2. Métodos Numéricos Aplicados a Ecuaciones Diferenciales

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2. Métodos Numéricos Aplicados a Ecuaciones Diferenciales"

Transcripción

1 ... Méodo de Euler Haca Adelane Anexo -4. Méodos Numércos Aplcados a Ecuacones Dferencales Párase del más smple po de ecuacón dferencal ordnara, que la de po lneal de prmer orden, el clásco Problema de Cauchy de la forma: y y dy () ( ) = d ( = ) = = + y Se desea resolver el problema para deermnar el valor de la funcón y(), para =. Emplee un h =.. Resolucón., : Se procede a deermnar el número de subnervalos equ-espacados [ ] = n = = 5 n = 5 h. n n Se procede a aplcar el méodo de Euler. Y Y Para =, se ene: Y =, =. Y = + Y = Y + h + ) Y hf Y = +.( + ) Y =. ( Y + = Y = y Para =, se ene: Y =., = + h, =. Y = + Y = Y + h + ) Y hf ( Y Y =. +.(. +.) Y =. 48 Para =, se ene: Y =. 48, = + h, =. 4 Y = + Y = Y + h + ) 3 Y hf 3 ( Y + hf Solo para ser empleado con obevo de evaluacón, o académcos. Prohbdo la reproduccón oal o parcal de ese documeno.

2 Méodos Numércos Aplcados a la Esabldad en Ssemas de Poenca Y 3 =.48 +.( ) Y 3 =. 856 Para = 3, se ene: Y 3 =. 856, 3 = + h, 3 =. 6 Y 4 = Y3 + hf3 Y 4 = Y3 + h( 3 + Y3 ) Y 4 =. 347 Para = 4, se ene: Y 4 =. 347, 4 = 3 + h, 4 =. 4 Solo para ser empleado con obevo de evaluacón, o académcos. Prohbdo la reproduccón oal o parcal de ese documeno. Y 5 = Y4 + h( 4 + Y4) Y 5 = Tabla. Resulados paso a paso, abulados por el Méodo de Euler Y( ) A fn de meorar la poencaldad de calculo, y auomazar el proceso, se procedó a mplemenar un archvo scrp en MATLAB, cuyo nombre es EulerSolve.m. Francsco M. Gonzalez-Longa, Febrero, 6

3 Capíulo II 3 A connuacón se presena el conendo de ese programa. % Méodo de Euler para Resolver una Ecuacón Dferencal Ordnara % Resuelve por el Méodo de Euler Smple Haca Adelane % y' = f(,y), y(a) = y, n < < fnal % hay N+ numero de sub-nervalos gualmene espacados [n,fnal] % % Auor: Francsco M. González-Longa % Fecha: March 9, 6 % % Precaucón: Solamene para usos de enseñanza. % n =; % Comenzo del nervalo fnal =; % Fnal del nervalo Y =; % Condcón ncal h=.; % Paso de negracón n=(fnal-n)/h; % Numero de Punos Necesaros Y=zeros(n,); % Incalzar el vecor de Salda =zeros(n,); % Incalzar el vecor de empo Y()=Y; ()=n; for =:n Y(+)= Y() + h*f((),y()); (+)= n + *h; Al eecuar ése programa, en el workspace de MATLAB, se obene la solucón de la ecuacón dferencal : k k Yk Y Exaca Euler Fgura. Grafco de la solucón puno a puno de la ecuacón dferencal empleando el méodo de Euler haca adelane. Es mporane, aclarar que el archvo presenado, no muesra resulados en el workspace, para que se publquen en el modo mosrado anes, se deben agregar unas líneas, y 5: dsp(' Y') dsp(' ') dsp(sprnf(' % %g %g',,(+),y(+))) Solo para ser empleado con obevo de evaluacón, o académcos. Prohbdo la reproduccón oal o parcal de ese documeno. Francsco M. Gonzalez-Longa, Febrero, 6

4 4 Méodos Numércos Aplcados a la Esabldad en Ssemas de Poenca Solo para ser empleado con obevo de evaluacón, o académcos. Prohbdo la reproduccón oal o parcal de ese documeno.... Méodo de Euler Modfcado El méodo de Euler modfcado ene dos movacones. La prmera es que es más precso que el méodo de Euler por dferencas haca delane o haca arás. La segunda es que ese méodo es más esable que su homologo haca delane. El méodo de Euler modfcado ambén es reconocdo como el méodo de puno medo, y las ecuacones aproxmane: h Y = Y + F(, Y ) + Y + = Y + hf, Y + + El error local arbuble a ese méodo es del orden de O(h 3 ) menras que el error global es O(h ) Se va a proceder a resolver el msmo eemplo, empleando el méodo de Euler modfcado: Para =, se ene: Y =, =. Y = Y + hf + + ( Y ) Y = Y + h + ( + ) Y = +. Y =. Y = Y + hf,y + + Y = Y + h( + Y ) Y = Se sgue calculando para los resanes subnervalos y se obene: Tabla. Resulados paso a paso, abulados por el Méodo de Euler Modfcado Y Euler Exaca Euler Modfcado + Y( ) Fgura. Grafco de la solucón puno a puno de la ecuacón dferencal empleando el méodo de Euler Modfcado (Medo Puno). Se procedó a mplemenar un archvo scrp en MATLAB, cuyo nombre es EulerModSolve.m. % Méodo de Euler Modfcado para Resolver una Ecuacón Dferencal Ordnara + Francsco M. Gonzalez-Longa, Febrero, 6

