Algebra Lineal XIV: Espacio Nulo y Rango de una. transformación lineal.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Algebra Lineal XIV: Espacio Nulo y Rango de una. transformación lineal."

Transcripción

1 Algebra Lineal XIV: Espacio Nulo y Rango de una Transformación Lineal. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato jrico@salamanca.ugto.mx En estas notas, se presentan algunos de los conceptos mas importantes para el análisis de transformaciones lineales. 1. Espacio Nulo de una Transformación Lineal. En esta sección definiremos el espacio nulo, también conocido como kernel o núcleo de una transformación lineal. Definición del espacio nulo de una transformación lineal. Sea T una transformación lineal de un espacio vectorial V sobre otro espacio vectorial V, ambos definidos sobre un campo K. Elespacio nulo de la transformación lineal, T, denotada N T o ker(t ), se define como N T V,talque N T = { v V T ( v) = 0 V } En simples palabras, el espacio nulo de una transformación lineal es el conjunto de todos los vectores de V cuya imagen es el vector 0 V. Teorema. El espacio nulo de la transformación lineal, T, es un subespacio de V. Prueba: Es suficiente probar que el espacio nulo es un subconjunto cerrado respecto a la adición y a la multiplicación por escalar. Suponga que v 1, v 2 N T y λ K, entonces 1. Cerrado respecto a la adición. Considere T ( v 1 + v 2 )=T ( v 1 )+T ( v 2 )= 0+ 0 = 0 Por lo tanto v 1 + v 2 N T, y el espacio nulo está cerrado respecto a la adición. 2. Cerrado respecto a la multiplicación por escalar. Considere T (λ v 1 )=λt ( v 1 )=λ 0 = 0. Por lo tanto λ v 1 N T, y el espacio nulo está cerrado respecto a la multiplicación por escalar. Por lo tanto N T V. Definición de la Nulidad de una Transformación Lineal. La dimensión del espacio nulo de una transformación lineal T,sedenominalanulidad de T y se denota por ν(t ). 1

2 Figura 1: Representación Gráfica del Espacio Nulo y Rango de una Transformación Lineal. Debemos recordar que aplicando la definición del rango de una trasformación, función o mapeo a una transformación lineal T,que se denomina R T,setieneque R T = { v V T ( v) = v para algún v V}. Teorema. El rango de una transformación lineal T, R T, es un subespacio de V. Prueba: Nuevamente es suficiente probar que el conjunto está cerrado respecto a la adición y a la multiplicación por escalar. Suponga que v 1, v 2 R T y λ K, entonces 1. Cerrado respecto a la adición. Puesto que v 1, v 2 R T existen v 1, v 2 V tales que T ( v 1 )= v 1 y T ( v 2 )= v 2 Puesto que V es un espacio vectorial, v 1 + v 2 V y T ( v 1 + v 2 )=T ( v 1 )+T ( v 2 )= v 1 + v 2. Por lo tanto, v 1 + v 2 R T y R T está cerrado respecto a adición. 2. Cerrado respecto a la multiplicación por escalar. Puesto que V es un espacio vectorial, λ v 1 V y T (λ v 1 )=λt ( v 1 )=λ v 1. Por lo tanto, λ v 1 R T y R T está cerradorespectoalamultiplicación por escalar. Definición del Rango de una Transformación Lineal. La dimensión del rango de una transformación lineal T,sedenominalarango de T y se denota por p(t ). Teorema. Una transformación lineal T : V V es inyectiva si, y solo si, N T es exclusivamente el vector { 0}. Prueba: Suponga que T es inyectiva, entonces T ( v 1 )=T ( v 2 ) implica que v 1 = v 2.Sea v N T arbitrario, entonces T ( v) = 0 puesto que T ( 0) = 0, se tiene que T ( v) =T ( 0) por lo tanto v = 0 2

