UNIDAD 3: ANÁLISIS DE SERIES DE TIEMPO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD 3: ANÁLISIS DE SERIES DE TIEMPO"

Transcripción

1 UNIDAD 3: ANÁLISIS DE SERIES DE TIEMPO Ua serie de tiempo establece las variacioes existetes etre ciertas magitudes. El aálisis de series temporales es u método cuatitativo que se utiliza para detectar patroes de cambio e la iformació estadística durate itervalos regulares de tiempo. Proyectamos estos patroes para obteer ua estimació para el futuro. E cosecuecia, el aálisis de series temporales os ayuda a teer ua visió co icertidumbre acerca del futuro. Ejemplo: gasto promedio de compras, catidad de servicios prestados por ua cosultora, catidad de clietes de ua agecia de publicidad, etc. VARIAIONES ESTAIONALES E este aspecto esta muy relacioada la actividad por temporadas, por lo que es ecesario determia ídices de estacioalidad que permita aalizar estos comportamietos. Para coocer la estacioalidad de los datos, se emplea el método llamado Promedios Simples MÉTODO DE PROMEDIO SIMPLE º) Obteemos el promedio de cada ua de las temporadas altas y bajas que se pueda extraer de la muestra. 2º) Obteemos e base al puto aterior el promedio de promedios 3º) Determiaos la participació de cada temporada e el promedio total 4º) Multiplicamos por los iveles de participació para determiar los ídices de estacioalidad Ejemplo: osiderado la siguiete tabla que muestra el úmero de turistas que visita la Villavicecio e las diferetes temporadas Año TA TB TA2 TB Sacamos el promedio de cada temporada: TA 4.2 TA TB.8 TB Obteemos el promedio de promedios: Pr omedio total Págia 5

2 Uidad 3 Aálisis de series de tiempo Determiamos el ivel de participació de cada temporada respecto del promedio total: 4.2 PTA PTB PTA PTB Multiplicamos por para obteer los ídices de estacioalidad: TA 56.2 E la temporada alta de pricipio de año estamos u 56.2% por ecima del promedio aual TB TA E la temporada alta de fi de año estamos u 64.2% por ecima del promedio aual TB E la temporada baja de fi de año estamos u 62.67% por debajo del promedio aual E la temporada baja de pricipio de año estamos u 56.2% por debajo del promedio aual NÚMEROS ÍNDIES Aplicados a series de tiempo, permite establecer ua razó de cambio etre las magitudes de u cojuto de datos clasificados croológicamete. Esta razó idica cuatas veces es mayor el atecedete (umerador) que el cosecuete (deomiador). ÍNDIES SIMPLES Se refiere a la iformació recopilada año a año acerca de u solo cocepto. ÍNDIE DE BASE FIJA (Ib f ) Es el cociete que resulta de dividir el dato del año cosiderado, del dato tomado como base para el calculo y el resultado multiplicarlo por para obteer el ídice correspodiete Ejemplo: a cotiuació se expoe el porcetaje de ocupació e el sector público de la ciudad de órdoba para los años 2 a 26 Año Porcetaje de ocupació (e miles) I bf Año base: ,9 22 7,3 5, 23 63,8 2, ,5 9, ,8 9, ,4,65 Págia 5

3 Uidad 3 Aálisis de series de tiempo ÍNDIE POR ESLABONES (I Se ) Es el cociete que resulta de dividir el dato del año cosiderado y el dato del año aterior. Los ídices por eslaboes establece ua razó de cambio. Ejemplo: ÍNDIES OMPUESTOS Año Porcetaje de ocupació (e miles) I Se Año base: ,9 22 7,3 82, ,8 89, ,5 88, ,8, ,4 9,86 Maeja mas de u cocepto y relacioa exclusivamete dos periodos de tiempo (geeralmete so años). Etoces, si se quiere coocer los cambios relativos de los igresos e u determiado sector, se cosidera todos los servicios que forma parte del mismo. Los ídices compuestos se usa para determiara codicioes de precios, catidad y valor. Para determiar estos ídices utilizaremos tres métodos distitos: MÉTODO DE LASPEYRES. Ídice de precios (IPL) Establece ua comparació etre los igresos que pudiera haberse obteido a precios actuales cosiderado la producció de u determiado año de referecia (año base): IPL P c P * P precios del periodo de referecia (año base) producció del periodo de referecia (año base) P c precio del periodo actual a comparar Este ídice mide el cambio e el poder de compra Págia 52