5 Capíulo II 5 % Auor: Francsco M. Gonzalez-Longa % Fecha: March 9, 6 % Precaucón: Solamene para usos de enseñanza. n =; % Comenzo del nervalo fnal =; % Fnal del nervalo Y =; % Condcón ncal h=.; % Paso de negrason n=(fnal-n)/h; % Numero de Punos Necesaros Y=zeros(n,); % Incalzar el vecor de Salda =zeros(n,); % Inalzar el vecor de empo Y()=Y; ()=n; for =:n (+)=n+*h; Y(+)=Y()+h*F(Y(),())/; Y(+)=Y()+h*F(Y(+),()+h/); Los resulados obendos con EulerModSolve.m son: Y Méodo de Heun (Predcor Correcor) El méodo de Euler posee un sero defeco en su aproxmacón para deermnar la pendene usando en cada paso de la eracón. Una de las meoras que se aplca el méodo de Euler, es el denomnado Predcor- Correcor, cuya ecuacones neracvas resulan ser: Y = Y + hf, Y + ( ) [ F(, Y ) + F(, Y )] h Y + = Y El error local es de O(h 3 ) y el error global es de orden O(h 3 ). Al susur valores se ene: Tabla 3. Resulados paso a paso, abulados por el Méodo Predcor Correcor Y( ) Se verfca que a prmera vsa los resulados son déncos a los obendos por del méodo de Euler Modfcado. Solo para ser empleado con obevo de evaluacón, o académcos. Prohbdo la reproduccón oal o parcal de ese documeno. Francsco M. Gonzalez-Longa, Febrero, 6

6 6 Méodos Numércos Aplcados a la Esabldad en Ssemas de Poenca Solo para ser empleado con obevo de evaluacón, o académcos. Prohbdo la reproduccón oal o parcal de ese documeno. % Méodo de Heun para Resolver una Ecuacón Dferencal Ordnara % Auor: Francsco M. González-Longa % Fecha: March 9, 6 % Precaucón: Solamene para usos de enseñanza. n =; % Comenzo del nervalo fnal =; % Fnal del nervalo Y =; % Condcón ncal h=.; % Paso de nefracon n=(fnal-n)/h; % Numero de Punos Necesaros Y=zeros(n,); % Incalzar el vecor de Salda =zeros(n,); % Incalzar el vecor de empo Y()=Y; ()=n; for =:n (+)=n+*h; Y(+)=Y()+h*F(Y(),()); Y(+)=Y()+h/*(F(Y(+),(+))+F(Y(),())); Los resulados obendos por el programa codfcado HeunSolve.m, es: Y Méodos de Runge-Kua.3... Segundo Orden (Méodo de Ralson) Para el caso del Runge-Kua de segundo orden, es ambén conocdo como el Méodo de Ralson, se ene que las ecuacones eravas son: k = F, Y ( ) 3 3 k = F + h, Y + kh 4 4 Y + = Y + h k + k 3 3 Al efecuar las respecvas evaluacones se ene: Tabla 4. Resulados paso a paso, abulados por el Méodo Runge-Kua de Segundo Orden Y( ) Se codfcó las ecuacones aproxmanes en el archvo srpc de MATLAB, llamado RalsonSolve.m, arroando los sguenes resulados: K K Y Tempo Toal Empleado:.6 seconds. Francsco M. Gonzalez-Longa, Febrero, 6

7 Capíulo II 7 % Méodo de Ralson para Resolver una Ecuacón Dferencal Ordnara % Auor: Francsco M. Gonzalez-Longa % Fecha: March 9, 6 % Precaucón: Solamene para usos de enseñanza. n =; % Comenzo del nervalo fnal =; % Fnal del nervalo Y =; % Condcón ncal h=.; % Paso de negracon n=(fnal-n)/h; % Numero de Punos Necesaros Y=zeros(n,); % Incalzar el vecor de Salda =zeros(n,); % Incalzar el vecor de empo Y()=Y; ()=n; for =:n (+)=n+*h; K=F(Y(),()); K=F(Y()+3/4*K*h,()+3/4*h); Y(+)=Y()+h*(/3*K+/3*K);.3... Tercer Orden Para el caso del Runge-Kua de ercer orden, se cumple que ene un error local de O(h 4 ) y un error global de O(h 3 ), y sus ecuacones aproxmanes son: k = F, Y k k 3 ( ) = F + = F h, Y + ( + h, Y k h + k h) h Y + = Y + ( k + 4k + k3 ) 6 Evaluando para cada sub nervalo se ene: Tabla 5. Resulados paso a paso, abulados por el Méodo Runge-Kua de Tercer Orden kh Y( ) Se codfcó las ecuacones aproxmanes en el archvo srpc de MATLAB, llamado RK3Solve.m, arroando los sguenes resulados: K K K3 Y Tempo Toal Empleado:. seconds. % Méodo de Runge-Kua de Tercer Orden Modfcado para Resolver una Solo para ser empleado con obevo de evaluacón, o académcos. Prohbdo la reproduccón oal o parcal de ese documeno. Francsco M. Gonzalez-Longa, Febrero, 6

