funcionamiento de los

Más detalles

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen.

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. 8.1* El compresor en un refrigerador recibe refrigerante R-134a a 100 kpa y 20 ºC, y lo comprime a 1 MPa y 40 ºC. Si el cuarto

Más detalles

Ciclo de refrigeración por la compresión de un vapor. M del Carmen Maldonado Susano

Ciclo de refrigeración por la compresión de un vapor. M del Carmen Maldonado Susano Ciclo de refrigeración por la compresión de un vapor 1 Depósito térmico Es un sistema incapaz de recibir o efectuar trabajo, mantiene su temperatura constante y cuenta solamente con la transmisión de calor

Más detalles

TERMODINÁMICA CICLOS III. CICLO DE CARNOT

TERMODINÁMICA CICLOS III. CICLO DE CARNOT TERMODINÁMICA CICLOS III. CICLO DE CARNOT GIRALDO TORO REVISÓ PhD. CARLOS A. ACEVEDO PRESENTACIÓN HECHA EXCLUIVAMENTE CON EL FIN DE FACILITAR EL ESTUDIO. MEDELLÍN 2016 CICLOS DE CARNOT. GIRALDO T. 2 Ciclo

Más detalles

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( )

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) a = aceleración (m/s 2 ) Peso P= peso (newton) ( ) g = gravedad (9.087 m/s 2 ) Trabajo ( ) 1 Joule = 1( N * m) W = trabajo (newton

Más detalles

Tema 4. Máquinas Térmicas III

Tema 4. Máquinas Térmicas III Asignatura: Tema 4. Máquinas Térmicas III 1. Máquinas Frigoríficas 2. Ciclo de refrigeración por compresión de vapor 3. Ciclo de refrigeración por absorción 4. Ciclo de refrigeración por compresión de

Más detalles

SEGUNDA LEY DE LA TERMODINÁMICA. CONCEPTO DE ENTROPÍA

SEGUNDA LEY DE LA TERMODINÁMICA. CONCEPTO DE ENTROPÍA SEGUNDA LEY DE LA TERMODINÁMICA. CONCEPTO DE ENTROPÍA ""El motor cero en lugar de trabajo nos entregará entropía, aproximando, si confiamos en Clausius, el fin del mundo" V.M.Brodianski, sobre el motor

Más detalles

MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA.

MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA. 1 MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA. Una máquina térmica es un dispositivo que trabaja de forma cíclica o de forma continua para producir trabajo mientras se le da y cede calor,

Más detalles

Segundo Principio de la Termodinámica

Segundo Principio de la Termodinámica Segundo Principio de la ermodinámica 1. Insuficiencia del Primer Principio. 2. Máquinas érmicas. Rendimiento de una máquina térmica 3. Enunciados clásicos del Segundo Principio de la ermodinámica. 4. Máquina

Más detalles

2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D.

2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D. 2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D. Dirección de los procesos Termodinámicos Todos los procesos termodinámicos que se dan en la naturaleza son procesos irreversibles, es decir los que

Más detalles

Física Térmica - Práctico 5

Física Térmica - Práctico 5 - Práctico 5 Instituto de Física, Facultad de Ingeniería, Universidad de la República La numeración entre paréntesis de cada problema, corresponde a la numeración del libro Fundamentos de Termodinámica

Más detalles

5_2ª LEY DE LA TERMODINÁMICA

5_2ª LEY DE LA TERMODINÁMICA 5_2ª EY DE A ERMODINÁMICA 5. DIRECCIÓN DE OS PROCESOS 5.2 FOCOS, DEPÓSIOS O BAÑOS 5.3 MÁUINAS ÉRMICAS 5.4 REFRIGERADORES Y BOMBAS DE CAOR 5.5 PROCESOS REVERSIBES Y PROCESOS IRREVERSIBES 5.6 CICO DE CARNO

Más detalles

CICLOS TERMODINÁMICOSY LA SEGUNDA LEY DE LA TERMODINÁMICA. Se denomina ciclo termodinámico al proceso que tiene lugar en:

