Distribuciones Paramétricas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Distribuciones Paramétricas"

Transcripción

1 Distribuciones Paramétricas Objetivo: Estudiar el uso de formas matemáticas particulares, llamadas distribuciones paramétricas, para representar las variaciones en los datos. Una distribución paramétrica es una forma matemática abstracta que representa de manera concisa las variaciones en un conjunto de datos. Dist. Normal o Gaussiana La naturaleza específica de una distribución paramétrica está determinada por valores particulares de los parámetros de la distribución.

2 Los parámetros de una distribución son características abstractas de una distribución particular. Un estadístico es cualquier cantidad calculada a partir de la muestra de datos. Para algunas distribuciones paramétricas comunes, ciertos estadísticos muestrales son buenos estimadores de los parámetros de la distribución. Estadísticos letras romanas Parámetros letras griegas s σ, x µ

3 Ventajas Compactación: Una distribución paramétrica bien ajustada reduce el número de cantidades requeridas para caracterizar las propiedades de los datos a unos cuantos parámetros de la distribución. Suavizado: Las distribuciones paramétricas son representaciones suavizadas de las distribuciones empíricas, las cuales pueden tener huecos o cambios bruscos. Interpolación: La imposición de una distribución paramétrica representa la posibilidad de que ocurran todos los valores posibles de la variable, así como la estimación de sus probabilidades de ocurrencia. Extrapolación: Las distribuciones paramétricas nos permiten estimar probabilidades de eventos fuera del rango del conjunto de datos.

4 Pasos a seguir cuando se trabaja con distribuciones paramétricas a) Escoger entre las distintas distribuciones paramétricas disponibles con base en la información de la muestra y en el tipo de problema que se está abordando. b) Ajustar los parámetros de la distribución elegida. c) Checar que la distribución proporciona un ajuste razonable.

5 Variables aleatorias El resultado de un experimento no necesariamente es un número, p.e., cuando lanzamos una moneda el resultado puede ser cara o cruz. Sin embargo, con frecuencia queremos representar los resultados como números. Una variable aleatoria (v.a.) es una función que asocia un valor numérico único a cada resultado de un experimento. El valor de la v.a. cambiará de una prueba a otra conforme el experimento se repita. P. ej.: 1) Se lanza una moneda 10 veces. La v.a. X puede ser el número de caras que se obtienen. 2) Un foco se mantiene encendido hasta que se funde. La v.a. Y puede ser el tiempo de vida en horas. Discretas sólo puede tomar un número contable de valores distintos como 0, 1, 2, Generalmente las v.a. discretas son conteos. Continuas puede tomar un número infinito de valores posibles. Generalmente las v.a. continuas son mediciones.

6 Clasificación de las distribuciones paramétricas Según el tipo de datos o variables aleatorias, las distribuciones paramétricas se clasifican en: Discretas: describen variables que pueden tomar solamente valores particulares (un número finito o infinito contable). Continuas: describen variables que pueden tomar cualquier valor dentro de un rango especificado de números reales. Generalmente trabajamos con variables conceptualmente continuas pero que se reportan en forma discreta.

7 Distribuciones discretas Si una variable aleatoria X puede asumir los valores discretos x0, x 1, x 2,..., x k con sus respectivas probabilidades p 0, p 1, p 2,..., p k, las cuales satisfacen: p i 0 para toda i y k i=0 p i = 1 entonces las probabilidades p(x i ) = p i caracterizan una distribución probabilística discreta para X. Función de distribución de probabilidad acumulada: P{X x i } = i j=0 p j Ejercicio: Trazar las distribuciones probabilísticas simple y acumulada para la variable aleatoria definida como la suma de los puntos que se obtienen al tirar dos dados. En este caso se conoce la probabilidad a priori. En la mayoría de los casos no se conoce la distribución probabilística de la v.a. y se debe emplear la información contenida en los datos.

8 Ejemplos de distribuciones discretas: Distribución Binomial Se aplica en situaciones en las que en un cierto número de ensayos o pruebas ocurre uno u otro de dos eventos MECE (p.ej.: par o impar, cara o cruz, posesión o no de cierta característica). La variable aleatoria de interés, X, es el número de ocurrencias del evento en un número dado N de ensayos o pruebas. Cuando ocurre el evento lo denominamos éxito (1) y cuando no ocurre lo denominamos fracaso (0). X puede tomar valores enteros no negativos entre 0 y N. La distribución binomial se usa para calcular las probabilidades de los N+1 valores posibles de X si se cumplen dos condiciones: (1) la probabilidad de ocurrencia del evento es la misma en cada ensayo, y (2) los resultados en cada uno de los ensayos son independientes.