8 8 Méodos Numércos Aplcados a la Esabldad en Ssemas de Poenca Solo para ser empleado con obevo de evaluacón, o académcos. Prohbdo la reproduccón oal o parcal de ese documeno. % Ecuacón Dferencal Ordnara % Auor: Francsco M. Gonzalez-Longa % Fecha: March 9, 6 % Precaucón: Solamene para usos de enseñanza. n =; % Comenzo del nervalo fnal =; % Fnal del nervalo Y =; % Condcon ncal h=.; % Paso de negracon n=(fnal-n)/h; % Numero de Punos Necesaros Y=zeros(n,); % Incalzar el vecor de Salda =zeros(n,); % Incalzar el vecor de empo Y()=Y; ()=n; for =:n (+)=n+*h; K=F(Y(),()); K=F(Y()+/*K*h,()+/*h); K3=F(Y()-K*h+*K*h,()+h); Y(+)=Y()+h*(K+4*K+K3)/6; Cuaro Orden Para el caso del Runge-Kua de cuaro orden, se posee las sguenes ecuacones aproxmanes: K = hf 4 (, Y ) ( + h, Y + + K + K + K ) h K = hf +, Y + K 3 3 h K3 = hf +, Y + + K + K K = hf Y ( K + 3K + 3K K ) 8 Tabla 6. Resulados paso a paso, abulados por el Méodo Runge-Kua de Cuaro Orden 3 (4) + = Y (4) Y( ) Se codfcó las ecuacones aproxmanes en el archvo srpc de MATLAB, llamado RK4Solve.m. K K K3 K4 Y Tempo Toal Empleado:.37 seconds. Francsco M. Gonzalez-Longa, Febrero, 6

9 Capíulo II 9 % Méodo de Runge Kua de Cuaro Orden para Resolver una Ecuacón Dferencal Ordnara % Auor: Francsco M. González-Longa % Fecha: March 9, 6 % Precaucón: Solamene para usos de enseñanza. n =; % Comenzo del nervalo fnal =; % Fnal del nervalo Y =; % Condcón ncal h=.; % Paso de negracon n=(fnal-n)/h; % Numero de Punos Necesaros Y=zeros(n,); % Incalzar el vecor de Salda =zeros(n,); % Incalzar el vecor de empo Y()=Y; ()=n; for =:n (+)=n+*h; K=F(Y(),()); K=F(Y()+/*K*h,()+/*h); K3=F(Y()+K*h,()+/*h); K4=F(Y()+K3*h,()+h); Y(+)=Y()+h*(K+*K+*K3+K4)/6;.4 Comparacón de Resulados A connuacón se muesra una abla resumen con los resulados obendos de los dferenes méodos. Euler Euler Modfcado Heun Solucón Exaca Runge-Kua do Runge-Kua 3 ro RungeKua 4 o Solucón Exaca En la sguene grafca se muesra una comparacón del error comedo por cada uno de los méodos. Solo para ser empleado con obevo de evaluacón, o académcos. Prohbdo la reproduccón oal o parcal de ese documeno. Francsco M. Gonzalez-Longa, Febrero, 6

10 Méodos Numércos Aplcados a la Esabldad en Ssemas de Poenca Solo para ser empleado con obevo de evaluacón, o académcos. Prohbdo la reproduccón oal o parcal de ese documeno. ERROR[Y()] Euler Ralson RK3 RK4 Francsco M. Gonzalez-Longa, Febrero, 6

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden Tema 5. Análss Transoro de Crcuos de Prmer y egundo Orden 5.1 Inroduccón 5.2 Crcuos C sn fuenes 5.3 Crcuos C con fuenes 5.4 Crcuos L 5.5 Crcuos LC sn fuenes v() 5.6 Crcuos LC con fuenes () C () C v( )

Más detalles

CRÉDITO PESCA. Consideraciones del producto:

CRÉDITO PESCA. Consideraciones del producto: CRÉDITO PESCA Consderacones del produco: Los crédos se oorgan para el fnancameno de las acvdades de pesca: comerco, exraccón y/o ndusralzacón. Se basan en la capacdad de pago de los clenes y su hsoral

Más detalles

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC 9. IUITOS DE SEGUNDO ODEN Y 9.. INTODUIÓN En el capíulo aneror mos como los crcuos ressos con capacancas o los crcuos ressos con nducancas enen arables que son calculadas medane ecuacones dferencales de

Más detalles

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D PROBEMAS E IRUITOS ON TRANSISTORES Problema : eermnar los punos de funconameno de los dsposvos semconducores de los sguenes crcuos: +2V +2V +2V β= β= K β= β= (a) (b) (c) (d) Problema 2: eermnar el puno

Más detalles

Tema 2 Circuitos Dinámicos de Primer Orden

Tema 2 Circuitos Dinámicos de Primer Orden Tema 2: Crcuos Dnámcos de Prmer Orden Tema 2 Crcuos Dnámcos de Prmer Orden A nade en su sano juco se le habría ocurrdo preparar enonces odos esos componenes (ranssores, ressores y condensadores a parr

Más detalles

EJERCICIOS: Análisis de circuitos en el dominio del tiempo

EJERCICIOS: Análisis de circuitos en el dominio del tiempo EJEIIOS: Análss de crcuos en el domno del empo. égmen ransoro y permanene. En cada uno de los sguenes crcuos el nerrupor ha esado abero largo empo. Se cerra en. Deermnar o I, dbujar la onda correspondene

Más detalles

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos 4o. Encuenro. Maemácas en odo y para odos. Uso de las dsrbucones de probabldad en la smulacón de ssemas producvos Leopoldo Eduardo Cárdenas Barrón lecarden@esm.mx Deparameno de Ingenería Indusral y de

Más detalles

Cálculo y Estadística

Cálculo y Estadística Cálculo y Esadísca PROBABILIDAD, VARIABLES ALEATORIAS Y DISTRIBUCIONES ª Prueba de Evaluacón Connua 0--5 Tes en Moodle correspondene a la pare de Probabldad, Varables Aleaoras y Dsrbucones ( Punos).- Una

Más detalles

CRÉDITO AGRICOLA. Consideraciones del producto:

CRÉDITO AGRICOLA. Consideraciones del producto: Versón: CA-5.04. CRÉDITO AGRICOLA Consderacones del produco: Son crédos que se oorgan para fnancameno de acvdades agropecuaras y se basan en la capacdad de pago de los clenes y su hsoral credco. Se conceden