CICLOS TERMODINÁMICOSY LA SEGUNDA LEY DE LA TERMODINÁMICA. Se denomina ciclo termodinámico al proceso que tiene lugar en: CICLOS TERMODINÁMICOSY LA SEGUNDA LEY DE LA TERMODINÁMICA INTRODUCCION La conversión de energía es un proceso que tiene lugar en la biosfera. Sin embargo, los seres humanos a lo largo de la historia hemos

Más detalles

Ciclo de refrigeración por la compresión de un vapor. M del Carmen Maldonado Susano

Ciclo de refrigeración por la compresión de un vapor. M del Carmen Maldonado Susano Ciclo de refrigeración por la compresión de un vapor 1 Depósito térmico Es un sistema incapaz de recibir o efectuar trabajo. Mantiene su temperatura constante y cuenta solamente con la transmisión de calor

Más detalles

CONTENIDO SEGUNDO PRINCIPIO. Introducción. Máquinas térmicas. Rendimiento. Segundo principio. Enunciado de kelvin-planck

CONTENIDO SEGUNDO PRINCIPIO. Introducción. Máquinas térmicas. Rendimiento. Segundo principio. Enunciado de kelvin-planck FÍSIA I ONTENIDO SEGUNDO PRINIPIO Introducción Máquinas térmicas. Rendimiento Segundo principio. Enunciado de kelvin-planck Refrigeradores y bombas de calor Segundo principio. Enunciado de lausius iclo

Más detalles

TERMODINÁMICA FUNDAMENTAL. TEMA 5. Segundo principio de la termodinámica. Máquinas térmicas

TERMODINÁMICA FUNDAMENTAL. TEMA 5. Segundo principio de la termodinámica. Máquinas térmicas ERMODINÁMIA UNDAMENAL EMA 5. Segundo principio de la termodinámica. Máquinas térmicas. Máquinas térmicas.. iclo de arnot. Rendimiento El ciclo de arnot es un ciclo reversible formado por dos procesos isotermos

Más detalles

Q = ΔU + W. El calor que entra al sistema se considera positivo, el que sale del sistema, negativo

Q = ΔU + W. El calor que entra al sistema se considera positivo, el que sale del sistema, negativo 1 TERMODINÁMICA. CONCEPTOS BÁSICOS.MÁQUINAS TÉRMICAS La termodinámica aplicada al estudio de las máquinas térmicas, se encarga de estudiar el intercambio de energía (calor y trabajo) entre un sistema y

Más detalles

TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6.

TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6. TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6. CICLO DE CARNOT 7. DIAGRAMAS ENTRÓPICOS 8. ENTROPIA Y DEGRADACIÓN ENERGÉTICA INTRODUCCIÓN

Más detalles

Universidad Tecnológica Nacional Facultad Regional Buenos Aires

Universidad Tecnológica Nacional Facultad Regional Buenos Aires Universidad Tecnológica Nacional Facultad Regional Buenos Aires TERMODINÁMICA Y MÁQUINAS TÉRMICAS PROFESOR: Ing. Ricardo Alonso. TEORÍA UNIDAD Nº 5: SEGUNDO PRINCIPIO DE A TERMODINÁMICA Introducción: TERMODINÁMICA

Más detalles

Tema 3. Máquinas Térmicas II

Tema 3. Máquinas Térmicas II Asignatura: Tema 3. Máquinas Térmicas II 1. Motores Rotativos 2. Motores de Potencia (Turbina) de Gas: Ciclo Brayton 3. Motores de Potencia (Turbina) de Vapor: Ciclo Rankine Grado de Ingeniería de la Organización