3 Se concluye pues, que N T = { 0}. Suponga que N T = { 0} entonces si T ( v 1 )=T ( v 2 ) T ( v 1 v 2 )= 0. Por lo tanto, v 1 v 2 N T, pero puesto que N T = { 0} entonces y la transformación lineal es inyectiva. v 1 v 2 = 0 v 1 = v 2 Teorema. Sea T : V V una transformación lineal inyectiva, entonces si { v 1, v 2,..., v n } es linealmente independiente entonces {T ( v 1 ),T( v 2 ),...,T( v n )} es linealmente independiente. En otras palabras, una transformaciónlinealinyectivapreserva la independencia lineal de los subconjuntos. Prueba: Considere la combinación lineal 0 =λ 1 T ( v 1 )+λ 2 T ( v 2 )+...+ λ n T ( v n )=T (λ 1 v 1 + λ 2 v λ n v n ). Por lo tanto λ 1 v 1 + λ 2 v λ n v n N T = { 0}, sin embargo, si { v 1, v 2,..., v n } es linealmente independiente, la única solución posible es la trivial, λ 1 = λ 2 =...= λ n =0. Por lo tanto el conjunto {T ( v 1 ),T( v 2 ),...,T( v n )} es linealmente independiente. Corolario. Sea T : V V una transformación lineal inyectiva, entonces si B = { v 1, v 2,..., v n } es una base de V, entonces, T (B) ={T ( v 1 ),T( v 2 ),...,T( v n )} es una base de R T. Prueba: Por el teorema anterior T (B) ={T ( v 1 ),T( v 2 ),...,T( v n )} es linealmente independiente, por lo tanto, es suficiente probar que T (B) genera a R T. Sea v V un elemento arbitrario del rango de T, entonces Entonces v = T ( v ) donde v V es arbitrario v = T ( v) =T (λ 1 v 1 + λ 2 v λ n v n )=λ 1 T ( v 1 )+λ 2 T ( v 2 )+ + λ n T ( v n ). Por lo tanto T (B) genera a R T y T (B) es una base para R T. Corolario. Sea T : V V una transformación lineal inyectiva, entonces ρ(t ) = dim(r T ) = dim(v). Prueba: Por el corolario anterior T (B) ={T ( v 1 ),T( v 2 ),...,T( v n )} es una base de R T, entonces ρ(t )=dim(r T )=dim(v). Teorema. Sea T una transformación lineal de un espacio vectorial finito dimensional V sobre otro espacio vectorial V, ambos definidos sobre un campo K. Sea{ v 1, v 2,..., v q } una base para el espacio nulo de T y { v 1, v 2,..., v q, v q+1,..., v n } sea una base de V. Entonces {T ( v q+1 ),...,T( v n )} es una base para R T. Prueba: Por las suposiciones del teorema, ν(t )=q, siq = 0, entonces T es inyectiva y este teorema se reduce al primero de los dos corolarios anteriores. Suponga, pues, que q 1, que { v 1, v 2,..., v q } es 3