Más detalles

LA MODELIZACIÓN DE PROCESOS

LA MODELIZACIÓN DE PROCESOS L MODELIZIÓN DE ROESOS En ese capíulo, se presena una meodología en desarrollo para modelos dnámcos de procesos químcos. Después de esudar ese capíulo, el esudane debería ser capaz de: Escrbr las ecuacones

Más detalles

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS 3 39 Ssema de generacón elécrca con pla de combusble de óxdo sóldo almenado con resduos foresales y su opmzacón medane algormos basados

Más detalles

UNIVERSIDAD DE OVIEDO

UNIVERSIDAD DE OVIEDO Trabajaremos con módulos foovolacos de capa fna. resena ceras venajas por el dferene comporameno que esa ecnología ene ane la radacón solar y las condcones ambenales: Mejor comporameno de la produccón

Más detalles

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente.

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente. AUTO-INDUCTANCIA: Una bobna puede nducr una fem en s msma.s la correne de una bobna camba, el flujo a ravés de ella, debdo a la correne, ambén se modfca. Así como resulado del cambo de la correne de la

Más detalles

Movimiento Rectilíneo Uniformemente Acelerado (MRUA)

Movimiento Rectilíneo Uniformemente Acelerado (MRUA) 7. Movmeno Reclíneo Unorme Acelerado Movmeno Reclíneo Unormemene Acelerado (MRUA) elocdad Meda o elocdad promedo: La velocdad meda represena la relacón enre el desplazameno oal hecho por un móvl y el empo

Más detalles

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE)

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE) EL METODO PERT (PROGRM EVLUTION ND REVIEW TECHNIQUE) METODO DE PROGRMCION Y CONTROL DE PROYECTOS Desarrollado en 1958, para coordnar y conrolar la consruccón de submarnos Polars. El méodo PERT se basa

Más detalles

I EJERCICIOS RESUELTOS II EXÁMENES DE ECONOMETRÍA III EXÁMENES DE ECONOMETRÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMETRÍA

I EJERCICIOS RESUELTOS II EXÁMENES DE ECONOMETRÍA III EXÁMENES DE ECONOMETRÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMETRÍA I EJERCICIOS RESUELOS II EXÁMENES DE ECONOMERÍA III EXÁMENES DE ECONOMERÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMERÍA Noa: Los ejerccos con asersco no corresponden al programa acual de Prncpos

Más detalles

TEORÍA DE CIRCUITOS - 2 LEYES DE KIRCHHOFF. - Variables relacionadas. v(t) = v 1 (t) - v 2 (t) i(t) = i 1 (t) = i 2 (t) v(t)

TEORÍA DE CIRCUITOS - 2 LEYES DE KIRCHHOFF. - Variables relacionadas. v(t) = v 1 (t) - v 2 (t) i(t) = i 1 (t) = i 2 (t) v(t) TOÍ D UTOS /24 TOÍ D UTOS 2/24 UTO LÉTO DSPOSTOS LÉTOS Y LTÓNOS UTO LÉTO L LS ONDUTOS DSPOSTOS LÉTOS O LTÓNOS UTO LÉTO: DFNONS M NUDOS NO NUDO (ONXÓN N S) 2 3 N 4 ONXÓN N PLLO N2 5 6 MODLO D UTO LÉTO L

Más detalles

Consideraciones generales sobre dinámica estructural

Consideraciones generales sobre dinámica estructural Capíulo Consderacones generales sobre dnámca esrucural Inroduccón El obeo de la dnámca esrucural es el análss de esrucuras bao cargas dnámcas, es decr cargas que varían en el empo. Aunque la mayoría de

Más detalles

MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3

MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3 MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3 Una fuene lumnosa eme luz monocromáca de longud de onda en el vacío lo = 6 l0-7 m (luz roja) que se propaga en el agua de índce de refraccón

Más detalles

Recuperación de la Información

Recuperación de la Información ssema de recuperacón de nformacón Recuperacón de la Informacón consula documenos mach Documenos Concepos Báscos relevane? ssema de recuperacón de nformacón palabras clave ndexado Las palabras clave (keywords)

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

Ejercicios resueltos y exámenes

Ejercicios resueltos y exámenes Prncpos de Economería y Economería Empresaral I Ejerccos resuelos y exámenes Recoplados por Ezequel Urel I EJERCICIOS RESUELOS II EXÁMENES DE ECONOMERÍA III EXÁMENES DE ECONOMERÍA EMPRESARIAL IV EXÁMENES

Más detalles

7. CAPACITANCIA E INDUCTANCIA

7. CAPACITANCIA E INDUCTANCIA 7. APAITANIA E INDUTANIA 7.. INTRODUIÓN El elemeno paso e os ermnales que hemos so hasa el momeno, eso es la Ressenca, presena un comporameno lneal enre su olaje y correne. Eso prouce ecuacones algebracas

Más detalles

Estadística de Precios de Vivienda

Estadística de Precios de Vivienda Esadísca de recos de Vvenda Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

Valoración de opciones financieras por diferencias finitas

Valoración de opciones financieras por diferencias finitas Valoracón de opcones fnanceras por dferencas fntas José Mª Pesquero Fernández Dpto. Nuevos Productos - Tesorería BBVA mpesquero@grupobbva.com Indce INDICE. Introduccón. La ecuacón dferencal 3. Dferencas

Más detalles

Mecanismos de palanca. Apuntes.