Más detalles

TERMODINAMICA AVANZADA PROGRAMA: MAESTRÍA EN GESTIÓN ENERGÉTICA INDUSTRIAL

TERMODINAMICA AVANZADA PROGRAMA: MAESTRÍA EN GESTIÓN ENERGÉTICA INDUSTRIAL TERMODINAMICA AVANZADA PROGRAMA: MAESTRÍA EN GESTIÓN ENERGÉTICA INDUSTRIAL Docente: Elizabeth Rodríguez Acevedo, MSc. IQ elizabethrodriguez@itm.edu.co CONCEPTOS BÁSICOS DE TERMODINÁMICA CONTENIDO Introducción

Más detalles

Física 2 (Biólogos y Geólogos) SERIE 8

Física 2 (Biólogos y Geólogos) SERIE 8 Física 2 (Biólogos y Geólogos) SERIE 8 i) Máquinas térmicas 1. Un mol de gas ideal (C v = 3 / 2 R) realiza el siguiente ciclo: AB) Se expande contra una presión exterior constante, en contacto térmico

Más detalles

0. Inicio. III. Máquinas Térmicas. (use los comandos de su visor pdf para navegar las fichas) fing

0. Inicio. III. Máquinas Térmicas. (use los comandos de su visor pdf para navegar las fichas) fing FICHAS GUÍA: Máquinas Térmicas p. 1/3 0. Inicio nts III. Máquinas Térmicas (use los comandos de su visor pdf para navegar las fichas) FICHAS GUÍA: Máquinas Térmicas p. 2/3 1. segunda ley: necesidad Porqué

Más detalles

Sílabo de Termodinámica

Sílabo de Termodinámica Sílabo de Termodinámica I. Datos generales Código ASUC 00887 Carácter Obligatorio Créditos 4 Periodo académico 2017 Prerrequisito Ninguno Horas Teóricas 2 Prácticas 4 II. Sumilla de la asignatura La asignatura

Más detalles

Capítulo 10: ciclos de refrigeración. El ciclo de refrigeración por compresión es un método común de transferencia de calor de una

Capítulo 10: ciclos de refrigeración. El ciclo de refrigeración por compresión es un método común de transferencia de calor de una Capítulo 0: ciclos de refrigeración El ciclo de refrigeración por compresión es un método común de transferencia de calor de una temperatura baja a una alta. ENTRA IMAGEN capítulo 0-.- CAOR ambiente 2.-

Más detalles

Ayudas visuales para el instructor. Contenido

Ayudas visuales para el instructor. Contenido Page 1 of 7 UN PANORAMA DE LA TERMODINÁMICA ENERGÍA, TRABAJO Y CALOR Por F. A. Kulacki Profesor de ingeniería mecánica Laboratorio de Termodinámica y Transferencia de Calor Departamento de Ingeniería Mecánica

Más detalles

El funcionamiento de este tipo de máquinas es inverso al de los motores.

El funcionamiento de este tipo de máquinas es inverso al de los motores. 3. Máquinas frigoríficas. Bomba de calor El funcionamiento de este tipo de máquinas es inverso al de los motores. Una máquina frigorífica es todo dispositivo capaz de descender la temperatura de un determinado

Más detalles

W(-) W12 = Trabajo realizado por el gas desde el estado 1 al estado 2. U12 = Variación de la energía interna desde el estado 1 al estado 2.

W(-) W12 = Trabajo realizado por el gas desde el estado 1 al estado 2. U12 = Variación de la energía interna desde el estado 1 al estado 2. PRIMERA LEY DE LA TERMODINAMICA En un proceso determinado el calor entregado al sistema es igual al trabajo que realiza el gas más la variación de la energía interna Q12 = W12 + U12 Q12 = Calor entregado

Más detalles

SERIE 8: Segunda Ley de la Termodinámica

SERIE 8: Segunda Ley de la Termodinámica SERIE 8: Segunda Ley de la Termodinámica I. Ciclos y máquinas térmicas 1. Un mol de gas ideal (C v = 3 / 2 R) realiza el siguiente ciclo: AB) Se expande contra una presión exterior constante, en contacto