4 una base para el espacio nulo de T yque{ v 1, v 2,..., v q, v q+1,..., v n } es una base de V. Sea v V arbitrario, entonces T ( v) es un elemento arbitrario del R T dado por T ( v) = T (λ 1 v 1 + λ 2 v λ q v q + λ q+1 v q λ n v n ) = λ 1 T ( v 1 )+λ 2 T ( v 2 )+ + λ q T ( v q )+λ q+1 T ( v q+1 )+ + λ n T ( v n ) = λ q+1 T ( v q+1 )+ + λ n T ( v n ). Por lo tanto {T ( v q+1 ),...,T( v n )} genera R T, mostraremos ahora que este conjunto es linealmente independiente. Suponga, por contradicción, que existen escalares λ q+1,...,λ n no todos iguales que 0, tal que 0 =λ q+1 T ( v q+1 )+ + λ n T ( v n )=T (λ q+1 v q λ n v n ) Por lo tanto λ q+1 v q λ n v n N T.Deaquíque λ q+1 v q λ n v n = λ 1 v 1 + λ 2 v λ q v q λ 1 v 1 + λ 2 v λ q v q λ q+1 v q+1... λ n v n = 0. Por lo tanto, { v 1, v 2,..., v q, v q+1,, v n } es linealmente dependiente y no puede ser una base para V, una contradicción de las suposiciones iniciales. Corolario. Sea V un espacio vectorial finito-dimensional y T una transformación lineal de un espacio vectorial V sobre otro espacio vectorial V. Entonces ρ(t )+ν(t )=dimv Prueba: Por el teorema anterior n = dimv, q = ν(t )yn q = ρ(t )porlotanto dim V = n = q +(n q) =ν(t )+ρ(t ). A partir de estos resultados, es posible obtener algunos resultados respecto a transformaciones lineales inyectivas y sobreyectivas. Teorema. Sea T : V V una transformación lineal tal que dim V <dimv, entonces T no puede ser sobreyectiva. Prueba: Si T es sobreyectiva ρ(t )=dim V y ν(t ) 0, entonces dim V = ν(t )+ρ(t ) o ρ(t )=dim V ν(t ) Por lo tanto dim V = ρ(t )=dim V ν(t ) o dim V dim V Teorema. Sea T : V V una transformación lineal tal que dim V >dimv, entonces T no puede ser inyectiva. Prueba: T es inyectiva si y solo si ν(t ) = 0, además ρ(t ) dim V entonces dim V = ν(t )+ρ(t )=0+ρ(T )=ρ(t ) dim V Teorema. Sea T : V V una transformación lineal tal que dim V dim V, entonces T no puede ser biyectiva. Prueba: Si dim V >dimv, entonces T no puede ser inyectiva. Si dim V <dimv entonces T no puede ser sobreyectiva. Teorema. Sean S : V V y T : V V dos transformaciones lineales tales que la composición TS : V V está definida, entonces ρ(ts)+dim(r S N T )=ρ(s). 4

5 Figura 2: Representación Gráfica de una Transformación Compuesta. Prueba. Sea T la restricción de la transformación lineal T sobre el rango de S, es decir T : V R S < V T ( v )=T( v ) v R S Puede probarse que T es una transformación lineal. Entonces, aplicando el teorema anterior a la transformación lineal T,setieneque ρ(t )+ν(t )=dim(r S )=ρ(s). Puede probarse que R T = R TS por lo que ρ(t )=ρ(ts) De manera semejante, el espacio nulo de T está definido por N T = { v v R S, v N T } = R S N T Por lo tanto, se tiene que ρ(ts)+dim(r S N T )=ρ(s). 2. Ejercicios. Problema 1. Para cada una de las siguientes transformaciones, T, pruebe que son lineales, y determine el espacio nulo y rango de la transformación lineal. 1. T : R 2 R 2 T (x 1,x 2 )=(x 1 + x 2, x 2 ) 2. T : R 2 R 2 T (x 1,x 2 )=(x 1, 0) 3. T : R 3 R 3 T (x 1,x 2,x 3 )=(x 2 x 3, 2x 1 + x 2, 0). 4. T : R 3 R T (x 1,x 2,x 3 )=(x 1 x 2 +2x 3 ). 5. T : R 2 R 3 T (x 1,x 2 )=(x 1,x 2,x 1 + x 2 ). 6. T : R 3 R 2 T (x 1,x 2,x 3 )=(x 3,x 1 + x 2 ). 5

6 Problema 2. Para cada una de las siguientes transformaciones, T, pruebe que son lineales, y determine el espacio nulo y rango de la transformación lineal. 1. T : P 3 R 4 T (a 0 + a 1 x + a 2 x 2 + a 3 x 3 )=(a 0 a 1,a 2,a 3, 0) [ ] 2. T : R 4 M 2 2 a T (a 1,a 2,a 3,a 4 )= 1 a 1 + a 2 a 2 + a 3 a 1 + a 4 6

Álgebra Lineal VII: Independencia Lineal.

Álgebra Lineal VII: Independencia Lineal. Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Algebra Lineal XI: Funciones y Transformaciones Lineales

Algebra Lineal XI: Funciones y Transformaciones Lineales Algebra Lineal XI: Funciones y Transformaciones Lineales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

Algebra Lineal XIII: Operaciones con Transformaciones Lineales.

Algebra Lineal XIII: Operaciones con Transformaciones Lineales. Algebra Lineal XIII: Operaciones con Transformaciones Lineales. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato

Más detalles

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21 Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)

Más detalles

Algebra Lineal XXVI: La Regla de Cramer.

Algebra Lineal XXVI: La Regla de Cramer. Algebra Lineal XXVI: La Regla de Cramer José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Álgebra Lineal II: Grupos y campos, prueba de los axiomas del campo de los números complejos, forma polar de números complejos.

Álgebra Lineal II: Grupos y campos, prueba de los axiomas del campo de los números complejos, forma polar de números complejos. Álgebra Lineal II: Grupos y campos, prueba de los axiomas del campo de los números complejos, forma polar de números complejos. José María Rico Martínez Departamento de Ingeniería Mecánica División de

Más detalles

Tema 2 ESPACIOS VECTORIALES

Tema 2 ESPACIOS VECTORIALES Tema 2 ESPACIOS VECTORIALES Prof. Rafael López Camino Universidad de Granada 1 Espacio vectorial Definición 1.1 Un espacio vectorial es una terna (V, +, ), donde V es un conjunto no vacío y +, son dos

Más detalles

Construcción de bases en el núcleo e imagen de una transformación lineal

Construcción de bases en el núcleo e imagen de una transformación lineal Construcción de bases en el núcleo e imagen de una transformación lineal Objetivos. Estudiar el algoritmo para construir una base del núcleo y una base de la imagen de una transformación lineal. Requisitos.

Más detalles

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc. Tema 1 Espacios Vectoriales 1.1 Introducción Estas notas están elaboradas pensando simplemente en facilitar al estudiante una guía para el estudio de la asignatura, y en consecuencia se caracterizan por

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Algebra Lineal Xa: Álgebra Vectorial en R3

Algebra Lineal Xa: Álgebra Vectorial en R3 Algebra Lineal Xa: Álgebra Vectorial en R3 José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamanca.ugto.mx

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

TRANSFORMACIONES LINEALES

TRANSFORMACIONES LINEALES TRANSFORMACIONES LINEALES M. C. Roberto Rosales Flores INSTITUTO TECNOLÓGICO SUPERIOR DE TLAXCO Ingeniería en Logística M. C. Roberto Rosales Flores (ITST) TRANSFORMACIONES LINEALES Tercer Semestre 1 /

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

TEMA 11. VECTORES EN EL ESPACIO

TEMA 11. VECTORES EN EL ESPACIO TEMA 11. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. Dos vectores son equipolentes si tienen el mismo

Más detalles

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR} Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar

Más detalles

MATEMÁTICAS I TEMA 1: Espacios Vectoriales. 1 Definición de espacio vectorial. Subespacios

MATEMÁTICAS I TEMA 1: Espacios Vectoriales. 1 Definición de espacio vectorial. Subespacios Sonia L. Rueda ETS Arquitectura. UPM Curso 2007-2008. 1 MATEMÁTICAS I TEMA 1: Espacios Vectoriales 1 Definición de espacio vectorial. Subespacios Dados dos conjuntos V y K se llama ley de composición externa

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Clase 15 Espacios vectoriales Álgebra Lineal

Clase 15 Espacios vectoriales Álgebra Lineal Espacios vectoriales Clase 5 Espacios vectoriales Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia En esta sección estudiaremos uno de los conceptos

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Ejemplo 1 Sea V un espacio con producto interno sobre un cuerpo K. A las transformaciones lineales T : V K las llamamos funcionales lineales.

Ejemplo 1 Sea V un espacio con producto interno sobre un cuerpo K. A las transformaciones lineales T : V K las llamamos funcionales lineales. Facultad de Ingeniería - IMERL - Geometría y Álgebra Lineal 2 - Curso 2008. 1 Transformaciones lineales en espacios con producto interno Notas para el curso de Geometría y Algebra Lineal 2 de la Facultad

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Concepto de espacio vectorial y propiedades 1.1 Definición Se llama espacio vectorial sobre K (IR o C a toda terna

Más detalles

Números reales Conceptos básicos Algunas propiedades

Números reales Conceptos básicos Algunas propiedades Números reales Conceptos básicos Algunas propiedades En álgebra es esencial manejar símbolos con objeto de transformar o reducir expresiones algebraicas y resolver ecuaciones algebraicas. Debido a que

Más detalles

Algebra Lineal XXI: Existencia de la Función Determinante, Expansión de Cofactores.