Mecanismos de palanca. Apuntes. Mecansmos de palanca. Apunes. Oreses González Qunero Deparameno de Ingenería Mecánca Faculad de de Ingenerías Químca y Mecánca 2007 1 1.- Inroduccón. El análss de los mecansmos y máqunas ene por objevo

Más detalles

Convertidores Digital-Analógico y Analógico-Digital

Convertidores Digital-Analógico y Analógico-Digital Convertdores Dgtal-Analógco y Analógco-Dgtal Conversón Dgtal-Analógca y Analógca-Dgtal Con estos crcutos se trata de consegur una relacón bunívoca entre una señal analógca y una dgtal o vceversa. Las magntudes

Más detalles

Optimización del balance de carga en circuitos de distribución primaria

Optimización del balance de carga en circuitos de distribución primaria energéca Vol. XXX, No. /009 TRABAJOS TEORCOEXPERMENTALES Opmzacón del balance de carga en crcuos de dsrbucón prmara gnaco Pérez Recbdo: Ocubre del 008 Aprobado: Dcembre del 008 Resumen/ Absrac Las medcones

Más detalles

Dualidad entre procesos termodinámicos y electromecánicos

Dualidad entre procesos termodinámicos y electromecánicos ENERGÍA Y COENERGÍA EN IEMA ELECROMECÁNICO REALE, DEDE PROCEDIMIENO ERMODINÁMICO CLÁICO Alfredo Álvarez García Profesor de Inenería Eléctrca de la Escuela de Inenerías Industrales de adajoz. Resumen La

Más detalles

CIRCUITOS CON DIODOS.

CIRCUITOS CON DIODOS. ema 3. Crcus cn dds. ema 3 CCUOS CON OOS. 1.- plcacón elemenal..- Crcus recradres (lmadres)..1.- eslucón de un crcu recradr ulzand las cuar aprxmacnes del dd..1.1.- eslucón ulzand la prmera aprxmacón..1..-

Más detalles

Medida de los radios de curvatura de un espejo cóncavo y otro convexo. Medida de la focal de una lente convergente y otra divergente.

Medida de los radios de curvatura de un espejo cóncavo y otro convexo. Medida de la focal de una lente convergente y otra divergente. TÉCNICAS EXPERIMENTALES II. MÓDULO DE ÓPTICA PRÁCTICA I: BANCO ÓPTICO. OBJETIVO DE LA PRÁCTICA Medda de los rados de curvaura de un espejo cóncavo y oro convexo. Medda de la focal de una lene convergene

Más detalles

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida Análss de supervvenca Alber Sorrbas Grup de Boesadísca I Bomaemàca Deparamen de Cènces Mèdques Bàsques Unversa de Lleda Esquema general Inroduccón al análss de supervvenca Tpos de esudos El concepo de

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

El Método de Monte Carlo para la Solución de la Ecuación de Transporte

El Método de Monte Carlo para la Solución de la Ecuación de Transporte Anál de Reacore Nucleare Faculad de Ingenería-UNAM Juan Lu Franço El Méodo de Mone Carlo para la Solucón de la Ecuacón de Tranpore En la prácca, mucho problema de ranpore no e pueden reolver por méodo

Más detalles

1. CONCEPTOS FUNDAMENTALES Magnitudes eléctricas y unidades 1.2. Componentes, dispositivos y circuitos 1.3. Señales 1.4. Leyes de Kirchhoff

1. CONCEPTOS FUNDAMENTALES Magnitudes eléctricas y unidades 1.2. Componentes, dispositivos y circuitos 1.3. Señales 1.4. Leyes de Kirchhoff Concepos fundamenales Índce CONCEPOS FUNDMENLES Magnudes elécrcas y undades Componenes, dsposos y crcuos 3 Señales 4 Leyes de Krchhoff Concepos fundamenales Magnudes elécrcas y undades Magnud es una propedad

Más detalles

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos Curso 26/7 Economería II Tema 9: Modelos con reardos dsrbudos (I) 1. Análss de los efecos dnámcos en un modelo de reardos dsrbudos 2. La dsrbucón de reardos Tema 9 1 9.1. Análss de los efecos dnámcos en

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES oro hasco rgoyen, Dpo. Economía Aplcada, UAM. EJEMPLO DE MODELOS EONOMÉTROS Ver el aso 9 (pag. 55 y ss.) del lbro de A. Puldo y A. López (999), Predccón y Smulacón aplcada a la economía y gesón de empresas.

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departamento Admnstratvo Naconal de Estadístca Dreccón de Censos Demografía METODOLOGIA ESTIMACIONES Y PROYECCIONES DE POBLACIÓN, POR ÁREA, SEXO Y EDAD PARA LOS DOMINIOS DE LA GRAN ENCUESTA INTEGRADA DE

Más detalles

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica . Inoduccón a las Ondas. Ondas en cuedas 3. Ondas sonoas acúsca Modulo II: Ondas. Ecuacón de ondas en una cueda ensa. Enegía de una onda en una cueda.3 Aenuacón.4 Refleón ansmsón de ondas.5 Supeposcón

Más detalles

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C RESISTENCIS EN SERIE Y LEY DE LS MLLS V V 2 V 3 C D Fgura R R 2 R 3 Nomenclatura: Suponemos que el potencal en es mayor que el potencal en, por lo tanto la ntensdad de la corrente se mueve haca la derecha.