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

Principios de máquinas: máquinas frigoríficas

Principios de máquinas: máquinas frigoríficas Página 1 de 5 I. INTRODUCCIÓN Principios de máquinas: máquinas frigoríficas El calor es una manifestación de la energía. Cualquier forma de energía puede transformarse en calor integramente, sin embargo

Más detalles

Segunda Ley de la Termodinámica

Segunda Ley de la Termodinámica Segunda Ley de la Termodinámica Gonzalo Abal -- abril 2004 versión corregida abril 2005: Agradezco a Leonardo Rosés la revisión de éste material -- G.A. 1.Formulación Histórica a) Necesidad de la Segunda

Más detalles

Capítulo 4 Ciclos Termodinámicos. M del Carmen Maldonado Susano

Capítulo 4 Ciclos Termodinámicos. M del Carmen Maldonado Susano Capítulo 4 Ciclos Termodinámicos Objetivo El alumno conocerá los ciclos termodinámicos fundamentales empleados en la transformación de la energía. Contenido Ciclos de generación de potencia mecánica. Ciclos

Más detalles

Energía del movimiento. Energía Eléctrica

Energía del movimiento. Energía Eléctrica Energía Química http://ejemplosde.info/ejemplos-de-energia-quimica/ Energía Luminosa Energía del movimiento http://www.taringa.net/posts/imagenes/8744791/sabias-esto.html Energía Eléctrica gerencia.over-blog.com

Más detalles

Máquinas térmicas y Entropía

Máquinas térmicas y Entropía Física 2 (Biólogos y Geólogos) SERIE 10 Máquinas térmicas y Entropía 1. Un mol de gas ideal (C v = 3 / 2 R) realiza el siguiente ciclo: AB) Se expande contra una presión exterior constante, en contacto

Más detalles

Código: Titulación: INGENIERO TÉCNICO INDUSTRIAL Curso: 2º. Descriptores de la asignatura según el Plan de Estudios:

Código: Titulación: INGENIERO TÉCNICO INDUSTRIAL Curso: 2º. Descriptores de la asignatura según el Plan de Estudios: ASIGNATURA: TERMOTECNIA Código: 128212010 Titulación: INGENIERO TÉCNICO INDUSTRIAL Curso: 2º Profesor(es) responsable(s): - JOAQUÍN ZUECO JORDÁN (TEORÍA Y PRÁCTICAS) - FERNANDO ILLÁN GÓMEZ (TEORÍA) - JOSÉ

Más detalles

Palabras Claves. Introducción. -Motor térmico -Proceso reversible -Proceso irreversible -Eficiencia -Máquina de Carnot -Entropía

Palabras Claves. Introducción. -Motor térmico -Proceso reversible -Proceso irreversible -Eficiencia -Máquina de Carnot -Entropía Palabras Claves -Motor térmico -Proceso reversible -Proceso irreversible -Eficiencia -Máquina de Carnot -Entropía Introducción La primera ley de la termodinámica es una declaración de la conservación de

Más detalles

1 V (m 3 ) EXAMEN TERMODINÁMICA / FÍSICA FORESTALES /

1 V (m 3 ) EXAMEN TERMODINÁMICA / FÍSICA FORESTALES / EXAMEN TERMODINÁMICA / FÍSICA FORESTALES / 26-02-2013 TEORÍA (3 p) La gráfica adjunta es la representación en coordenadas presión-volumen de un ciclo frigorífico de Carnot 1 2 3 4, siendo reversibles todas

Más detalles

(f) Si la velocidad de transferencia de calor con ambos focos es [ ] [ ]

(f) Si la velocidad de transferencia de calor con ambos focos es [ ] [ ] ESCUELA SUPERIOR DE INGENIEROS INDUSRIALES Universidad de Navarra Examen de ERMODINÁMICA I Curso 996-97 roncal - 4,5 créditos 7 de enero de 997 PROBLEMAS RESUELOS Problema (obligatorio; puntos) Para el

Más detalles

Capítulo 4 Segunda ley de la Termodinámica y Entropia

Capítulo 4 Segunda ley de la Termodinámica y Entropia Capítulo 4 Segunda ley de la Termodinámica y Entropia Índice 4.1. Segunda ley de la termodinámica.............................. 78 4.1.1. Conceptos fundamentales............................... 79 4.1.2.