4 Uidad 3 Aálisis de series de tiempo 2. Ídice de atidad (IL) Establece ua comparació etre los igresos que pudiera haberse obteido e la actualidad si se hubiera mateido los precios del año de referecia: IPL P P * 3. Ídice de Valor (IVL) P precios del periodo de referecia (año base) producció del periodo de referecia (año base) c producció del periodo actual a comparar Mide los cambios e el valor moetario total, combia los cambios e precio y catidad para presetar u ídice co más iformació: IVL IPL* IL MÉTODO DE PAASHE. Ídice de Precios (IPP) Establece ua comparació etre los igresos obteidos e la actualidad y los igresos que pudiera haberse obteido si se hubiera mateido los precios del año de referecia: IPP P P * P precios del periodo de referecia (año base) P c precio del periodo actual a comparar c producció del periodo actual a comparar Págia 53

5 Uidad 3 Aálisis de series de tiempo 2. Ídice de atidad (IP) Establece ua comparació etre los igresos obteidos e la actualidad y los igresos que pudiera haberse obteido si se hubiese mateido la producció del periodo de referecia: 3. Ídice de Valor (IVP) IP P P * producció del periodo de referecia (año base) P c precio del periodo actual a comparar c producció del periodo actual a comparar Mide los cambios e el valor moetario total, combia los cambios e precio y catidad para presetar u ídice co más iformació: IVP IPP * IP MÉTODO DE FISHER Este método combia los dos métodos ateriores, lo que permite obteer ua iformació mas completa.. Ídice de Precios (IPF) Mide los cambios etre los igresos actuales y los igresos del año de referecia teiedo e cueta la variació e los precios de los dos periodos cosiderados: 2. Ídice de Valor (IVF) IPF IPL * IPP Mide los cambios etre los igresos actuales y los igresos del año de referecia teiedo e cueta la variació e la productividad de los dos periodos cosiderados: 3. Ídice de Valor (IVF) IF IL * IP Mide los cambios e el valor moetario total, combia los cambios e precio y catidad para presetar u ídice co más iformació: IPF * IF IVF Págia 54

6 Uidad 3 Aálisis de series de tiempo Ejemplo práctico: Obteer los ídices de catidad precio y valor de acuerdo a Laspeyres para el sector del trasporte. Año ocepto Precio atidad (e miles) Precio atidad (e miles) ( ) (P ) ( ) (P ) Avió Autobús Tre Auto (precio promedio del litro de afta),98 4 2,99 4 ocepto P * P * P * P * Avió Autobús Tre Auto (precio promedio del litro de afta) 793, ,99 96 Σ 968, , IPL P c P * * Teiedo e cueta solamete la iflació, es decir, la variació e los precios, los igresos del sector aumetaro u 7.93% e el período cosiderado. IL P P * * 2. A los mimos precios del año base, es decir si teer e cueta el efecto iflacioario, los igresos del sector aumetaro u 2.%, es decir que se ha icremetado la productividad del sector. IVL IPL * IL 7.93* osiderado tato la variació de precios como la productividad, teiedo e cueta los igresos que obtuvimos e el periodo de referecia, los igresos del sector trasporte aumetaro u 4.98% Págia 55

7 Uidad 3 Aálisis de series de tiempo IPP P P * Los igresos del sector, aumetaro u 6.5% teiedo e cueta la variació de precios IP P P * Los igresos del sector, aumetaro u.33% teiedo e cueta la variació e la productividad IVP IPP * IP 6.5 * osiderado tato la variació de precios como la productividad, teiedo e cueta los igresos obteidos e la actualidad, los igresos del sector trasporte aumetaro u 3.5% IPF IPL * IPP 7.93* Los igresos del sector, teiedo e cueta solo la variació de precios ha aumetado u 4.45% IF IL * IP 2.* Los igresos del sector, tediedo e cueta solo la variació e la productividad, ha aumetado u 2.45% IVF IPF * IF 4.45 * osiderado tato la variació de precios como la productividad y teiedo e cueta los igresos obteidos e el periodo de referecia y e la actualidad, los igresos del sector trasporte aumetaro u 8.29% DEFLAIÓN E INFLAIÓN El ídice de precios, establece el poder adquisitivo del diero e el setido de lo que se puede adquirir hoy cotra lo que se pudo haber adquirido ates. Deflació: caída sosteida del ivel de precios Iflació: aumeto sosteido e el ivel de precios Págia 56