Más detalles

MODELO DE PROCESOS TECNOLOGÍAS DE LA INFORMACIÓN - GESTIÓN DEL SERVICIO

MODELO DE PROCESOS TECNOLOGÍAS DE LA INFORMACIÓN - GESTIÓN DEL SERVICIO MODELO DE PROCESOS TECNOLOGÍAS DE LA INFORMACIÓN - GESTIÓN DEL SERVICIO INTRODUCCION Gestón de Servcos de TI: Entrega de servcos de TI, que cumplan con los requstos del negoco, de una caldad aceptable

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Undad Central del Valle del Cauca Facultad de Cencas Admnstratvas, Económcas y Contables Programa de Contaduría Públca Curso de Matemátcas Fnanceras Profesor: Javer Hernando Ossa Ossa Ejerccos resueltos

Más detalles

Introducción a la Teoría de Inventarios

Introducción a la Teoría de Inventarios Clase # 4 Las organzacones esán consanemene vendo como camba el nvel de sus nvenaros en el empo. Inroduccón a la Teoría de Invenaros El ener un nvel bajo de nvenaros mplca resgos para no sasacer la demanda

Más detalles

APLICACIONES TÍPICAS DEL AO

APLICACIONES TÍPICAS DEL AO 3 PLIIONES TÍPIS DEL O 3.. INTODUIÓN Exsen nnumerables aplcacnes para ls O, an lneales cm n lneales, muchas de las cuales pueden ser mejradas medane pequeñas aracnes. El gran prblema, es sn duda saber

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR DECANATO DE ESTUDIOS DE POSTGRADO COORDINACIÓN DE POSTGRADO EN INGENIERÍA QUÍMICA MAESTRIA EN INGENIERÍA QUÍMICA

UNIVERSIDAD SIMÓN BOLÍVAR DECANATO DE ESTUDIOS DE POSTGRADO COORDINACIÓN DE POSTGRADO EN INGENIERÍA QUÍMICA MAESTRIA EN INGENIERÍA QUÍMICA UNIVERSIDAD SIMÓN BOLÍVAR DECANAO DE ESUDIOS DE POSGRADO COORDINACIÓN DE POSGRADO EN INGENIERÍA QUÍMICA MAESRIA EN INGENIERÍA QUÍMICA APLICACIÓN DEL MÉODO POD PARA LA OBENCIÓN DE UN MODELO REDUCIDO DE

Más detalles

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización. Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón

Más detalles

ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL

ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL José E. Durán Lma, Ofcal de Asunos Económcos Claudo Aravena, Analsa Esadísco Carlos Ludeña, Consulor Inernaconal Asesoría Técnca de la

Más detalles

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades oa de Clase 5 Inroduccón a modelos de Daa Panel: Generaldades. Por qué daos de panel? Los modelos de daos de panel son versones mas generales de los modelos de core ansversal seres de empo vsos hasa el

Más detalles

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena.

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena. UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE COURNOT. Autores: García Córdoba, José Antono; josea.garca@upct.es Ruz Marín, Manuel; manuel.ruz@upct.es Sánchez García, Juan Francsco; jf.sanchez@upct.es

Más detalles

METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP

METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP MARZO DE 20 TABLA DE CONTENIDO. GENERALIDADES:... 3.. VALOR BASE... 3.2. NÚMERO DE EMISORES QUE COMPONEN EL ÍNDICE... 3.3. ACCIONES POR EMISOR... 3.4. PARTICIPACIÓN

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Undad III: ermodnámca del Equlbro Fugacdad Fugacdad para gases, líqudos y sóldos Datos volumétrcos 9/7/ Rafael Gamero Fugacdad ropedades con varables ndependentes y ln f ' Con la dfncón

Más detalles

CONSEJERÍA DE EDUCACIÓN

CONSEJERÍA DE EDUCACIÓN BOLETÍN OFICIAL DE CONSEJERÍA DE EDUCACIÓN Orn EDU/32/2011, 18 abrl, por la que se termnan las concrecones y el procedmento convaldacón entre las enseñanzas profesonales músca y danza y la educacón secundara

Más detalles

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros Perturbacón de los valores propos smples de matrces de polnomos dependentes dferencablemente de parámetros M Isabel García-Planas 1, Sona Tarragona 2 1 Dpt de Matemàtca Aplcada I, Unverstat Poltècnca de

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO

ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO Fabrco Morán Rugel 1, José Zúñga Basdas 2, Francsco Marro García 3 RESUMEN Después de haber analzado las écncas

Más detalles

315 M/R Versión 1 Segunda Parcial 1/7 Lapso 2009/2

315 M/R Versión 1 Segunda Parcial 1/7 Lapso 2009/2 35 M/R Versón Segunda Parcal /7 UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Segunda Parcal VERSIÓN:

Más detalles

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes.

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes. REPÚLI OLIVRIN DE VENEZUEL MINISTERIO DEL PODER POPULR PR L DEFENS UNIVERSIDD NIONL EPERIMENTL DE L FUERZ RMD NÚLEO ZULI DIVISIÓN DE SERETRÍ RRER: SIGNTUR: MT - NOMRE DEL PROFESOR: ILO SIO DE INGENIERI

Más detalles

315 M de R Versión 1 Segunda Parcial 1/8 Lapso 2008/2

315 M de R Versión 1 Segunda Parcial 1/8 Lapso 2008/2 5 M de R Versón Segunda Parcal /8 Lapso 8/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 5 MOMENTO: Segunda Parcal

Más detalles

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías Resumen de los teoremas fundamentales del análss estructural aplcados a celosías INTRODUCCIÓN Fuerzas aplcadas y deformacones de los nudos (=1,n) ESTICIDD Tensón =Ν/Α. Unforme en cada seccón de la arra.