Más detalles

CÁLCULOS Y PROCESOS TERMODINÁMICOS.

CÁLCULOS Y PROCESOS TERMODINÁMICOS. UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO PUNTO FIJO PROGRAMA DE INGENIERÍA INDUSTRIAL CÁTEDRA: CONVERSION DE ENERGIA TEMA: CÁLCULOS Y PROCESOS TERMODINÁMICOS. ING. CARACCIOLO

Más detalles

Actualización 2012 del Curso Electricidad y Calor: Tema Segunda Ley de la Termodinámica y sus aplicaciones

Actualización 2012 del Curso Electricidad y Calor: Tema Segunda Ley de la Termodinámica y sus aplicaciones Actualización 2012 del Curso Electricidad y Calor: Tema Segunda Ley de la Termodinámica y sus aplicaciones Responsable : Dr. Mario Enrique Alvarez Ramos Colaboradores: Dra. María Betsabe Manzanares Martínez

Más detalles

Maquinas térmicas. Nota el aire se comporta como gas ideal con calores específicos variables con la temperatura

Maquinas térmicas. Nota el aire se comporta como gas ideal con calores específicos variables con la temperatura Nota el aire se comporta como gas ideal con calores específicos variables con la temperatura 19) El arreglo cilindro pistón aislado térmicamente que se muestra en la figura contiene inicialmente aire a

Más detalles

1.- Pricipios Termodinámicos.

1.- Pricipios Termodinámicos. REFRIGERACIÓN INDUSTRIAL. 1.- Pricipios Termodinámicos. Bibliografía: Sears, F.W. & Salinger, G.L.; Thermodynamics, Kinetic Theory, and Statistical Thermodynamics; Adison-Wesley Publishing Company, 1975.

Más detalles

1. (a) Enunciar la Primera Ley de la Termodinámica.

1. (a) Enunciar la Primera Ley de la Termodinámica. ESCUELA SUPERIOR DE INGENIEROS Universidad de Navarra Examen de TERMODINÁMICA II Curso 2000-200 Troncal - 7,5 créditos 7 de febrero de 200 Nombre y apellidos NOTA TEORÍA (30 % de la nota) Tiempo máximo:

Más detalles

1RA Y 2DA LEY DE LA TERMODINÁMICA. M. En C. José Antonio González Moreno FisicoQuímica Noviembre del 2016

1RA Y 2DA LEY DE LA TERMODINÁMICA. M. En C. José Antonio González Moreno FisicoQuímica Noviembre del 2016 1RA Y 2DA LEY DE LA TERMODINÁMICA M. En C. José Antonio González Moreno FisicoQuímica Noviembre del 2016 INTRODUCCIÓN: En esta presentación se estudiarán los enunciados correspondientes a la 1ra y 2da

Más detalles

CICLOS FRIGORÍFICOS A COMPRESIÓN

CICLOS FRIGORÍFICOS A COMPRESIÓN V CICLOS FRIGORÍFICOS A COMPRESIÓN FILMINAS 2 DE 3 1 DE MOTORES A GAS MÁQUINAS TERMICAS DE VAPOR CICLOS FRIGORÍFICOS A COMPRESIÓN Fluido Refrigerante: Sustancia que sea condensable a las temperaturas que

Más detalles

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot)

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) 1. Deducir qué forma adopta la primera ley de la termodinámica aplicada a un gas ideal para

Más detalles

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica Trabajo Práctico N : PROCESOS Y CICLOS DE POTENCIA DE VAPOR Procesos con vapor ) En un cierto proceso industrial se comprimen

Más detalles

Ejemplos de máquina térmica son: los motores de combustión interna, las plantas de potencia de vapor, entre otras.