8 Uidad 3 Aálisis de series de tiempo El Ídice de Precios de Fischer (IPF), os ayuda a determiar si e u determiado sector hubo u aumeto o ua caída e el ivel de precios. determia el poder de compra del diero IPF Ejemplo:. 87 el poder de compra del peso es de Esto quiere decir que lo que costaba $.87 e el 27, e el 29 cuesta $ ÍNDIES DE ALOJAMIENTO Se preseta aquí ua herramieta muy útil para el admiistrador de u hotel o cadea hotelera, que le permitirá establecer las codicioes de ocupació que guarde el hotel o la cadea e u periodo determiado. Las fórmulas que se preseta so fórmulas iteracioales para determiar los ídices de alojamieto para establecer las codicioes de retabilidad de la hotelería, dode ua alto valor de éste limita el volume de paquetes que puede ser ofrecidos al público, ya que idica falta de capacidad. a) Número de peroctacioes del período. P R x N + P: Peroctacioes (úmero de oches) R: Número de huéspedes al iicio del período N: Número de días del período cosiderado E i : Etrada de huéspedes e cada día i S i : Salida de huéspedes e cada día i b) Ídice de alojamieto por habitació (IAH) TH: Total de habitacioes c) Ídice de alojamieto por camas istaladas (IAI) I: amas Istaladas. Págia 57

9 Uidad 3 Aálisis de series de tiempo d) Ídice de alojamieto por camas istaladas y e reserva (IAIR) R: amas e reserva. e) Permaecia Media (PM) A: Arribos e el período (catidad de huéspedes que igresaro e todo el período cosiderado ) P: Peroctacioes e el período. Ejemplo. osidere ua cadea hotelera que dese determiar sus ídices de alojamieto y permaecia promedio para lo cual le preseta la siguiete iformació: Número de huéspedes al iicio del período:.5 Número de días e que desea hacer el cálculo: 7 Número total de habitacioes: 2. Número de camas istaladas: 3.5 Número de camas e reserva: 3 Movimieto de etrada y salida de huéspedes, durate el período cosiderado: Día E i S i A 945 Págia 58

10 Uidad 3 Aálisis de series de tiempo Solució: Para iiciar la solució, primero hay que determiar las columas: a) Número de peroctacioes del período. P.5 x E i S i N+ i (E i S i )x(n+ i) Σ 9 E el período cosiderado (7 días) se tuviero e el total de hoteles de la cadea,.69 oches/turista cosiderado u huésped por habitació. b) Ídice de alojamieto por habitació IAH. 76,4%. Durate el período cosiderado se tuviero ocupadas e promedio u 76,4% de las habitacioes dispoibles de la cadea. c) Ídice de alojamieto por camas istaladas IAI. 43,6% E el período bajo aálisis, si se cosidera las camas istaladas, el porcetaje de ocupació de las plazas dispoibles e la cadea fue de 43,6%. E otras palabras, el porcetaje de ocupació hotelera fue del 43,6%. d) Ídice de alojamieto por camas istaladas y e reserva IAIR. 4,2% Del total de camas dispoibles y e reserva se ocuparo el 4,2% de las mismas. e) Permaecia media PM.69/945,3 Los huéspedes permaeciero alojados e promedio,3 días e los hoteles de la cadea. Págia 59

11 Uidad 3 Aálisis de series de tiempo ÍNDIE DE ESTANIA EN RESTAURANTES Este ídice permite establecer las codicioes de ocupació y estadía de los clietes que preseta el restaurate o establecimieto de alimetos y bebidas que se está estudiado o admiistrado. a) Ídice de estacia por mesa (IEM) E: úmero de estacias e el día de operació aalizado M: Número total de mesas N: Número de horas de operació. Este ídice mide la ocupació promedio de cada ua de las mesas istaladas e el período de operació aalizado. ES decir, que es ua medida de utilizació de la capacidad istalada, e fució de las mesas. b) Ídice de estacia por silla istalada (IESI) SI: Número total de sillas istaladas Este ídice mide la ocupació promedio de cada ua de las sillas istaladas e el período de operació aalizado. Es decir, que es ua medida de utilizació de la capacidad istalada, e fució de los lugares o puestos dispoibles para el servicio. c) Estacia promedio por hora (EPH) E t : catidad total de comesales que igresaro e el período aalizado o total de etradas Ejemplo de Aplicació: osidere la iformació dispoible para u día de operació del Restaurate Todo Rico, el que cueta co 75 mesas y 45 sillas istaladas. El Dueño del restaurate desea coocer el ídice de permaecia promedio y las codicioes geerales de éste, a fi de llevar a cabo ua ampliació e la capacidad istalada. El gerete geeral ha bridado la siguiete iformació: Págia 6