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Dispositivos Electrónicos

Dispositivos Electrónicos Dsposos Elecróncos AÑO: 2010 TEMA 2: NOCONES BÁSCAS DE TEOÍA DE CCUTOS afael de Jesús Naas González Fernando Vdal Verdú 1/39 TEMA 2: NOCONES BÁSCAS DE TEOÍA DE CCUTOS 2.1. Magnudes Elécrcas. Crcuos Elécrcos

Más detalles

Trabajo Práctico N 12

Trabajo Práctico N 12 Fscquímca IBEX Guía de Trabajs Práccs 2010 Trabaj Prácc N 12 - néca pr Plarmería- Objev: Deermnar la cnsane de velcdad de la reaccón de hdrólss de la sacarsa y esudar el efec de la cncenracón de Hl sbre

Más detalles

Distorsiones creadas por la regulación colombiana: El Asset Swap Spread como proxy del Credit Default Swap en el mercado local.

Distorsiones creadas por la regulación colombiana: El Asset Swap Spread como proxy del Credit Default Swap en el mercado local. Dsorsones creadas por la regulacón colombana: El Asse Swap Spread como proxy del Cred Defaul Swap en el mercado local. Andrés Gómez Caegoría Lbre Dsorsones creadas por la regulacón colombana: El Asse Swap

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

Cifrado de imágenes usando autómatas celulares con memoria

Cifrado de imágenes usando autómatas celulares con memoria Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano

Más detalles

Estimación de una frontera de eficiencia técnica en el mercado de seguros uruguayo

Estimación de una frontera de eficiencia técnica en el mercado de seguros uruguayo Esmacón de una fronera de efcenca écnca en el mercado de seguros uruguao Faculad de Cencas Económcas de Admnsracón Unversdad de la Repúblca María Eugena Sann Fernando Zme Tel.: 598 709578 Tel.: 598 70008

Más detalles

Héctor Maletta. Análisis de panel con variables categóricas

Héctor Maletta. Análisis de panel con variables categóricas Hécor Malea Análss de panel con varables caegórcas Buenos Ares, 2012 CONTENIDO 1. Inroduccón al análss de panel... 1 1.1. El desarrollo hsórco del análss de panel... 1 1.2. El prsma de daos... 3 1.3. Clasfcacón

Más detalles

Circuito Monoestable

Circuito Monoestable NGENEÍA ELETÓNA ELETONA (A-0 00 rcuto Monoestable rcuto Monoestable ng. María sabel Schaon, ng. aúl Lsandro Martín Este crcuto se caracterza por presentar un únco estado estable en régmen permanente, y

Más detalles

METODOLOGÍA ENERGÍA ELÉCTRICA

METODOLOGÍA ENERGÍA ELÉCTRICA Insuo Naconal de Esadíscas SUBDIRECCIÓN TÉCNICA Depo. Invesgacón y Desarrollo Esadísco SUBDIRECCIÓN DE OPERACIONES Subdepo. Esadíscas Secorales METODOLOGÍA ENERGÍA ELÉCTRICA GGM/GMA Sanago, 26 Dcembre

Más detalles

Dinero, precios, tasa de interés y actividad económica: un modelo del caso colombiano (1984:I 2003:IV)

Dinero, precios, tasa de interés y actividad económica: un modelo del caso colombiano (1984:I 2003:IV) Dnero, precos, asa de nerés y acvdad económca: un modelo del caso colombano (984:I 23:IV) José Fernando Escobar. y Carlos Eseban osada. esumen A parr de un esquema de ofera y demanda de dnero se esmó un

Más detalles

EL AMPLIFICADOR OPERACIONAL.

EL AMPLIFICADOR OPERACIONAL. Tema 6. El mplfcador peraconal. Tema 6 EL MPLIFICD PECINL.. Introduccón... Símbolos y termnales del amplfcador operaconal... El amplfcador operaconal como amplfcador de tensón..3. Conceptos báscos de realmentacón..4.

Más detalles

Circuitos Rectificadores 1/8

Circuitos Rectificadores 1/8 Crcuos Recfcadores 1/8 1. Inroduccón Un crcuo recfcador es un crcuo que ene la capacdad de converr una señal de c.a. en una señal de c.c. pulsane, ransformando así una señal bpolar en una señal monopolar.

Más detalles

Representación VEC. Planteamiento de un sistema de ecuaciones. Esquema de retroalimentación. , pero requiere

Representación VEC. Planteamiento de un sistema de ecuaciones. Esquema de retroalimentación. , pero requiere Represenacón VEC Dado que las relacones económcas enre varables no se presenan esrcamene en un sendo específco, es decr, puede exsr enre ellas esquemas de reroalmenacón o complejos mecansmos de rasmsón

Más detalles

Capítulo 2. SISTEMAS DE VARIOS GRADOS DE LIBERTAD

Capítulo 2. SISTEMAS DE VARIOS GRADOS DE LIBERTAD Capíulo. SISTEMAS DE VARIOS GRADOS DE LIBERTAD. orulacón de odelos aeácos para los sseas ecáncos. Con los éodos nuércos esenes hoy en día, prncpalene el de eleenos fnos, es posble analzar una áquna en

Más detalles

Métodos Nodales Híbridos en la Solución de las Ecuaciones de Difusión en Geometría XY

Métodos Nodales Híbridos en la Solución de las Ecuaciones de Difusión en Geometría XY Energía Nuclear y Segurdad Radológca: Nuevos Retos y Perspectvas XIV Congreso Anual de la SNM/XXI Reunón Anual de la SMSR Guadalajara, Jalsco, Méxco, - de Septembre, (, Memoras en CDROM Métodos Nodales

Más detalles

PREDICCIÓN DE VOLATILIDAD CON LOS ÍNDICES DE VOLATILIDAD VIX Y VDAX

PREDICCIÓN DE VOLATILIDAD CON LOS ÍNDICES DE VOLATILIDAD VIX Y VDAX PREDICCIÓN DE VOLILIDD CON LOS ÍNDICES DE VOLILIDD VIX Y VDX El objevo de ese rabajo es esudar la capacdad predcva de los índces de volaldad. Para el perodo 99-0, analzamos daos de los índces amercanos