Ejemplos de máquina térmica son: los motores de combustión interna, las plantas de potencia de vapor, entre otras. TERMODINÁMICA II Unidad : Ciclos de potencia y refrigeración Objetivo: Estudiar los ciclos termodinámicos de potencia de vapor UNEFA Ext. La Isabelica Ing. Petroquímica 5to Semestre Materia: Termodinámica

Más detalles

FÍSICA Usando la convención gráfica según la cual una máquina simple que entrega trabajo positivo se representa como en la figura:

FÍSICA Usando la convención gráfica según la cual una máquina simple que entrega trabajo positivo se representa como en la figura: FÍSICA 4 PRIMER CUARIMESRE DE 05 GUÍA : SEGUNDO PRINCIPIO, MÁUINAS ÉRMICAS. Demostrar que: (a) Los postulados del segundo principio de Clausius y de Kelvin son equivalentes (b) Ninguna máquina cíclica

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Unidad I: ropiedades y Leyes de la ermodinámica! Ciclos de potencia! Ciclo de refrigeración 8/7/0 Ctenido! Ciclos termodinámicos!! Ciclo Rankine! ariantes del Ciclo Rankine! Ciclos

Más detalles

CICLOS DE MÁQUINAS TÉRMICAS DE VAPOR

CICLOS DE MÁQUINAS TÉRMICAS DE VAPOR V CICLOS DE MÁQUINAS TÉRMICAS DE VAPOR FILMINAS 1 DE 3 1 CICLOS DE MÁQUINAS TÉRMICAS DE VAPOR 1. INTRODUCCIÓN 2. CONVENIENCIA DE UTILIZACIÓN DE UN CICLO U OTRO 3. CICLO DE CARNOT 4. CICLO DE RANKINE 41

Más detalles

TEMA 4: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 4: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA T TCNOLOGÍA INDUSTRIAL I. Deartamento de Tecnología. IS Nuestra Señora de la Almudena Mª Jesús Saiz TMA 4: TRMODINÁMICA. MÁUINA TÉRMICA Y MÁUINA FRIGORÍFICA La termodinámica es la arte de la física que

Más detalles

GUÍA DE RESUELTOS: SEGUNDA LEY DE LA TERMODINÁMICA Y ENTROPÍA

GUÍA DE RESUELTOS: SEGUNDA LEY DE LA TERMODINÁMICA Y ENTROPÍA Universidad Nacional Experimental Politécnica de la Fuerza Armada Bolivariana Núcleo Valencia Extensión La Isabelica Ingeniería Petroquímica IV semestre Período 1-2012 Termodinámica I Docente: Lcda. Yurbelys

Más detalles

= = 0.40 (40%) 500 Por el teorema de Carnot, no es posible que lo que afirma el inventor sea posible.

= = 0.40 (40%) 500 Por el teorema de Carnot, no es posible que lo que afirma el inventor sea posible. TEMA 5 EL SEGUNDO PRINCIPIO DE LA TERMODINÁMICA. I. Resolución de problemas a. Problemas de Nivel I 1. Un inventor sostiene que ha desarrollado un ciclo de potencia capaz de producir un trabajo neto de

Más detalles

Ejemplos de temas V, VI, y VII

Ejemplos de temas V, VI, y VII 1. Un sistema de aire acondicionado que emplea refrigerante R-134a como fluido de trabajo es usado para mantener una habitación a 23 C al intercambiar calor con aire exterior a 34 C. La habitación gana

Más detalles

TEMA 1. P V = nrt (1.2)

TEMA 1. P V = nrt (1.2) EMA 1 SISEMAS ERMODINÁMICOS SIMPLES 1.1 Introducción Supongamos que hemos realizado un experimento sobre un sistema y que las coordenadas termodinámicas del mismo han sido determinadas. Cuando estas coordenadas