12 Uidad 3 Aálisis de series de tiempo Número de Hora E i S i E t Dode: E i: omesales igresados durate cada hora hora. La suma de esta columa os da la catidad total de comesales que igresaro e el período aalizado o las etradas totales (E t ) S i: omesales que abadoaro el local por hora. Solució: Lo primero que se debe hacer es realizar la diferecia etre la catidad de comesales igresados y la catidad de los que abadoó el local e cada hora y calcular la diferecia acumulada. La suma de esta última columa da como resultado la catidad de persoas que igresaro e el período aalizado o lo que es lo mismo el úmero de estacias e el día de operació (E). Número de Hora E i S i E i S i Diferecia Acumulada E Págia 6

13 Uidad 3 Aálisis de series de tiempo Del euciado del problema se sabe que: M75 N 2 SI 45 E E t ,74 274% ,46 46% ,3.888 Dados estos resultados, se puede cocluir que la estacia esperada durate las 2 horas de operació del Restaurate, cosiderado las 45 sillas istaladas, debió ser de 5.4 (45 sillas x 2 horas de operació) para teer ua ocupació del %, y úicamete se tuviero 2.466, lo que correspode al 46%, que es lo que os muestra el IESI, co ua estadía promedio por comesal de,3 horas (es decir, hora 8 miutos). Por lo tato, dada la iformació aportada por el restaurate, la coclusió es que o debería icremetarse el úmero de sillas, dado que la ocupació o llega al 5%. Págia 62

TRABAJO PRACTICO Nº 1

TRABAJO PRACTICO Nº 1 TRABAJO PRACTICO Nº 1 DEMANDA DE TRANSPORTE: ELASTICIDAD OFERTA DE TRANSPORTE: COSTOS AJUSTE DE FUNCIONES ANÁLISIS DE REGRESIÓN Objetivo: Aplicar a u caso práctico utilizado las herramietas básicas de

Más detalles

Unidad 3. Construcción de números índice y aplicaciones al análisis económico

Unidad 3. Construcción de números índice y aplicaciones al análisis económico Uidad 3. Costrucció de úmeros ídice y aplicacioes al aálisis ecoómico Los úmeros ídices, utilizados co frecuecia e Ecoomía, Demografía y diferetes campos de la estadística aplicada, so valores coveietes

Más detalles

2.1. Concepto Monto, capital, tasa de interés y tiempo.

2.1. Concepto Monto, capital, tasa de interés y tiempo. 1 2.1. Cocepto El iterés compuesto tiee lugar cuado el deudor o paga al cocluir cada periodo que sirve como base para su determiació los itereses correspodietes. Así, provoca que los mismos itereses se

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA U Modelo de Costeo por Procesos JOSE ANTONIO CARRANZA PALACIOS *, JUAN MANUEL RIVERA ** INTRODUCCION U aspecto fudametal e la formulació

Más detalles

LABORATORIO DE PROCESOS Y DISEÑO I PARTE 4 EVALUACION DE PROYECTOS.

LABORATORIO DE PROCESOS Y DISEÑO I PARTE 4 EVALUACION DE PROYECTOS. LABORATORIO DE PROCESOS Y DISEÑO I PARTE 4 EVALUACION DE PROYECTOS. EVALUACION DE PROYECTOS. Idetificació de Opcioes. Idetificació de Cosecuecias Cuatificables ($). Idetificació de Cosecuecias o Cuatificables.