Más detalles

SISTEMAS DE MODULACION

SISTEMAS DE MODULACION SISTEMS DE MODULCION Modulacón de es Connuas Es el proceso medane el cual un parámero (amplud o ángulo) de una poradora snusodal se hace varar en forma nsanánea proporconalmene a una señal mensaje de aja

Más detalles

16/07/2012 P= F A. Pascals. Bar

16/07/2012 P= F A. Pascals. Bar El Estado Gaseoso El Estado Gaseoso Undad I Característcas de los Gases Las moléculas ndvduales se encuentran relatvamente separadas. Se expanden para llenar sus recpentes. Son altamente compresbles. enen

Más detalles

CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS

CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS En los capítulos anterores se han analzado varos modelos usados en la evaluacón de stocks, defnéndose los respectvos parámetros. En las correspondentes fchas de ejerccos

Más detalles

INDICE DE COSTES DE LA CONSTRUCCIÓN

INDICE DE COSTES DE LA CONSTRUCCIÓN INDICE DE COSTES DE LA CONSTRUCCIÓN. INTRODUCCION Y OBJETIVOS El índce de coses de la consruccón es un ndcador coyunural que elabora el Mnsero de Fomeno y que ene como objevo medr la evolucón, en érmnos

Más detalles

Clasificación de Música por Género utilizando Redes Neuronales Artificiales

Clasificación de Música por Género utilizando Redes Neuronales Artificiales Clasfcacón de Músca por Género ulzando Redes Neuronales Arfcales Elkn García, Gullermo Pacheco y Germán Mancera 2 Unversdad de los Andes Carrera N 8A Bogoá, Colomba {elkn-ga, or-pach}@unandes.edu.co 2

Más detalles

Evaluación de la estabilidad de taludes cohesivos de pie 1

Evaluación de la estabilidad de taludes cohesivos de pie 1 Evaluacón de la establdad de taludes cohesvos de pe 1 Julo Cesar Quroz Vaca 2 Profesor Unverstaro e Ingenero Cvl Santa Cruz, 3 de juno del 2015 Resumen Los métodos para determnar el factor de segurdad

Más detalles

Análisis de la competencia en un mercado mayorista de electricidad: el caso de España

Análisis de la competencia en un mercado mayorista de electricidad: el caso de España Fac. CC. Económcas y Empresarales Unversdad de La Laguna Fac. CC. Económcas y Empresarales Unv. de Las Palmas de Gran Canara Análss de la compeenca en un mercado mayorsa de elecrcdad: el caso de España

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

Matemática Financiera Sistemas de Amortización de Deudas

Matemática Financiera Sistemas de Amortización de Deudas Matemátca Fnancera Sstemas de Amortzacón de Deudas 7 Qué aprendemos Sstema Francés: Descomposcón de la cuota. Amortzacones acumuladas. Cálculo del saldo. Evolucón. Representacón gráfca. Expresones recursvas

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

Determinación de Puntos de Rocío y de Burbuja Parte 1

Determinación de Puntos de Rocío y de Burbuja Parte 1 Determnacón de Puntos de Rocío y de Burbuja Parte 1 Ing. Federco G. Salazar ( 1 ) RESUMEN El cálculo de las condcones de equlbro de fases líqudo vapor en mezclas multcomponentes es un tema de nterés general

Más detalles

1.- Elegibilidad de estudiantes. 2.- Selección de estudiantes - 2 -

1.- Elegibilidad de estudiantes. 2.- Selección de estudiantes - 2 - Unversdad Euskal Herrko del País Vasco Unbertstatea NORMATIVA PARA SOCRATES/ERASMUS Y DEMÁS PROGRAMAS DE MOVILIDAD AL EXTRANJERO DE ALUMNOS (Aprobada en Junta de Facultad del día 12 de marzo de 2002) La

Más detalles

Ciencia en su PC ISSN: 1027-2887 cpc@megacen.ciges.inf.cu. Centro de Información y Gestión Tecnológica de Santiago de Cuba. Cuba

Ciencia en su PC ISSN: 1027-2887 cpc@megacen.ciges.inf.cu. Centro de Información y Gestión Tecnológica de Santiago de Cuba. Cuba Cenca en su PC ISSN: 107-887 cpc@megacen.cges.nf.cu Cenro de Informacón y Gesón Tecnológca de Sanago de Cuba Cuba Herold-García, Slena; Escobedo-Nco, Mrela SEGMENTACIÓN DE IMÁGENES MÉDICAS CON LA APLICACIÓN

Más detalles

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica)

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica) IUITOS EÉTIOS (apuntes para el curso de Electrónca) os crcutos eléctrcos están compuestos por: fuentes de energía: generadores de tensón y generadores de corrente y elementos pasos: resstores, nductores

Más detalles

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo.

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo. 1 A qué se denomna malla en un crcuto eléctrco? Solucón: Se denomna malla en un crcuto eléctrco a todas las trayectoras cerradas que se pueden segur dentro del msmo. En un nudo de un crcuto eléctrco concurren

Más detalles

Determinantes de los spreads de tasas de los bonos. corporativos: revisión de la literatura

Determinantes de los spreads de tasas de los bonos. corporativos: revisión de la literatura UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS ECONÓMICAS Y ADMINISTRATIVAS ESCUELA DE ECONOMÍA Y ADMINISTRACIÓN Deermnanes de los spreads de asas de los bonos corporavos: revsón de la leraura SEMINARIO PARA

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles