SEGUNDA LEY DE NEWTON

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SEGUNDA LEY DE NEWTON"

Transcripción

1 SEGUNDA LEY DE NEWTON Isc Newton ( ), ncido el ño que urió Glileo, es el principl rquitecto de l ecánic clásic, l cul se resue en sus tres leyes del oviiento. Ls Leyes de Newton son tres principios prtir de los cules se explicn l yor prte de los probles plntedos sobre el oviiento de los cuerpos. En concreto, l relevnci de ests leyes rdic en spectos: dos Por un ldo, constituyen, junto con l trnsforción de Glileo, l bse de l ecánic clásic; Por otro, l cobinr ests leyes con l Ley de l grvitción universl, se pueden deducir y explicr ls Leyes de Kepler sobre el oviiento plnetrio. Así, ls Leyes de Newton periten explicr tnto el oviiento de los stros, coo los oviientos de los proyectiles rtificiles credos por el ser huno, sí coo tod l ecánic de funcioniento de ls áquins. Su forulción teátic fue publicd por Isc Newton en 687 en su obr Philosophie Nturlis Principi Mthetic. No obstnte, l dináic de Newton, tbién lld dináic clásic, solo se cuple en los sistes de referenci inerciles. Ls tres leyes de Newton del oviiento son ls llds leyes clásics del oviiento. Ells iluinron por 200 ños el conociiento científico y no fueron objetds hst que Albert Einstein desrrolló l teorí de l reltividd en 905. Al estudir l prier Ley de Newton vios que si l resultnte de ls fuerzs que ctún sobre un cuerpo es cero, el objeto está en reposo, pernecerá en reposo y si está en oviiento pernecerá en oviiento en líne rect con velocidd constnte. Un ejeplo de esto puede encontrrse en el oviiento de los eteoritos y steroides, que vgn por el espcio en líne rect velocidd constnte, siepre que no se encuentren cercnos un cuerpo celeste que los desvíe de su tryectori rectilíne. L tendenci de un cuerpo resistir un cbio en su oviiento se ll inerci. L s es un edid de l inerci de un cuerpo. El peso se refiere l fuerz de grvedd sobre un cuerpo, que no debe confundirse con su s. Pero, si sobre el cuerpo ctú un fuerz resultnte distint de cero, el oviiento dej de ser rectilíneo unifore pr psr ser MRUV o curvilíneo o bs coss l vez.

2 Ls leyes de Newton se pueden deducir experientlente FUERZA Y ACELERACION: Ahor vos considerr un sencillo experiento, pr nlizr l relción entre l fuerz que ctú sobre el cuerpo y l celerción producid. Supongos que teneos un bloque uy ligero que puede overse sin fricción, sobre un superficie horizontl, y se le plic un fuerz horizontl coo se uestr en l figur. El bloque dquiere un celerción, l celerción que dquiere el bloque puede deterinrse idiendo el cbio en l rpidez en un tiepo conocido. Repitiendo el pso con diversos vlores de l fuerz F, coprobos que: Si plicos l bloque fuerzs 2F, 3F, 4F..., observos que l celerción es 2, 3, 4,... luego del experiento concluios que: L fuerz F que ctú sobre un cuerpo es directente proporcionl l celerción que dquiere. LA ACELERACIÓN ES DIRECTAMENTE PROPORCIONAL A LA FUERZA α F ( / s² ) 0,5 0,25 = kg = 2 kg = 4 kg F ( N )

3 FUERZA Y MASA: Est vez ntendreos constnte l fuerz plicd F, y vrireos l s gregndo sucesivente, bloques de igul tño y s; coprobos que l ser colocdos bloques de ss 2, 3, 4... observos que l celerción es 2, 3,,... ; tbulndo los vlores de y 4 obteneos l grfic djunt Luego del experiento concluios que: si l fuerz F no cbi, entonces un uento en l s producirá un disinución en l celerción LA ACELERACIÓN ES INVERZAMENTE PROPORCIONAL CON LA MASA (/s 2 ) α (Kg) Por lo tnto, prtir de los experientos nteriores estos preprdos pr enuncir l segund ley de Newton que estblece lo siguiente: Siepre que un fuerz resultnte distint de cero ctú sobre un cuerpo, produce un celerción en su is dirección y sentido que es directente proporcionl l fuerz e inversente proporcionl l s del cuerpo. F =