Algebra Lineal XXI: Existencia de la Función Determinante, Expansión de Cofactores. Algebra Lineal XXI: Existencia de la Función Determinante, Expansión de Cofactores. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Espacios vectoriales y Aplicaciones lineales

Espacios vectoriales y Aplicaciones lineales Espacios vectoriales y Aplicaciones lineales Espacios vectoriales. Subespacios vectoriales Espacios vectoriales Definición Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea

Más detalles

Dependencia e independencia lineal

Dependencia e independencia lineal CAPíTULO 3 Dependencia e independencia lineal En este capítulo estudiaremos tres conceptos de gran importancia para el desarrollo del álgebra lineal: el concepto de conjunto generador, el concepto de conjunto

Más detalles

1 El espacio vectorial R n.

1 El espacio vectorial R n. Manuel Gutiérrez Departamento de Álgebra, Geometría y Topología Universidad de Málaga February 26, 2009 1 El espacio vectorial R n. La estructura de espacio vectorial es posiblemente la estructura más

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291)

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) I. Combinación Lineal Definición: Sean v 1, v 2, v 3,, v n vectores en el espacio vectorial V. Entonces cualquier

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Subespacios Vectoriales

Subespacios Vectoriales Subespacios Vectoriales Prof. Apuntes del Postgrado en Ingeniería 31 Mayo 2008 Subespacio Definición de Subespacio y Ejemplos. Definición Sea H un subconjunto no vacio de un espacio vectorial V(K). Si

Más detalles

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad

Más detalles

Algebra Lineal y Geometría.

Algebra Lineal y Geometría. Algebra Lineal y Geometría. Unidad nº7: Transformaciones Lineales. Algebra Lineal y Geometría Esp. Liliana Eva Mata 1 Contenidos. Transformación lineal entre dos espacios vectoriales. Teorema fundamental

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

4 Aplicaciones Lineales

4 Aplicaciones Lineales Prof Susana López 41 4 Aplicaciones Lineales 41 Definición de aplicación lineal Definición 23 Sean V y W dos espacios vectoriales; una aplicación lineal f de V a W es una aplicación f : V W tal que: 1

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

Álgebra Lineal III: Sistemas de ecuaciones lineales: Definición y

Álgebra Lineal III: Sistemas de ecuaciones lineales: Definición y Álgebra Lineal III: Sistemas de ecuaciones lineales: Definición y solución. José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de

Más detalles

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades 5- ransformaciones Lineales 5Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal sus propiedades Se denomina transformación lineal a toda función,, cuo dominio codominio

Más detalles

Espacios vectoriales y aplicaciones lineales

Espacios vectoriales y aplicaciones lineales Capítulo 3 Espacios vectoriales y aplicaciones lineales 3.1 Espacios vectoriales. Aplicaciones lineales Definición 3.1 Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea K un

Más detalles

SESIÓN 4: ESPACIOS VECTORIALES

SESIÓN 4: ESPACIOS VECTORIALES SESIÓN 4: ESPACIOS VECTORIALES Un espacio vectorial sobre un campo (como el cuerpo de los números reales o los números complejos) es un conjunto no vacío, dotado de dos operaciones para las cuales será

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

Transformaciones lineales

Transformaciones lineales Capítulo 3 Transformaciones lineales Las transformaciones lineales son las funciones con las que trabajaremos en Álgebra Lineal. Se trata de funciones entre K-espacios vectoriales que son compatibles con

Más detalles

r j ϕ j (v i ) = r i, ϕ(v i ) = v = n a ij ϕ j(v) ϕ i (v) =

r j ϕ j (v i ) = r i, ϕ(v i ) = v = n a ij ϕ j(v) ϕ i (v) = ESPACIO DUAL 1. Espacio Dual En temas anteriores dados V y V espacios vectoriales sobre k, definíamos en Hom(V, V ) una suma y un producto por elementos de k que convertían este conjunto en un espacio

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Tema 3 Aplicaciones Lineales 3.1 Introducción Se presentan en este tema las aplicaciones entre espacios vectoriales, particularmente las aplicaciones lineales, que de una manera informal pueden definirse

Más detalles

1 Aplicaciones lineales

1 Aplicaciones lineales UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Aplicaciones lineales y diagonalización. El objetivo principal de este tema será la obtención de una matriz diagonal

Más detalles

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio)

Más detalles

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere

Más detalles

TEMA 8.- NORMAS DE MATRICES Y

TEMA 8.- NORMAS DE MATRICES Y Álgebra II: Tema 8. TEMA 8.- NORMAS DE MATRICES Y NúMERO DE CONDICIóN Índice. Introducción 2. Norma vectorial y norma matricial. 2 2.. Norma matricial inducida por normas vectoriales......... 4 2.2. Algunos

Más detalles

Guía de Ejercicios: Funciones

Guía de Ejercicios: Funciones Guía de Ejercicios: Funciones Área Matemática Resultados de aprendizaje Determinar dominio y recorrido de una función. Analizar funciones: inyectivas, sobreyectivas y biyectivas. Determinar la función

Más detalles

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL.

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL. UNIDAD V: ESPACIOS VECTORIALES Estamos acostumbrados a representar un punto en la recta como un número real; un punto en el plano como un par ordenado y un punto en el espacio tridimensional como una terna

Más detalles

1.2 Si a y b son enteros impares, entonces a + b es par. 1.4 Si el producto de enteros a y b es par, entonces alguno de ellos es par.

1.2 Si a y b son enteros impares, entonces a + b es par. 1.4 Si el producto de enteros a y b es par, entonces alguno de ellos es par. Sesión 1 Demostraciones Demostración directa 1.1 Si n es un número entero impar, entonces n 2 es impar. 1.2 Si a y b son enteros impares, entonces a + b es par. Demostración indirecta 1.3 Si n 2 es par,

Más detalles

Problemas de Álgebra Lineal Espacios Vectoriales

Problemas de Álgebra Lineal Espacios Vectoriales Problemas de Álgebra Lineal Espacios Vectoriales 1. Estudia cuáles de los siguientes subconjuntos son subespacios de R n para el n que corresponda: i) S 1 = {(x, y, z, t) R 4 x + y + z + t = b} siendo

Más detalles

NÚCLEOS DEFINIDOS POSITIVOS, REGULARIDAD, PERTURBACIONES Y APLICACIONES.

NÚCLEOS DEFINIDOS POSITIVOS, REGULARIDAD, PERTURBACIONES Y APLICACIONES. UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS POSTGRADO EN MATEMÁTICA NÚCLEOS DEFINIDOS POSITIVOS, REGULARIDAD, PERTURBACIONES Y APLICACIONES. Autor: MSc. Arnaldo De La Barrera. Tutor: Dra. Marisela

Más detalles

Conjuntos Infinitos. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Conjuntos Infinitos. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO El estudio de los conjuntos infinitos se inicia con Las Paradojas del Infinito, la última obra del matemático checo Bernard Bolzano, publicada

Más detalles

Transformaciones Lineales. Definiciones básicas de Transformaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.

Transformaciones Lineales. Definiciones básicas de Transformaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com. Transformaciones Lineales Definiciones básicas de Transformaciones Lineales wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 007-009 Contenido 1 Transformaciones Lineales 11 Núcleo e imagen

Más detalles

1. Sucesiones y redes.

1. Sucesiones y redes. 1. Sucesiones y redes. PRACTICO 7. REDES. Se ha visto que el concepto de sucesión no permite caracterizar algunas nociones topológicas, salvo en espacios métricos. Esto empieza con algunas definiciones

Más detalles

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3.

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3. ÍNDICE 13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL............. 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL...... 275 13.3. REPRESENTACIÓN MATRICIAL DE UNA TRANSFORMACIÓN

Más detalles

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO 1 1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos

Más detalles

PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL. Guía para el II parcial

PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL. Guía para el II parcial Universidad de Costa Rica Instituto Tecnológico de Costa Rica PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL Guía para el II parcial Sábado 25 de junio, 8:00 a.m. 2016 II PARCIAL ÁLGEBRA

Más detalles

PROGRAMA INSTRUCCIONAL ALGEBRA LINEAL

PROGRAMA INSTRUCCIONAL ALGEBRA LINEAL UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE COMPUTACIÓN PROGRAMA INSTRUCCIONAL ALGEBRA LINEAL CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A THS/SEM

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos

Más detalles

Teoría Tema 2 Concepto de función

Teoría Tema 2 Concepto de función página 1/7 Teoría Tema Concepto de función Índice de contenido Función, dominio e imagen... Función inyectiva...4 Función sobreyectiva...6 Función biyectiva...7 página /7 Función, dominio e imagen Una

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía Prueba de Evaluación Continua Grupo A 9-04-14 ESPACIOS VECTORIALES-DIAGONALIZACIÓN (parte sin DERIVE) 1. a) Definir sistema ligado de vectores de un espacio vectorial V. b) Demostrar que si un sistema

Más detalles

ESPACIO AFÍN 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO.

ESPACIO AFÍN 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO. ESPACIO AFÍN 1.- CONCEPTO DE ESPACIO AFÍN. 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO. 4.- PROBLEMAS DE INCIDENCIA. 5.- POSICIONES RELATIVAS

Más detalles

Algebra Lineal Tarea No 22: Valores y vectores propios Solución a algunos problemas de la tarea (al 29 de junio de 2014)

Algebra Lineal Tarea No 22: Valores y vectores propios Solución a algunos problemas de la tarea (al 29 de junio de 2014) Algebra Lineal Tarea No : Valores y vectores propios a algunos problemas de la tarea (al 9 de junio de 04. Para la matriz A A Indique cuáles vectores son vectores propios: ( ( ( v, v, v 3 3 Recordemos

Más detalles

Matriz asociada a una transformación lineal respecto a un par de bases

Matriz asociada a una transformación lineal respecto a un par de bases Matriz asociada a una transformación lineal respecto a un par de bases Objetivos Definir la matriz asociada a una transformación lineal respecto a un par de bases y estudiar la representación matricial

Más detalles

Problemas y Ejercicios Resueltos. Tema 3: Aplicaciones Lineales.

Problemas y Ejercicios Resueltos. Tema 3: Aplicaciones Lineales. Problemas y Ejercicios Resueltos. Tema : Aplicaciones Lineales. Ejercicios 1.- Determinar cuáles de las siguientes aplicaciones son lineales: (i) f : R R 2 definida por f((x, y, z)) = (x y, y + 2z). (ii)

Más detalles

CURSO DE MÉTODOS DE LA FÍSICA MATEMÁTICA ANÁLISIS FUNCIONAL OPERADORES NO ACOTADOS

CURSO DE MÉTODOS DE LA FÍSICA MATEMÁTICA ANÁLISIS FUNCIONAL OPERADORES NO ACOTADOS CURSO DE MÉTODOS DE LA FÍSICA MATEMÁTICA ANÁLISIS FUNCIONAL H. FALOMIR DEPARTAMENTO DE FÍSICA FACULTAD DE CIENCIAS EXACTAS - UNLP OPERADORES NO ACOTADOS 1. Extensiones de operadores lineales Sea A un operador

Más detalles

Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS

Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS 1 Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS 1.1 Los Números Naturales. Los números naturales aparecen por la necesidad que tiene el hombre (primitivo) tanto de contar como de ordenar

Más detalles

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Tema 4: Aplicaciones lineales Definición, primeras propiedades y ejemplos Definición. Sean V y W dos espacios vectoriales sobre un cuerpo K. Una función f : V W se dice que es una aplicación lineal si

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Empresariales II Manuel León Navarro 2 Capítulo 1 Ejercicios lección 1 1. Sea el conjunto de las matrices cuadradas de orden 2

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Vectores de Coordenadas y Cambio de Base

Vectores de Coordenadas y Cambio de Base Vectores de Coordenadas y Cambio de Base Departamento de Matemáticas CCIR/ITESM 9 de febrero de Índice 7..Introducción............................................... 7..Vector de coordenadas.........................................

Más detalles

elemento neutro y elemento unidad: inversa aditiva (opuesto): para todo λ K 0, existe un único µ K tal que λµ = 1;

elemento neutro y elemento unidad: inversa aditiva (opuesto): para todo λ K 0, existe un único µ K tal que λµ = 1; 3. Espacios Vectoriales 3.1. Definición de espacio vectorial Un cuerpo es una estructura algebraica (K, +, ) formada por un conjunto K no vacio y dos operaciones internas + y que verifican las siguientes

Más detalles

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial.

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial. Espacios vectoriales Espacios y subespacios R n es el conjunto de todos los vectores columna con n componentes. Además R n es un espacio vectorial. Ejemplo Dados dos vectores de R por ejemplo u = 5 v =

Más detalles

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

Curso de Procesamiento Digital de Imágenes

Curso de Procesamiento Digital de Imágenes Curso de Procesamiento Digital de Imágenes Impartido por: Elena Martínez Departamento de Ciencias de la Computación IIMAS, UNAM, cubículo 408 http://turing.iimas.unam.mx/~elena/teaching/pdi-lic.html elena.martinez@iimas.unam.mx

Más detalles

PROGRAMA DE EXAMEN. Unidad Nº1: Matrices y Función Determinante

PROGRAMA DE EXAMEN. Unidad Nº1: Matrices y Función Determinante Ministerio de Cultura y Educación Universidad Nacional de San Juan Fac. de Ciencias Exactas Físicas y Naturales Ciclo Lectivo 2016 PROGRAMA DE EXAMEN Cátedra: ALGEBRA LINEAL Carrera: Licenciatura en Geofísica

Más detalles

1. APLICACIONES LINEALES

1. APLICACIONES LINEALES 1 1 APLICACIONES LINEALES El objetivo de este capítulo es el estudio de las aplicaciones lineales u homomorfismos entre espacios vectoriales Este tipo de aplicaciones respeta la estructura de espacio vectorial

Más detalles

Notas de Espacios Vectoriales

Notas de Espacios Vectoriales Notas de Espacios Vectoriales José Luis Mancilla Aguilar Depto. de Matemática, Fac. de Ingeniería, Univ. de Buenos Aires jmancil@fi.uba.ar 1 Propósito El objeto de estas notas es repasar las principales

Más detalles

Tema 5: Sistemas de ecuaciones lineales.

Tema 5: Sistemas de ecuaciones lineales. TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1

Más detalles

R no es enumerable. Por contradicción, supongamos que existe una biyección f : N! R. diagonalización de Cantor. Para cada i 2 N:

R no es enumerable. Por contradicción, supongamos que existe una biyección f : N! R. diagonalización de Cantor. Para cada i 2 N: R no es enumerable Por contradicción, supongamos que existe una biyección f : N! R. I Vamos a obtener una contradicción usando el método de diagonalización de Cantor. Para cada i 2 N: f (i) = n i.d i,0

Más detalles

Transformaciones lineales y matrices

Transformaciones lineales y matrices CAPíTULO 5 Transformaciones lineales y matrices 1 Matriz asociada a una transformación lineal Supongamos que V y W son espacios vectoriales de dimensión finita y que T : V W es una transformación lineal

Más detalles

2. Los números naturales, enteros y racionales 1

2. Los números naturales, enteros y racionales 1 - Fernando Sánchez - - Cálculo I 2Los números naturales, enteros y racionales Números naturales 24 09 2015 Se llaman números naturales a los elementos del conjunto N = {1, 2, 3,...}. En este conjunto hay

Más detalles

ESCALARES Y VECTORES

ESCALARES Y VECTORES ESCALARES Y VECTORES MAGNITUD ESCALAR Un escalar es un tipo de magnitud física que se expresa por un solo número y tiene el mismo valor para todos los observadores. Se dice también que es aquella que solo

Más detalles

4. ESPACIOS VECTORIALES Y APLICACIONES LINEALES

4. ESPACIOS VECTORIALES Y APLICACIONES LINEALES Espacios Vectoriales y Aplicaciones Lineales 4. ESPACIOS VECTORIALES Y APLICACIONES LINEALES SUMARIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRICA 1.- Espacios Vectoriales..- Propiedades de un Espacio Vectorial..-

Más detalles

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo. Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES 1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,

Más detalles