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

- A h h+1 n-1 n

- A h h+1 n-1 n 1º DMINISTRCIÓN Y FINNZS GESTIÓN FINNCIER. TEM 9 TEM Nº 9: SELECCIÓN DE INVERSIONES 1. DIMENSIÓN FINNCIER DE UN PROYECTO DE INVERSIÓN Desde el puto de vista fiaciero, es decir, moetario, cualquier proyecto

Más detalles

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Divisió de Plaificació, Estudios e Iversió MIDEPLAN Curso: Preparació y Evaluació de Proyectos EVALUACIÓN DE PROYECTOS: Coceptos Básicos Temario Matemáticas

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte I CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte I CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA - Parte I CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN 1 INVERSIÓN La iversió es u acto mediate el cual se produce el cambio de ua satisfacció imediata

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Medidas de tendencia central

Medidas de tendencia central Medidas de tedecia cetral Por: Sadra Elvia Pérez Las medidas de tedecia cetral tiee este ombre porque so valores cetrales represetativos de los datos. Las medidas de tedecia cetral que se estudia e esta

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

Concepto de interés. Escrito entre A.C., referencia a. III A.C El precepto fue guardado hasta la Edad Media ~ LFR ~ 2

Concepto de interés. Escrito entre A.C., referencia a. III A.C El precepto fue guardado hasta la Edad Media ~ LFR ~ 2 INGENIERÍ ECONÓMIC Iterés y capitalizació or: Leoel Foseca Retaa Cocepto de iterés Si prestas diero a uo de mi pueblo, al pobre que habita cotigo, o serás co él u usurero; o le exigiréis iterés. Si tomas

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

AUTÓMATAS Y SISTEMAS DE CONTROL

AUTÓMATAS Y SISTEMAS DE CONTROL º ITT SISTEMAS ELECTRÓNICOS º ITT SISTEMAS DE TELECOMUNICACIÓN º INGENIERÍA DE TELECOMUNICACIÓN AUTÓMATAS Y SISTEMAS DE CONTROL PRÁCTICA 7: SISTEMAS DE SEGUNDO ORDEN. FUNCIÓN DE TRANSFERENCIA La fució

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 2.001-2.002 - CONVOCATORIA: Juio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: MADRID Teléf.: 91 533 38 4-91 535 19 3 8003 MADRID EXTRAORDINARIA JULIO 007 1. Calcular la catidad aual que debe ahorrar ua persoa si desea pagar, detro de 4 años, la etrada de 50.000 de ua vivieda. La tasa de

Más detalles

Unidad 10: LÍMITES DE FUNCIONES

Unidad 10: LÍMITES DE FUNCIONES Uidad 1: LÍMITES DE FUNCIONES LÍMITES 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Ua sucesió de úmeros reales es u cojuto ordeado de iiitos úmeros reales. Los úmeros reales a1, a,..., a,... se llama térmios,

Más detalles

UNIVERSIDAD DE VALENCIA DEPARTAMENTO DE ECONOMÍA FINANCIERA Y ACTUARIAL

UNIVERSIDAD DE VALENCIA DEPARTAMENTO DE ECONOMÍA FINANCIERA Y ACTUARIAL UNIVERSIDAD DE VALENCIA DEPARTAMENTO DE ECONOMÍA FINANCIERA Y ACTUARIAL Asigatura: 1141 MATEMÁTICA FINANCIERA NOTAS DEL TEMA 1 CURSO ACADÉMICO 008-009 TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a

Más detalles

IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre:

IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre: IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. º ESO A Nombre: Evaluació: Primera. Feca: 0 de diciembre de 00 NOTA Ejercicio º.- Aplica el orde de prioridad de las operacioes para calcular: 64 : 5

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

Tema 2. Medidas descriptivas de los datos

Tema 2. Medidas descriptivas de los datos Tema 2. Medidas descriptivas de los datos Resume del tema 2.1. Medidas de posició So valores que os sirve para idicar la posició alrededor de la cual se distribuye las observacioes. 2.1.1. Mediaa La mediaa

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos ITM, Istitució uiversitaria Guía de Laboratorio de Física Mecáica Práctica 3: Teoría de errores Implemetos Regla, balaza, cilidro, esfera metálica, flexómetro, croómetro, computador. Objetivos E esta práctica

Más detalles

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7 Sucesioes. Defiició Sucesió Matemática Ua sucesió fiita (a k ) (de logitud r) co elemetos perteecietes a u cojuto S, se defie como ua fució y e este caso el elemeto a k correspode a f(k). f : {,,...,r}