4 Si un prtícul se plicn vris fuerzs, l celerción es prlel l fuerz resultnte F 2 F R F F 3 Donde: F R : fuerz resultnte (N) : s del cuerpo (kg) : celerción n F R = F + F 2 + F F n = i= Tbién es posible estblecer ls relciones siguientes: F R = F Rx i + F Ry j + F R z k = x i + y j + z k F n o en for de coponentes: FRx = x, FRy = y, FRz = z L 2d. Ley de Newton sólo es vlid en rcos de referenci donde el observdor se encuentr en reposo o en M.R.U., est ley no es vlid en el rco de referenci donde el observdor se encuentr oviéndose con celerción.

5 APLICACIÓNES Un áquin de ATWOOD se copone de un pole fij con ss suspendids en cd ldo, este siste se puede utilizr pr deterinr l celerción de dos bloques, el esque siguiente corresponde un versión siplificd de uchos sistes industriles. En el esque ostrdo en l figur se tiene dos ss y 2, sbiendo que 2 >, hllr l celerción de los bloques considerndo que no hy roziento en l pole fij. 2 Solución Por 2d. Ley de Newton pr 2 y D.C.L. de D.C.L. de 2 T T 2 g g T = 2... () T g = 2 g... (2) Sundo () + (2) g g = ( + ) 2 2 = g( 2 ) + 2

6 FUERZAS EN EL MOVIMIENTO CIRCULAR Supongos que un óvil ps por un punto P con velocidd v entonces: ) b) c) Si sobre el óvil no ctuse fuerz lgun, ést continurí con M.R.U. por l r Ley de Newton. Si sobre el óvil ctuse un fuerz resultnte en l is dirección de l velocidd, ést ocsionrí un lterción solo en el ódulo de su velocidd pero no de su dirección por l 2d Ley de Newton. Si sobre él ctuse un fuerz resultnte oblicu l velocidd v, esto ocsionrí un lterción en el ódulo y en l dirección de su velocidd, produciendo un oviiento curvilíneo. (Figur 3) P v P F v P t v Figur Figur 2 c F Figur 3 En el te de cineátic circulr vios que en generl l velocidd de un óvil vrí en ódulo y dirección por tnto l celerción tiene dos coponentes: l celerción centrípet ( ) y l celerción tngencil ( ) (Figur 3). Luego por l segund ley de Newton l celerción debe tener l is dirección que l fuerz resultnte que ctú sobre el cuerpo. Entonces plicndo l 2d ley de Newton: c t F =... () Por cineátic circulr sbeos que: = c + t.... (2) Dirección tngencil F c F t R: Rdio de Circunferenci R F v F = (c + t) = c + t

7 De l su, l prier térino ( c )se le denoin fuerz centrípet (F c ), l segundo térino ( t ) se le denoin fuerz tngencil (F T ) por tnto: F = F c + F Coo t es colinel con l velocidd v entonces Fc es perpendiculr l velocidd v, luego Fc es perpendiculr FT, de los dos térinos Fc y FT l de yor trscendenci es Fc puesto que est es l cusnte de que l tryectori de l prtícul P se circulr T FUERZA CENTRÍPETA ( F c ). Es l fuerz resultnte en l dirección rdil dirigid hci el centro de giro y es l responsble del cbio de dirección de l velocidd, luego es l fuerz que origin todo oviiento circulr; est fuerz centrípet, se deterin plicndo l 2d Ley de Newton, se tiene: 2 F = donde: = v c c c R R c F c v 2 Fc = R

8 FUERZA TANGENCIAL ( F T ). Es l fuerz resultnte en l dirección tngencil y es l fuerz responsble del cbio del ódulo de l velocidd. Est fuerz posee l is dirección que l celerción tngencil, luego plicndo l segund Ley de Newton se tiene: F T = t Dirección tngencil Dirección rdil F c F t F R V R = Rdio de l Circunferenci L fuerz totl que ctú sobre el cuerpo es: Coo F c es perpendiculr F t entonces: F = F c + F T F F y F T, c F = F + F son los ódulos de ls fuerzs. 2 2 c t