Más detalles

T7 CICLOS DE REFRIGERACION

T7 CICLOS DE REFRIGERACION 1.- Introducción 2.- Refrigeración por compresión 3.- Refrigeración por absorción 4.- Bombas de calor 5.- Otros ciclos de refrigeración 1.- Introducción ; Son máquinas térmicas inversas Son ciclos en los

Más detalles

TRABAJO DE FÍSICA ELECTIVO CUARTO NIVEL

TRABAJO DE FÍSICA ELECTIVO CUARTO NIVEL Liceo Bicentenario Teresa Prats de Sarratea Departamento de Física TRABAJO DE FÍSICA ELECTIVO CUARTO NIVEL Este trabajo consta de 15 preguntas de desarrollo, referidas a los temas que a continuación se

Más detalles

Ciclos de fuerza de vapor. Jazmín Palma Campos Daniela Torrentes Díaz

Ciclos de fuerza de vapor. Jazmín Palma Campos Daniela Torrentes Díaz Ciclos de fuerza de vapor Jazmín Palma Campos Daniela Torrentes Díaz Ciclos de fuerza de vapor El vapor es el fluido de trabajo más empleado en los ciclos de potencia de vapor gracias a sus numerosas ventajas,

Más detalles

Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas

Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl

Más detalles

1. Qué es el punto triple. (3 puntos) 2. Qué es el título de un vapor. (3 puntos)

1. Qué es el punto triple. (3 puntos) 2. Qué es el título de un vapor. (3 puntos) Teoría (30 puntos) TIEMPO: 50 minutos (9:00-9:50). El examen continúa a las 10:10. UTILICE LA ÚLTIMA HOJA COMO BORRADOR. Conteste brevemente a las siguientes cuestiones. Justifique sus respuestas, si es

Más detalles

TEMA1: GUIA 1 CICLO RANKINE

TEMA1: GUIA 1 CICLO RANKINE UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO PUNTO FIJO PROGRAMA DE INGENIERÍA INDUSTRIAL CÁTEDRA: CONVERSION DE ENERGIA TEMA: GUIA CICLO RANKINE Ciclo Rankine. Efectos de

Más detalles

Serie Nº 4 Segundo Principio de la Termodinámica Entropía Problemas con resolución guiada

Serie Nº 4 Segundo Principio de la Termodinámica Entropía Problemas con resolución guiada CATEDRA DE TERMODINAMICA AÑO 2013 INGENIERIA QUÍMICA Serie Nº 4 Segundo Principio de la Termodinámica Entropía Problemas con resolución guiada 1. Una resistencia eléctrica entrega 473 kj a un sistema constituido

Más detalles

Electricidad y calor. Una introducción... Temas. 5. Segunda ley de la Termodinámica. Por qué unos procesos ocurren en un sentido y no en el contrario?

Electricidad y calor. Una introducción... Temas. 5. Segunda ley de la Termodinámica. Por qué unos procesos ocurren en un sentido y no en el contrario? Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora 1 Temas 5. Segunda ley de la Termodinámica. i. Máquinas térmicas y su eficiencia. ii. Segunda

Más detalles

Ciclo de Otto (de cuatro tiempos)

Ciclo de Otto (de cuatro tiempos) Admisión Inicio compresión Fin de compresión Combustión Expansión Escape de gases 0 Admisión (Proceso Isobárico): Se supone que la circulación de los gases desde la atmósfera al interior del cilindro se

Más detalles

HOJA DE PROBLEMAS 1: ENUNCIADOS

HOJA DE PROBLEMAS 1: ENUNCIADOS Tema: TERMODINÁMICA HOJA DE PROBLEMAS 1: ENUNCIADOS 1. ( ) Discuta la veracidad o falsedad de las siguientes afirmaciones: a) Cuando un sistema termodinámico abierto experimenta un ciclo termodinámico

Más detalles

Guía de Trabajo Procesos Termodinámicos. Nombre: No. Cuenta:

Guía de Trabajo Procesos Termodinámicos. Nombre: No. Cuenta: Guía de Trabajo Procesos Termodinámicos Nombre: No. Cuenta: Resolver cada uno de los ejercicios de manera clara y ordenada en hojas blancas para entregar. 1._a) Determine el trabajo realizado por un fluido

Más detalles

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO TERMOINÁMI PROLEMS I: PRIMER PRINIPIO Problema 1 Un gas ideal experimenta un proceso cíclico ---- como indica la figura El gas inicialmente tiene un volumen de 1L y una presión de 2 atm y se expansiona

Más detalles

3. TERMODINÁMICA 3.3. SEGUNDO PRINCIPIO

3. TERMODINÁMICA 3.3. SEGUNDO PRINCIPIO undamentos y eorías ísicas ES Arquitectura. ERMODINÁMIA.. SEGUNDO PRINIPIO El primer principio de la termodinámica es una forma de ley de conservación de la energía, y niega la posibilidad de que se verifiquen

Más detalles

mecánica estadística Principios Fundamentales Capítulo 1

mecánica estadística Principios Fundamentales Capítulo 1 mecánica estadística Principios Fundamentales Capítulo 1 2013 Objetivo de la mecánica estadística Predecir el comportamiento macroscópico de un sistema, en base de las propiedades microscópicas de las

Más detalles

En el transcurso de una reacción química se rompen enlaces de los reactivos y se forman nuevos enlaces que dan lugar a los productos.

En el transcurso de una reacción química se rompen enlaces de los reactivos y se forman nuevos enlaces que dan lugar a los productos. Termoquímica En el transcurso de una reacción química se rompen enlaces de los reactivos y se forman nuevos enlaces que dan lugar a los productos. Para romper enlaces se consume energía y al formar otros

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA GUIA DE CICLOS DE POTENCIA DE VAPOR Ejercicios resueltos

Más detalles

2.2 SISTEMAS TERMODINÁMICOS

2.2 SISTEMAS TERMODINÁMICOS 2.2 SISTEMAS TERMODINÁMICOS En termodinámica se puede definir como sistema a toda aquella parte del universo que se separa para su estudio. Esta separación se hace por medio de superficies que pueden ser

Más detalles

(a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada en el segundo término.

(a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada en el segundo término. PROBLEMA 1. Fórmulas para el calor específico Deduzca una expresión para el como función de y evalúela para: (a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada

Más detalles

(Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 2: Segundo principio de la termodinámica. Entropía.

(Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 2: Segundo principio de la termodinámica. Entropía. Física 3 (Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 2: Segundo principio de la termodinámica. Entropía. 1. Demostrar que: (a) Los postulados del segundo principio de Clausius

Más detalles

Programa Regular. Abordar y profundizar el análisis de principios y leyes de la Termodinámica.

Programa Regular. Abordar y profundizar el análisis de principios y leyes de la Termodinámica. Programa Regular Curso: Termodinámica A Carga horaria: 6hs. Modalidad de la asignatura: teórico-práctica Objetivos. Abordar y profundizar el análisis de principios y leyes de la Termodinámica. Adquirir

Más detalles

TERMODINÁMICA - PREGUNTAS DE TEST

TERMODINÁMICA - PREGUNTAS DE TEST TERMODINÁMICA - PREGUNTAS DE TEST Grupo A: DEFINICIONES DE VARIABLES. CONCEPTOS GENERALES Grupo B: MAQUINAS TÉRMICAS: Grupo C: PRIMER PRINCIPIO: Grupo D: SEGUNDO PRINCIPIO: Grupo E: ESPONTANEIDAD DE LAS

Más detalles

PRIMER PRINCIPIO DE LA TERMODINÁMICA. Ciclo de CARNOT.

PRIMER PRINCIPIO DE LA TERMODINÁMICA. Ciclo de CARNOT. PRIMER PRINCIPIO DE LA TERMODINÁMICA. Ciclo de CARNOT. Se mantiene un gas a presión constante de 0 atm mientras se expande desde un volumen de 0 005 m 3 hasta uno de 0 009 m 3. Qué cantidad de calor se

Más detalles