9 Consideremos N ensayos independientes, en cada uno de los cuales la probabilidad de obtener éxito es p. La probabilidad de fracaso es 1 p = q. La probabilidad de 1 éxito en 1 ensayo es p. La probabilidad de 2 éxitos en 2 ensayos es: pxp = p 2 La probabilidad de r éxitos en r ensayos es p r y la de tener (N r) fracasos subsecuentes en N r ensayos es: (1 p) N r = q N r Por lo tanto la probabilidad de tener r éxitos seguidos de (N r) fracasos es: p r (1 p) N r De cuántas maneras distintas podemos tener r éxitos y N r fracasos en N ensayos? r r r

10 La función de distribución de probabilidad Binomial está dada por: Tiene dos parámetros: N y p, donde p es la probabilidad de ocurrencia del evento de interés (éxito) en cualquiera de los N ensayos independientes. Para cada pareja de los parámetros N y p la ecuación asocia una probabilidad a cada valor discreto de X y es tal que El caso especial de la distribución Binomial con N = 1 es conocido como la distribución de Bernoulli.

11 Distribución Geométrica La v.a. X representa el número de ensayos Hay dos posibilidades en cada ensayo: éxito o fracaso La probabilidad de éxito, p, es la misma en cada ensayo Los ensayos son independientes La distribución geométrica especifica las probabilidades para el número de ensayos que se requerirán hasta observar el próximo éxito

12 Distribución Binomial Negativa (Pascal o Polya) Si x es el número de fracasos hasta obtener el k ésimo éxito, entonces x + k es el tiempo de espera total requerido para observar el k ésimo éxito. Definida de la manera anterior, su función de distribución de probabilidades está dada por:

13 Distribución de Poisson La distribución de Poisson representa la probabilidad de que un evento aislado ocurra un número específico de veces en un intervalo de tiempo (o un espacio) dado, conociendo su tasa o razón promedio de ocurrencia en el tiempo (o espacio). Se aplica a fenómenos de naturaleza discreta en los que la variable medida es el conteo de eventos, por lo que únicamente puede tomar valores enteros no negativos. Los eventos distribuidos de esta manera deben ser lo suficientemente raros de modo que la probabilidad de que ocurran más de uno simultáneamente es muy pequeña. Ejemplos: El número de veces que se accede a un servidor web por minuto. El número de autos que pasan por cierto punto de un camino durante un periodo de tiempo dado. La ocurrencia de huracanes en el Atlántico durante una temporada particular. La distribución de granizo en un área determinada.

14 Los eventos individuales que se cuentan son independientes en el sentido de que no dependen de si han ocurrido o cuántas veces han ocurrido otros eventos en la secuencia. Los eventos ocurren aleatoriamente, pero con una tasa promedio de ocurrencia constante. Matemáticamente la distribución de Poisson es el caso límite de la distribución Binomial cuando p 0 y N. La función de distribución de probabilidad para la distribución de Poisson es: donde e = La suma de las probabilidades desde 0 hasta infinito debe converger a 1. Las probabilidades asociadas con números muy grandes de conteos tiende a 0. La distribución de Poisson tiene un sólo parámetro, μ, que especifica la tasa promedio de ocurrencia del evento por unidad de tiempo.

15 Ejercicio: Determinar la distribución de Poisson para la ocurrencia anual de tornados en el estado de N.Y.

MODELOS DISCRETOS DE PROBABILIDAD

MODELOS DISCRETOS DE PROBABILIDAD MODELOS DISCRETOS DE PROBABILIDAD M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Modelo Uniforme Discreto Modelo Uniforme Discreto Sea

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@unam.mx T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la

Más detalles

Análisis Estadístico de Datos Climáticos. Distribuciones paramétricas de probabilidad (Wilks, cap. 4)

Análisis Estadístico de Datos Climáticos. Distribuciones paramétricas de probabilidad (Wilks, cap. 4) Análisis Estadístico de Datos Climáticos Distribuciones paramétricas de probabilidad (Wilks, cap. 4) 2013 Variables aleatorias Una variable aleatoria es aquella que toma un conjunto de valores numéricos

Más detalles

VARIABLES ALEATORIAS

VARIABLES ALEATORIAS VARIABLES ALEATORIAS Ejemplo: lanzar dos dados y sumar lo que sale en las dos caras. El espacio muestral está formado por los 36 resultados posibles (de lanzar los dados) Y el resultado del experimento

Más detalles

contablemente infinito.

contablemente infinito. III. Variables aleatorias Discretas y sus Distribuciones de Probabilidad 1 Variable aleatoria discreta Definición Una variable aleatoria se llama discreta si se puede contar su conjunto de resultados posibles.