9 MASA () L s de un cuerpo es un constnte que es crcterístic del iso, que no cbi cundo el cuerpo es trslddo de un lugr otro y que dináicente se nifiest coo el grdo de oposición que ofrece el cuerpo los cbios de su oviiento (inerci del cuerpo). Cunto yor es l s, ás se resiste un cuerpo ser celerdo. L s es un cntidd esclr, en el S.I. se expres en kg. L proporción entre l fuerz y l celerción es un constnte Gráfico: - F F 2 3 = F = F = = constnte 2 3 I) Pr un cuerpo de s soetid vris fuerzs. 2 (/s ) 3 2 F F 2 F 3 F (N).L pendiente de l rect es l invers de l s Pendiente = s II) Pr vrios cuerpos de ss distints, soetidos vris fuerzs. (/s 2 ) 2 3 F (N) Pendiente () = ; Pendiente (2) = ; Pendiente (3) = 2 3

10 NOTA: ) En dináic consideros l s, coo un constnte siepre que su velocidd se pequeñ en coprción con l velocidd de l luz ( c), puesto que l s vrí según un de ls ecuciones de l teorí de l reltividd edinte: = 0 2 v c v c 0 : s inicil (en reposo) : velocidd del cuerpo : velocidd de l luz = k/s (prox.) : s del cuerpo l velocidd v Si v <<< c = o = constnte PESO (W) Es l fuerz de trcción grvitcionl que ejerce un plnet sobre un cuerpo, su gnitud es dependiente de l celerción de l grvedd y de l s del cuerpo; está dirigid hci el centro del plnet.

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton SOLUCIORIO GUÍ ESTÁDR UL Dináic I: fuerz y leyes de ewton SGUICES016C3-16V1 Solucionrio guí Dináic I: fuerz y leyes de ewton Íte lterntiv Hbilidd 1 D Coprensión Coprensión 3 E plicción 4 D plicción 5 plicción

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Físic Generl Proyecto PMME - Curso 00 Instituto de Físic Fcultd de Inenierí UdelR TITULO DINÁMICA DE LA PARTÍCULA - MÁQUINA DE ATWOOD DOBLE. AUTORES: Gonzlo d Ros, Jvier Belzren, Dieo Aris. INTRODUCCIÓN

Más detalles

( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones.

( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones. DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA: PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: TEORÍA DE LOS EXPONENTES, LOS RADICALES Y LOS LOGARITMOS PRIMERO UNIDAD TEORÍA DE LOS EXPONENTES, LOS

Más detalles

j Actividades propuestas

j Actividades propuestas 58 7 CAMPO MAGNÉTCO j Sigue prcticndo. Un protón inicilente en reposo se celer bjo un diferenci de potencil de 5 voltios. A continución entr en un cpo gnético unifore, perpendiculr l velocidd, y describe

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 Nombre Prlelo. 16 de Julio de 2012 CADA UNO DE LOS TEMAS VALE 3.182 PUNTOS.

Más detalles

Fuerza: soluciones. 1.- Un móvil cuya masa es de 600 kg acelera a razón de 1,2 m/s 2. Qué fuerza lo impulsó?

Fuerza: soluciones. 1.- Un móvil cuya masa es de 600 kg acelera a razón de 1,2 m/s 2. Qué fuerza lo impulsó? Fuerz: soluciones 1.- Un óvil cuy s es de 600 kg celer rzón de 1,2 /s 2. Qué uerz lo ipulsó? = 600 kg = 1,2 /s 2 F = >>>>> F = 600 kg 1,2 /s 2 = 720 2.- Qué s debe tener un cuerpo pr que un uerz de 588

Más detalles

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa.

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa. Qué es el movimiento rectilíneo uniformemente vrido? Es un movimiento mecánico que experiment un móvil donde l tryectori es rectilíne y l celerción es constnte. Qué es l celerción? Es un mgnitud vectoril

Más detalles

Nivelación de Cálculo

Nivelación de Cálculo Guí de Conceptos y Ejercicios Aplicdos l Cálculo Desrrolldos y Propuestos 1. Potencis. Nivelción de Cálculo Ejeplo plicdo l cálculo: Clcul el siguiente líite: n n lí 5 Pr desrrollr este ejercicio de cálculo,

Más detalles

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( )

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( ) Isbel Nóvo Arechg FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: El tnto i y el tiepo n, tienen que estr correlciondos, es decir, referidos l iso período de tiepo, generlente

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE (MAS)

MOVIMIENTO ARMÓNICO SIMPLE (MAS) MOVIMIENO RMÓNICO SIMPLE (MS) E n nuestr vid cotidin con frecuenci se puede observr que existe otro tipo de oviiento, por ejeplo: el péndulo del reloj de tu cs, un sierr eléctric, un cepillo de dientes

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

BOLILLA 4 Movimiento Circular y Leyes de Newton

BOLILLA 4 Movimiento Circular y Leyes de Newton BOLILLA 4 Movimiento Circulr y Leyes de Newton 1. Movimiento Circulr. En usenci de fuerzs, el movimiento en líne rect y velocidd constnte continú indefinidmente. El movimiento circulr, sin embrgo, necesit

Más detalles

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

DINÁMICA Y LAS LEYES DE NEWTON

DINÁMICA Y LAS LEYES DE NEWTON DINÁMICA Y LAS LEYES DE NEWTON EXPERIENCIA N 7 Un propiedd de los cuerpos mteriles es su ms inercil. L fuerz es otro concepto nuevo, útil cundo se trt de describir ls intercciones entre cuerpos mteriles.

Más detalles

EJERCICIOS DE CINEMÁTICA PARA REPASAR

EJERCICIOS DE CINEMÁTICA PARA REPASAR EJERCICIOS DE CINEMÁTICA PARA REPASAR 1. L poición de un óvil, que igue un tryectori rectilíne, qued deterind por l ecución x = 5 + t, en l que tod l gnitude etán expred en el S.I. ) Arrnc el óvil dede

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

- 1 - PLANO INCLINADO

- 1 - PLANO INCLINADO - 1 - PLNO INCLINDO DESCOMPOSICIÓN DE L FUERZ PESO Suponé que tengo un cuerpo que está poydo en un plno que está inclindo un ángulo. L fuerz peso punt pr bjo de est ner: UN CUERPO POYDO EN UN PLNO INCLINDO.

Más detalles

Un vector es simplemente un segmento orientado. sentido. módulo a

Un vector es simplemente un segmento orientado. sentido. módulo a 1 1-MAGNITUDES ESCALARES Y ECTORIALES. CÁLCULO ECTORIAL BÁSICO -CINEMÁTICA. MAGNITUDES FUNDAMENTALES PARA EL ESTUDIO DEL MOIMIENTO. 3-CLASIFICACIÓN DE MOIMIENTOS. 4-COMPOSICIÓN DE MOIMIENTOS. PROYECTILES.

Más detalles

1.1. Respuestas a los ejercicios sobre MAS

1.1. Respuestas a los ejercicios sobre MAS .. Respuests los ejercicios sobre MAS Sbeos que l elongción de un..s. está dd por un ecución del tipo A cos ( t unque pudier ser igulente un función seno. Así que bstrí coprr con l ecución dd, pr obtener

Más detalles

El clásico problema del bloque y la cuña, pero esta vez no tan clásico... Santiago Silva y Guillermo Paredes.