Más detalles

PROCEDIMIENTO DE LA CNE SOBRE EL SISTEMA DE INFORMACIÓN DE LA POTENCIA DE RÉGIMEN ESPECIAL CON INSCRIPCIÓN DEFINITIVA, PREVISTO EN LOS ARTÍCULOS 21 Y

PROCEDIMIENTO DE LA CNE SOBRE EL SISTEMA DE INFORMACIÓN DE LA POTENCIA DE RÉGIMEN ESPECIAL CON INSCRIPCIÓN DEFINITIVA, PREVISTO EN LOS ARTÍCULOS 21 Y PROCEDIMIENTO DE LA CNE SOBRE EL SISTEMA DE INFORMACIÓN DE LA POTENCIA DE RÉGIMEN ESPECIAL CON INSCRIPCIÓN DEFINITIVA, PREVISTO EN LOS ARTÍCULOS 21 Y 22 DEL REAL DECRETO 661/2007 25 de ulio de 2007 1.

Más detalles

CAPITULO 4 COMPARACIÓN DE REACTORES IDEALES Y REACTORES MÚLTIPLES

CAPITULO 4 COMPARACIÓN DE REACTORES IDEALES Y REACTORES MÚLTIPLES omparació de Reactores Ideales y Reactores Múltiples PITULO 4 OMPRIÓN DE RETORES IDELES Y RETORES MÚLTIPLES 4. INTRODUIÓN E este capítulo se comparará los reactores T y. Se diseñará baterías de reactores

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Ayudantía 2. Fecha : 25 de septiembre de 2017 Semestre Primavera Repaso Producto Interno Bruto (PIB) y Producto Nacional Bruto (PNB)

Ayudantía 2. Fecha : 25 de septiembre de 2017 Semestre Primavera Repaso Producto Interno Bruto (PIB) y Producto Nacional Bruto (PNB) Ayudatía 2 Curso: EAE021 Secció 4 Macroecoomía 1 Fecha : 25 de septiembre de 2017 Semestre Primavera 2017 Repaso Producto Itero Bruto (PIB) y Producto Nacioal Bruto (PNB) Nivel de actividad ecoómica: lo

Más detalles

ESTIMACIONES DE MEDIAS

ESTIMACIONES DE MEDIAS COLEGIO SAN BARTOLOMÉ LA MERCED ESTADÍSTICA GRADO ESTIMACIÓN 0-0 Símbolos que se debe teer e cueta: POBLACIÓN MUESTRA MEDIA VARIANZA DESVIACIÓN ESTÁNDAR TAMAÑO N La estimació cosiste e determiar el valor

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

CAPÍTULO I. Conceptos Básicos de Estadística

CAPÍTULO I. Conceptos Básicos de Estadística CAPÍTULO I Coceptos Básicos de Estadística Capítulo I. Coceptos Básicos de Estadística. CAPÍTULO I CONCEPTOS BÁSICOS DE ESTADÍSTICA Para realizar estudios estadísticos es ecesario registrar la ocurrecia

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA DE CORRECCIÓN PRUEBA RECUPERATIVA N 2 Profesor: Hugo S. Salias. Segudo Semestre 2009 DESARROLLO

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

PROBLEMAS DE LOS TEMAS 5, 6 Y 7 PROPUESTOS EN EXÁMENES DE ESTADÍSTICA EMPRESARIAL (ANTIGUA LICENCIATURA ADE)

PROBLEMAS DE LOS TEMAS 5, 6 Y 7 PROPUESTOS EN EXÁMENES DE ESTADÍSTICA EMPRESARIAL (ANTIGUA LICENCIATURA ADE) TUTORÍA DE ETADÍTICA EMPREARIAL (º A.D.E.) e-mail: imozas@elx.ued.es https://www.iova.ued.es/webpages/ilde/web/idex.htm PROBLEMA DE LO TEMA 5, 6 Y 7 PROPUETO EN EXÁMENE DE ETADÍTICA EMPREARIAL (ANTIGUA

Más detalles

C. INDICADORES DE EVALUACION DE PROYECTOS

C. INDICADORES DE EVALUACION DE PROYECTOS C. INDICADORES DE EVALUACION DE PROYECTOS 1. Matemáticas Fiacieras 1.1 Iterés simple e iterés compuesto Iterés simple es aquel que se calcula siempre sobre el capital origial, y por tato excluye itereses

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

INGENIERÍAS Cordinador: Luís Alfredo Rodríguez Saucedo, M. Sc. Correo:

INGENIERÍAS Cordinador: Luís Alfredo Rodríguez Saucedo, M. Sc. Correo: Itroducció al cálculo de icertidumbres e las INGENIERÍAS Cordiador: Luís Alfredo Rodríguez Saucedo, M. Sc. Correo: lurodrig@puj.edu.co INTRODUCCIÓN E las ciecias aturales los resultados de las medidas

Más detalles

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton Estado gaseoso Ecuació de estado de los gases perfectos o ideales Mezclas de gases ideales presió parcial de u gas e ua mezcla de gases ideales ley de Dalto Feómeos de disolució de gases e líquidos leyes

Más detalles

Sumatoria, Progresiones y Teorema del Binomio

Sumatoria, Progresiones y Teorema del Binomio Capítulo Sumatoria, Progresioes y Teorema del Biomio.. Símbolo Sumatorio Es u símbolo muy útil y coveiete que permite escribir sumas e forma abreviada. Este símbolo se represeta mediate la letra griega

Más detalles

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte I)

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte I) TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte I) Tema 6- Parte 1 1 EL MÉTODO de la TASA de DESCUENTO AJUSTADA al RIESGO : a = k + p E presecia de iflació a = k + p ( 1 + a ) = ( 1 + a )(

Más detalles

EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 3-Julio-2014.

EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 3-Julio-2014. EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 3-Julio-04. APELLIDOS: DNI: NOMBRE:. La producció de piezas de ua factoría se realiza e dos máquias. El 40% de las piezas las produce la máquia M y el 60%

Más detalles

7. LA DETERMINACIÓN DEL TAMAÑO

7. LA DETERMINACIÓN DEL TAMAÑO 7. LA DEERMINACIÓN DEL AMAÑO E tre los factores que determia el tamaño de u proyecto se ecuetra ua gra catidad de variables tales como: demada, dispoibilidad de isumos, localizació y pla estratégico comercial

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN

Más detalles

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,...

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,... SUCESIONES Y SERIES. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto

Más detalles

Walter Orlado Gozales Caicedo Secuecias Lógicas OBJETIVO: Lograr habilidad y destreza e el alumo practicado u razoamieto abstracto PROCEDIMIENTOS: INICIAL: Halla el valor del térmio que cotiúa e:,,,, 0,

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferencia de proporciones

UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferencia de proporciones UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferecia proporcioes E alguos diseños ivestigació, el pla muestral requiere seleccioar dos muestras ipedietes, calcular las proporcioes muestrales y usar

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES La serie estadística de Ídice de Precios al por Mayor se iició e 1966, utilizado e

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

Dirección General de Calidad y Atención al Usuario

Dirección General de Calidad y Atención al Usuario FICHA TÉCNICA PROYECTO ORGANISMO RESPONSABLE DURACIÓN DESCRIPCIÓN Ecuesta de Satisfacció de Usuarios del Sistema de Salud de Aragó. Ateció Especializada y Urgecias. 2014 Direcció Geeral de Calidad y Ateció

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 8-9 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

Muestreo e Intervalos de Confianza

Muestreo e Intervalos de Confianza Muestreo e Itervalos de Cofiaza PROBLEMAS DE SELECTIVIDAD RESUELTOS MUESTREO E INTERVALOS DE CONFIANZA 1) E ua població ormal co variaza coocida se ha tomado ua muestra de tamaño 49 y se ha calculado su

Más detalles

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA º BACHILLERATO. CIENCIAS SOCIALES 1. Ua variable aleatoria tiee ua distribució ormal de media m y desviació típica s. Si se extrae muestras aleatorias de tamaño : a) Qué distribució tiee la variable aleatoria

Más detalles

Ultima fecha de actualización

Ultima fecha de actualización Fórmulas usadas e el cálculo de iterés de la Cueta Ahorro a FORMULAS: 1 Fórmula Pricipal (a).- Actualmete la CMAC PIURA SAC usa la fórmula (a) para el cálculo de itereses de la Cueta Ahorro a Plazo Fijo

Más detalles

Procesamiento de los datos de precipitación

Procesamiento de los datos de precipitación GUIA DEL TRABAJO PRACTICO Nº 2 Procesamieto de los datos de precipitació Calcular la PRECIPITACIÓN MEDIA sobre la cueca para la tormeta dato La determiació del volume de agua precipitado sobre u área dada

Más detalles

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ 06 5.8 Leyedo la salida de u programa estadístico Cada programa estadístico preseta los resultados de la regresió e forma diferete, pero la mayoría provee la misma iformació básica. La tabla muestra la

Más detalles

Secretaría de Extensión Universitaria. Trabajo Practico N 3

Secretaría de Extensión Universitaria. Trabajo Practico N 3 Trabajo Practico N 3 Medidas de Tedecia Cetral La Media (promedio), se deota como x, de ua muestra es el promedio aritmético de sus valores. Y se calcula mediate al formula: Si aparece los datos agrupados

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

MÓDULO 1: GESTIÓN DE CARTERAS

MÓDULO 1: GESTIÓN DE CARTERAS MÓDULO : GESTIÓN DE CARTERAS SOLUCION DEL TEST DE EVALUACIÓN El siguiete euciado hace referecia a las seis cuestioes siguietes: Las retabilidades trimestrales del pasado año del activo ABC y de u ídice

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

LAS MUESTRAS ESTADÍSTICAS

LAS MUESTRAS ESTADÍSTICAS 11 LAS MUESTRAS ESTADÍSTICAS Págia 266 1. Ua gaadería tiee 3 000 vacas. Se quiere extraer ua muestra de 120. Explica cómo se obtiee la muestra: a) Mediate muestreo aleatorio simple. b) Mediate muestreo

Más detalles

Escena 5 Planificación contra stock

Escena 5 Planificación contra stock Método de Plaificació propuesto 67 Escea 5 Plaificació cotra stock Ua vez coocidos los protagoistas la escea busca ordear los pedidos de la forma más eficiete, respetado los requisitos del cliete. Es e

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

Unidad N 2. Medidas de dispersión

Unidad N 2. Medidas de dispersión Uidad N 2 Medidas de dispersió Ua seguda propiedad importate que describe ua serie de datos uméricos es ua variació. La variació es la catidad de dispersió o propagació e los datos. Dos series de datos

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco Capítulo 4 (Cotiuació MÉTODOS ESTADÍSTICOS Autor: José María García Palaco Técicas Eperimetales Medida de magitudes 4.8 Métodos Estadísticos Ya hemos visto e los apartados ateriores, que u procedimieto

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 3, Parte II, Opció A Juio, Ejercicio 3, Parte II, Opció B Reserva

Más detalles

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad.

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad. Slide 1 Uiversidad Diego Portales Facultad de Ecoomía y Negocios Martes 13 de Abril, 2010 Slide 1 Slide 2 Capítulo 4 Itroducció a la Probabilidad Temas Pricipales: Experimetos, Reglas de Coteo, y Asigació

Más detalles

TEMA 10: La programación lineal como instrumento para la toma de decisiones de inversión

TEMA 10: La programación lineal como instrumento para la toma de decisiones de inversión Itroducció a las Fiazas 3º Curso de Direcció y Admiistració de Empresas TEMA 0: La programació lieal como istrumeto para la toma de decisioes de iversió E la empresa existe ua serie de restriccioes (recursos,

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 007-008 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

Generalidades. Esta publicación presenta información de 98 estaciones meteorológicas activas en el 2013, manejadas por las siguientes entidades:

Generalidades. Esta publicación presenta información de 98 estaciones meteorológicas activas en el 2013, manejadas por las siguientes entidades: Geeralidades I. Defiició de meteorología Es la ciecia iterdiscipliaria que estudia el estado del tiempo, el medio atmosférico, los feómeos allí producidos y las leyes que lo rige. Es el estudio de los

Más detalles

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Económicas Guía de Ejercicios No. 2 DET 385, Métodos Cuantitativos III

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Económicas Guía de Ejercicios No. 2 DET 385, Métodos Cuantitativos III : Derivadas de orde superior: Elaborada por: Wilfredo Saravia M Uiversidad Nacioal Autóoma de Hoduras Facultad de Ciecias Ecoómicas Guía de Ejercicios No DET 85, Métodos Cuatitativos III E los ejercicios

Más detalles