El clásico problema del bloque y la cuña, pero esta vez no tan clásico... Santiago Silva y Guillermo Paredes. El cláico proble del bloque y l cuñ, pero et vez no tn cláico... INTRODUCCION: Sntigo Silv y Guillero rede. lnteo del proble: ROBLEMA 3 L figur uetr un cuñ de ángulo 30º, 60º, y 90º y ltur h que e encuentr

Más detalles

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución MOV. CICULAES: Un prto de un prque de trcciones consiste en un grn cilindro verticl que gir lrededor de su eje lo suficientemente rápido pr que culquier person que se encuentre dentro de él se mnteng pegd

Más detalles

CAPÍTULO. Aplicaciones

CAPÍTULO. Aplicaciones CAPÍTULO 3 Aplicciones 3.5 Trbjo de un fuerz 1 Se dice que un fuerz reliz un trbjo cundo cmbi el estdo de reposo o estdo de movimiento de un cuerpo. En este sentido, el trbjo que reliz un fuerz pr llevr

Más detalles

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones Modelo 6 Opción A Ejercicio º [ puntos] Deterin l función f : R R sbiendo que f ( que l rect tngente l gráfic de f en el punto de bscis es l rect. L rect tngente de f( en es " f( f (( " Coo e dicen que

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

EXPONENTES Y RADICALES

EXPONENTES Y RADICALES . UNIDAD EXPONENTES Y RADICALES Objetivo generl. Al terinr est Unidd resolverás ejercicios probles en los que pliques ls lees de los eponentes de los rdicles. Objetivos específicos:. Recordrás l notción

Más detalles

SISTEMA DE COORDENADAS CARTESIANAS

SISTEMA DE COORDENADAS CARTESIANAS SISTEMA DE COORDENADAS CARTESIANAS Definición El siste de coordends crtesins en el plno está constituido por dos rects perpendiculres que se intersecn en un punto O l que se le ll el origen. Un de ls rects

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

FUNCIONAMIENTO FÍSICO DE UN AEROGENERADOR

FUNCIONAMIENTO FÍSICO DE UN AEROGENERADOR FUCIOIEO FÍSICO DE U EOGEEDO 1.- Introducción El funcionmiento físico de un erogenerdor de imnes permnentes responde, como muchos sistems físicos, un ecución diferencil, cuy solución prticulr es l solución

Más detalles

ANEXO B3 ECUACIÓN DE CAMBIO DE CONDICIONES

ANEXO B3 ECUACIÓN DE CAMBIO DE CONDICIONES ANEXO B3 ECUACIÓN DE CAMBIO DE CONDICIONES Pág. 1 B3.1 ECUACIÓN DE CAMBIO DE CONDICIONES B3.1.1 CATENARIA B3.1.1.1 Curv de equilibrio de un hilo El conductor tendido entre dos poyos dquiere l for de un

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

Fundamentos Físicos de la Ingeniería Primer Cuatrimestre / 10 febrero 2012

Fundamentos Físicos de la Ingeniería Primer Cuatrimestre / 10 febrero 2012 . Sistems de referenci inercil y no inercil. Explicr en que consisten y l diferencis que existen entre ellos. . Un disco de rdio r está girndo lrededor de su eje de simetr con velocidd ngulr ω y celerción

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estido luno: Aquí encontrrás ls clves de corrección, ls hbiliddes y los procediientos de resolución socidos cd pregunt, no obstnte, pr reforzr tu prendizje es fundentl que sists l corrección edid por

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN DE TECNOLOGÍA AMBIENTAL

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN DE TECNOLOGÍA AMBIENTAL NO. TITULO DE LA PRACTICA: Multiplicción división de onoios polinoios. ASIGNATURA: Mteátics I HOJA: 1 DE: 7 UNIDAD TEMATICA: FECHA DE REALIZACIÓN: Mo de 007 NUMERO DE PARTICIPANTES RECOMENDABLE: 1 ELABORO:

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

5.4. Longitud de un Arco de Curva (Rectificación)

5.4. Longitud de un Arco de Curva (Rectificación) Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 7-2 SEMANA 1: APLICACIONES DE LA INTEGRAL 5.4. Longitud de un Arco de Curv (Rectificción)

Más detalles

Tema 9. Sistemas de Ecuaciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 9

Tema 9. Sistemas de Ecuaciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 9 Te Sistes de Ecuciones.- Introducción..- Sistes de Ecuciones Lineles..- Método de Guss..- Discusión de Sistes Lineles..- Regl de Crer..- Mtri Invers..- Ecuciones Mtriciles..- Rngo de un Mtri..- Ejercicios

Más detalles

TEMA 3: SISTEMAS DE ECUACIONES LINEALES Para empezar:

TEMA 3: SISTEMAS DE ECUACIONES LINEALES Para empezar: Pl Mdre Mols, nº 86- MADRID Correo: nsconsolcion@plnlf.es / Telf. 9 59 95 / 69 56 698 / F 9 55 59 / www.nsconsolcion.co TEMA : SISTEMAS DE ECUACIONES LINEALES Pr eper:. Discutir resolver los siguientes

Más detalles

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton SOLUCIONARIO GUÍA ÉCNICO PROFESIONAL Dináica I: fuerza y leyes de Newton SGUICC016C3-A16V1 Solucionario guía Dináica I: fuerza y leyes de Newton Íte Alternativa Habilidad 1 C Reconociiento A Aplicación

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ... Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo

Más detalles

Se desea calcular la longitud de un lado de una pista de baile de forma cuadrada, cuya área es 16 u 2. Sustituyendo el valor del área

Se desea calcular la longitud de un lado de una pista de baile de forma cuadrada, cuya área es 16 u 2. Sustituyendo el valor del área Núeros irrcionles Algun vez hs utilizdo núeros irrcionles? Se dese clculr l longitud de un ldo de un pist de bile de for cudrd, cuy áre es 6 u A = 6 u x x Definios los eleentos: x = ldo del cudrdo A =

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PE - Curso 008 Instituto de Física Facultad de Ingeniería UdelaR TITULO D I N Á I C A D E P A R T Í C U L A AUTORES Santiago Góez, Anthony éndez, Eduardo Lapaz INTRODUCCIÓN Analizaos

Más detalles

Resumen de los errores más frecuentes en Matemáticas de 1º ESO.

Resumen de los errores más frecuentes en Matemáticas de 1º ESO. Resuen de los errores ás frecuentes en Mteátics de 1º ESO. 1º. Propiedd distributiv. L propiedd distributiv respecto l producto-división y l su-diferenci nos dice: A) b c b c B) b c b c Observ: b c b c

Más detalles

Fundamentos Físicos de la Ingeniería 1º Examen Parcial / 19 de enero de 2002

Fundamentos Físicos de la Ingeniería 1º Examen Parcial / 19 de enero de 2002 Fundmentos Físicos de l Ingenierí º Emen Prcil / 9 de enero de 00. Un muchcho que está 4 m de un pred erticl lnz contr ell un pelot según indic l igur. L pelot sle de su mno m por encim del suelo con un

Más detalles

Se traza la paralela al lado a y distancia la altura h a.

Se traza la paralela al lado a y distancia la altura h a. Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos

Más detalles

Tema 1: Introducción y fundamentos matemáticos. Parte 3/4 Vectores en física I: Definiciones y propiedades

Tema 1: Introducción y fundamentos matemáticos. Parte 3/4 Vectores en física I: Definiciones y propiedades Tem 1: Introducción y fundmentos mtemáticos Antonio González Fernández Deprtmento de Físic Aplicd III Universidd de Sevill Prte 3/4 es en físic I: Definiciones y propieddes Ls mgnitudes se clsificn en

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

Estudio de funciones exponenciales y logarítmicas

Estudio de funciones exponenciales y logarítmicas FUNCIÓN EXPONENCIAL Recomendciones l Docente: L ctividd proponer debe puntr que los lumnos puedn nlizr los siguientes spectos: 1. Cómo vrí el gráfico de l función eponencil y de qué depende su monotoní.

Más detalles

2 Funciones vectoriales

2 Funciones vectoriales 2 Funciones vectoriles 2.1. Definición, dominio, imgen, gráfic Definición de función Un función de vlor vectoril o simplemente un función vectoril (en R n ) vectoril es un función cuyo dominio es un conjunto

Más detalles

. Conocer y manejar los conceptos básicos relacionados con las distintas ramas de la Fisica.

. Conocer y manejar los conceptos básicos relacionados con las distintas ramas de la Fisica. 1. - EXPECTATIVAS DE LOGRO" FíSICA I Pln 2001- Sexto Año- Vigente prtir de 2006. Conocer y mnejr los conceptos básicos relciondos con ls distints rms de l Fisic.. Trnsferir los conocimientos dquiridos

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL 8 0 GRVICIÓ I: LEY DE L GRVICIÓ UIVERSL j Sigue pcticndo Indic sobe l tyectoi de un plnet con óbit elíptic lededo del Sol, que ocup uno de los focos, los puntos de áxi y íni elocidd Rzon l espuest b t

Más detalles

Solucionario. El sistema solar está formado por los planetas: Mercurio, Venus, La Tierra, Marte, Júpiter, Saturno, Urano, Neptuno.

Solucionario. El sistema solar está formado por los planetas: Mercurio, Venus, La Tierra, Marte, Júpiter, Saturno, Urano, Neptuno. . uerzs Solucionrio Prerción de l unidd (ág. 37) Es tod cción que licd sobre un cuero erite deforrlo, cbir su dirección o ridez, detener su oviiento o bien onerlo en oviiento. Que vrirá su velocidd corde

Más detalles

Velocidad ÁREA. Tiempo. m =

Velocidad ÁREA. Tiempo. m = 1.1. Reisión de mru y mru. El moimiento rectilíneo uniforme (mru) es un moimiento que se reliz con elocidd constnte, y l ecución que permite representr ese moimiento es x t (1) L ecución nterior puede

Más detalles

3 E.M. ALGEBRA. Curso: ECUACION DE LA ElIPSE. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Eje Temático: SECCIONES CONICAS

3 E.M. ALGEBRA. Curso: ECUACION DE LA ElIPSE. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Eje Temático: SECCIONES CONICAS Colegio SSCC Concepción - Depto. de Mtemátics Eje Temático: SECCIONES CONICAS Unidd de Aprendizje: Ecución de l Elipse Cpciddes/Destrez/Hbiliddes: Resolver/Construir/ Decidir/Anlizr/ Identificr/ Verificr

Más detalles

Problema 1 El estado de tensiones de un punto de un sólido viene definido por el siguiente tensor:

Problema 1 El estado de tensiones de un punto de un sólido viene definido por el siguiente tensor: CAPÍULO - 8 Problem El estdo de tensiones de un punto de un sólido viene definido por el siguiente tensor: 7 6 ( ) 6 8 N / m XYZ 76 Hllr: ) ensiones direcciones principles sí como l mtri de pso entre el

Más detalles

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta.

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta. Propieddes de l Potenci Distributiv con respecto l producto ( = b Distributiv con respecto l división b b Producto de potencis de igul bse n = n + División de potencis de igul bse n n Potenci de potenci

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyecto PMME - Curso 7 Facultad de Ineniería UdelaR Maquina de Atwood doble Mathías Möller José Oscar Silva Francisco Paroli INRODUCCION: Este trabajo trata de aplicar las leyes de Newton

Más detalles

MATEMÁTICAS-FACSÍMIL N 9

MATEMÁTICAS-FACSÍMIL N 9 MTEMÁTIS-FSÍMIL N 9. b b b ) - b ) b - ) b D) E) 6 cm ( b) =. El triángulo está inscrito en l mitd de l circunferenci. Si h c = cm y el ldo = 5cm. El rdio de l circunferenci es: ) cm ) 6 cm ) 6 cm O D)

Más detalles

LICENCIATURA EN OBSTETRICIA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica

LICENCIATURA EN OBSTETRICIA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica LICECIATURA E OBSTETRICIA TRABAJO PRACTICO º Dinámic LICECIATURA E OBSTETRICIA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA ZAO AÑO 014 Ing.

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

Aplicaciones de la Integral.

Aplicaciones de la Integral. Seminrio 2 Aplicciones de l Integrl. 2.1. Áre de figurs plns. Definición 2.1.1. Se f : [, b] R continu y f(x) 0 x [, b]. El áre del recinto {(x, y) R 2 : x b, 0 y f(x)} viene dd por l integrl: A = f(x)

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

GRADO EN INGENIERÍA QUÍMICA. TERCER CURSO.

GRADO EN INGENIERÍA QUÍMICA. TERCER CURSO. . Intificción l signtur NOMBRE Control e Instruentción Procesos CÓDIGO GIQUIM0-3- 00 TITULACIÓN Grdudo o Grdud en Ingenierí Quíic por l Universidd Oviedo CENTRO Fcultd Quíic TIPO Obligtori N TOTAL DE CREDITOS

Más detalles

Modelo 5 de sobrantes de Opción A

Modelo 5 de sobrantes de Opción A Ejercicio. [ puntos] Se f : R l función dd por Modelo de sobrntes de 6 - Opción. Ln f siendo Ln l función logrito neperino. Estudi l eistenci de síntot horiontl pr l gráfic de est función. En cso de que

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Facultad de Ciencias Exactas y Tecnologías UNSE Apuntes de Cátedra: Investigación Operativa / I Año: 2006.- II. LA PROGRAMACIÓN LINEAL

Facultad de Ciencias Exactas y Tecnologías UNSE Apuntes de Cátedra: Investigación Operativa / I Año: 2006.- II. LA PROGRAMACIÓN LINEAL Fcultd de Ciencis Ects ecnologís UNSE Apuntes de Cátedr: Investigción Opertiv / I Año: 6.- II. LA PROGRAMACIÓN LINEAL El Método Siple Definición: Un progr linel es quel que optiiz el siguiente odelo teático

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción

Más detalles

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo. REPSO DE GEOMETRÍ MÉTRIC PLN. Hllr el siétrico del punto (, - ) respecto de M(-, ).. Clcul ls coordends de D pr que el cudrilátero de vértices: (-, -), B(, -), C(, ) D; se un prlelogro.. Ddos los vectores

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

RAZONAMIENTO MATEMÁTICO

RAZONAMIENTO MATEMÁTICO RAZONAMIENTO MATEMÁTICO CUATRO OPERACIONES. Por cd cutro docens de mnzns que un comercinte compr, le obsequin dos mnzns. Cuántos son de obsequio si llevó 4800 mnzns? A) 40 ) 76 C) D) 9 E) 84 4 doc 4

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

Funciones Vectoriales

Funciones Vectoriales Pntoj Crhuvilc Cálculo Agend Algebr de Función Algebr de Función Consideremos un prtícul en movimiento sobre un plno. Su posición en un determindo instnte t viene determindo por dos coordends x(t) e y(t)

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería Resolución de Triángulos - Soluciones 1. Un rectángulo circunscribe simétricmente un sector circulr tl como muestr el dibujo djunto. Si el ángulo del sector es de 1 rdián y su áre es de 7 ², hll en milímetros

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

CHOQUE.( IMPULSO Y CANTIDAD DE MOVIMIENTO )

CHOQUE.( IMPULSO Y CANTIDAD DE MOVIMIENTO ) 77 CHOQUE.( IMPULSO Y CNTIDD DE MOVIMIENTO ) Tengo una buena noticia para vos y es que el tea de choque no es diícil. Los pasos que tenés que seguir para tener una idea del asunto son los siguientes:.

Más detalles

ANÁLISIS DE UNA CAJA DE CAMBIOS: CÁLCULO DE ENGRANAJES

ANÁLISIS DE UNA CAJA DE CAMBIOS: CÁLCULO DE ENGRANAJES ANÁLISIS DE UNA CAJA DE CAMBIOS: CÁLCULO DE ENGRANAJES AUTORÍA Mª DEL ROSARIO LÓPE ESPEJO TEMÁTICA MECANISMOS Y MÁQUINAS ETAPA BACHILLERATO Resuen L teri de Tecnologí Industril I se centr en el bloque

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

Práctico 9 - Cálculo de integrales. 1. Teorema fundamental y regla de Barrow

Práctico 9 - Cálculo de integrales. 1. Teorema fundamental y regla de Barrow Universidd de l Repúblic Cálculo Fcultd de Ingenierí - IMERL Segundo semestre 6 Práctico 9 - Cálculo de integrles. Teorem fundmentl y regl de Brrow. Utilizndo los resultdos del ejercicio 9 del práctico

Más detalles