Más detalles

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00 U.D.3: Distribuciones Discretas. La Distribución Binomial 3.1 Variable Aleatoria Discreta. Función o Distribución de Probabilidad. Variable Aleatoria: - En un experimento aleatorio, se llama variable aleatoria

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Probabilidad Condicional

Probabilidad Condicional Probabilidad Condicional Independencia condicional Como hemos dicho, las probabilidades condicionales tienen las mismas propiedades que las probabilidades no condicionales. Un ejemplo más es el siguiente:

Más detalles

Unidad Temática 1: Unidad 3 Distribución de Probabilidad Tema 9

Unidad Temática 1: Unidad 3 Distribución de Probabilidad Tema 9 Unidad Temática 1: Unidad 3 Distribución de Probabilidad Tema 9 Distribución de Probabilidad Recordamos conceptos: Variable aleatoria: es aquella que se asocia un número o un dato probabilístico, como

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

T1. Distribuciones de probabilidad discretas

T1. Distribuciones de probabilidad discretas Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

PRINCIPIOS ESTADÍSTICOS APLICADOS EN CONTROL DE CALIDAD

PRINCIPIOS ESTADÍSTICOS APLICADOS EN CONTROL DE CALIDAD UNIDAD II PRINCIPIOS ESTADÍSTICOS APLICADOS EN CONTROL DE CALIDAD Por: Prof. Gastón A. Pérez U. 2.3- PROBABILIDAD Y DISTRIBUCIÓN DE PROBABILIDAD 30 31 (2.3.2) DISTRIBUCIÓN DE PROBABILIDAD ES UNA DESCRIPCIÓN

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Axiomática de la Teoría de Probabilidades

Axiomática de la Teoría de Probabilidades Axiomática de la Teoría de Probabilidades Modelos matemáticos Según el experimento Cada ejecución del experimento se denomina prueba o ensayo Determinísticos Aleatorios Conjunto de resultados posibles

Más detalles

Funciones generadoras de probabilidad

Funciones generadoras de probabilidad Funciones generadoras de probabilidad por Ramón Espinosa Armenta En este artículo veremos cómo utilizar funciones generadoras en teoría de la probabilidad. Sea Ω un conjunto finito o numerable de resultados

Más detalles

ESTADÍSTICA INFERENCIAL. Sesión 6: Distribuciones de probabilidad para variables aleatorias continuas

ESTADÍSTICA INFERENCIAL. Sesión 6: Distribuciones de probabilidad para variables aleatorias continuas ESTADÍSTICA INFERENCIAL Sesión 6: Distribuciones de probabilidad para variables aleatorias continuas Contextualización Las variables aleatorias discretas son aquellas que toman estrictamente valores enteros,

Más detalles

DISTRIBUCIÓN PROBABILÍSTICA BINOMIAL APROXIMACIÓN LA CURVA NORMAL. Juan José Hernández Ocaña

DISTRIBUCIÓN PROBABILÍSTICA BINOMIAL APROXIMACIÓN LA CURVA NORMAL. Juan José Hernández Ocaña DISTRIBUCIÓN PROBABILÍSTICA BINOMIAL APROXIMACIÓN LA CURVA NORMAL Juan José Hernández Ocaña DISTRIBUCIÓN PROBABILÍSTICA BINOMIAL Variable discreta.- Es aquella que casi siempre asume solamente un conjunto

Más detalles

N O S I N T E R E S A S A B E R E L N Ú M E R O D E É X I T O S Q U E S U C E D E N E N N I N T E N T O S J U A N J O S É H E R N Á N D E Z O C A Ñ A

N O S I N T E R E S A S A B E R E L N Ú M E R O D E É X I T O S Q U E S U C E D E N E N N I N T E N T O S J U A N J O S É H E R N Á N D E Z O C A Ñ A N O S I N T E R E S A S A B E R E L N Ú M E R O D E É X I T O S Q U E S U C E D E N E N N I N T E N T O S J U A N J O S É H E R N Á N D E Z O C A Ñ A DISTRIBUCIÓN DE PROBABILIDAD Consiste en todos los

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

Tema 3. Probabilidad y variables aleatorias

Tema 3. Probabilidad y variables aleatorias 1 Tema 3. Probabilidad y variables aleatorias En este tema: Probabilidad: Experimentos aleatorios, espacio muestral, sucesos. Interpretaciones de la probabilidad. Propiedades de la probabilidad. Probabilidad

Más detalles

Tema 4: Modelos probabilísticos

Tema 4: Modelos probabilísticos Tema 4: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable

Más detalles

Esperanza Condicional

Esperanza Condicional Esperanza Condicional Podemos obtener la esperanza de una distribución condicional de la misma manera que para el caso unidimensional: 129 Caso 2 v.a. discretas X e Y: Caso 2 v.a. continuas X e Y: Percentiles

Más detalles

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A.

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. 1 PROBABILIDAD Probabilidad de un evento es la posibilidad relativa de que este ocurra al realizar el experimento Es la frecuencia de que algo ocurra dividido

Más detalles

Probabilidad Condicional. Teorema de Bayes para probabilidades condicionales:

Probabilidad Condicional. Teorema de Bayes para probabilidades condicionales: Probabilidad Condicional Teorema de Bayes para probabilidades condicionales: Definición: Variables aleatorias Sea S el espacio muestral de un experimento. Una función real definida sobre el espacio S es

Más detalles

Tema 4: Variables Aleatorias

Tema 4: Variables Aleatorias Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto

Más detalles

1 CÁLCULO DE PROBABILIDADES

1 CÁLCULO DE PROBABILIDADES 1 CÁLCULO DE PROBABILIDADES 1.1 EXPERIENCIAS ALEATORIAS. SUCESOS 1.1.1 Definiciones Experiencia aleatoria: experiencia o experimento cuyo resultado depende del azar. Suceso aleatorio: acontecimiento que

Más detalles

Probabilidad Condicional. Teorema de Bayes para probabilidades condicionales:

Probabilidad Condicional. Teorema de Bayes para probabilidades condicionales: Probabilidad Condicional Teorema de Bayes para probabilidades condicionales: Definición: Sea S el espacio muestral de un experimento. Una función real definida sobre el espacio S es una variable aleatoria.

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 4 Variables aleatorias Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir las características de las variables aleatorias discretas y continuas.

Más detalles

Algunas Distribuciones Discretas de Probabilidad. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Discretas de Probabilidad. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Discretas de Probabilidad UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Probabilidad y Verosimilitud

Probabilidad y Verosimilitud Probabilidad y Verosimilitud Clase Teórica 8 Alexandre Aires-da-Silva Comisión Interamericana del Atún Tropical (CIAT) Curso de introducción a modelos de dinámica poblacional y evaluación de recursos marinos

Más detalles

Distribuciones de probabilidad Discretas

Distribuciones de probabilidad Discretas Distribuciones de probabilidad Discretas Distribución Uniforme Discreta Definición Una variable aleatoria X, tiene una distribución uniforme discreta, si cada uno de los valores x 1, x 2,.. x n, tiene

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

Procesos estocásticos

Procesos estocásticos Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:

Más detalles

TEMA 3. Algunos modelos de probabilidad de tipo discreto. 3.1 Al finalizar el tema el alumno debe conocer...

TEMA 3. Algunos modelos de probabilidad de tipo discreto. 3.1 Al finalizar el tema el alumno debe conocer... TEMA 3. Algunos modelos de probabilidad de tipo discreto En este capítulo se abordan «familias» muy específicas de probabilidad, que con cierta frecuencia se nos presentan en el mundo real. Van a ser distribuciones

Más detalles

Tema 2 Modelos de probabilidad

Tema 2 Modelos de probabilidad Tema 2 Modelos de probabilidad José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Estructura de este tema Conceptos básicos de probabilidad. Modelos discretos: la distribución

Más detalles

Tema 6: Modelos probabilísticos

Tema 6: Modelos probabilísticos Tema 6: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable

Más detalles

Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM

Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM Universidad Católica del Norte Escuela de Negocios Mineros Magíster en Gestión Minera Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM Antofagasta, Junio de 2014 Freddy

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 6 Nombre: Distribuciones de probabilidad para variables aleatorias continuas Contextualización Las variables aleatorias discretas son aquellas

Más detalles

Disponible en el sitio OCW de la Universidad Nacional de Córdoba.

Disponible en el sitio OCW de la Universidad Nacional de Córdoba. OCW - UNC OpenCourseWare I UNC Curso: Estadística I U 4. Variables Aleatorias Autora: Rosanna Casini Cómo citar el material: Disponible en el sitio OCW de la Universidad Nacional de Córdoba. Casini, Rosanna

Más detalles

Reporte de práctica. Materia: Procesos Estócasticos. Facilitador: Ing. Pedro Martín García Vite. Integrantes: Armendáriz Flores Adrián

Reporte de práctica. Materia: Procesos Estócasticos. Facilitador: Ing. Pedro Martín García Vite. Integrantes: Armendáriz Flores Adrián Reporte de práctica Materia: Procesos Estócasticos Facilitador: Ing. Pedro Martín García Vite Integrantes: Armendáriz Flores Adrián Cruz Hernández Emmanuel González Manuel Ana Silvia Tema: Gráficas de

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Tema 6 Modelos de distribuciones discretas y continuas 6.1. Modelos de distribuciones discretas 6.1.1. Distribución uniforme sobre n puntos Definición 6.1.2 Se dice que una v.a. X sigue una distribución

Más detalles

Selección de distribuciones de probabilidad

Selección de distribuciones de probabilidad Selección de distribuciones de probabilidad Georgina Flesia FaMAF 3 de mayo, 2012 Análisis estadístico de datos simulados Los sistemas reales tienen fuentes de aleatoriedad: Tipo de sistema Fabricación

Más detalles

Tema 5. Variables Aleatorias

Tema 5. Variables Aleatorias Tema 5. Variables Aleatorias Presentación y Objetivos. En este tema se estudia el concepto básico de Variable Aleatoria así como diversas funciones fundamentales en su desarrollo. Es un concepto clave,

Más detalles

Estadística Aplicada

Estadística Aplicada Estadística Aplicada Distribuciones de Probabilidad Variables aleatorias Toman un valor numérico para cada resultado de un espacio muestral Discretas. Sus valores posibles constituyen un conjunto discreto.

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

1. Experimentos aleatorios

1. Experimentos aleatorios 1. Eperimentos aleatorios La eperimentación es útil porque si se supone que llevamos a cabo ciertos eperimentos bajo condiciones esencialmente idénticas se llegará a los mismos resultados. En estas circunstancias,

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 4 horas a la semana 8 créditos Semestre variable según la carrera Objetivo del curso: Analizar y resolver problemas de naturaleza aleatoria en la ingeniería, aplicando conceptos

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También

Más detalles

Concepto de Probabilidad

Concepto de Probabilidad Concepto de Probabilidad Prof. Miguel Hesiquio Garduño. Est. Mirla Benavides Rojas Depto. De Ingeniería Química Petrolera ESIQIE-IPN hesiquiogm@yahoo.com.mx mbenavidesr5@gmail.com PROBABILIDAD En cualquier

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

Pérdida Esperada. Pérdida Esperada (PE): Valor esperado de pérdida por riesgo crediticio en un horizonte de tiempo determinado.

Pérdida Esperada. Pérdida Esperada (PE): Valor esperado de pérdida por riesgo crediticio en un horizonte de tiempo determinado. Pérdida Esperada Uno de los objetivos de este estudio es construir una función de pérdidas para el portafolio de la cartera de préstamos que ofrece la entidad G&T Continental, basados en el comportamiento

Más detalles

Juan Carlos Colonia DISTRIBUCIONES MUESTRALES

Juan Carlos Colonia DISTRIBUCIONES MUESTRALES Juan Carlos Colonia DISTRIBUCIONES MUESTRALES POBLACIÓN Es el conjunto de individuos u objetos que poseen alguna característica común observable y de la cual se desea obtener información. El número de

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

Teoría de la decisión

Teoría de la decisión Teoría de la decisión Repaso de Estadística Unidad 1. Conceptos básicos. Teoría de. Espacio muestral. Funciones de distribución. Esperanza matemática. Probabilidad condicional 1 Teoría de la decisión Teoría

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

Variables aleatorias discretas

Variables aleatorias discretas Variables aleatorias discretas Considere el espacio de probabilidad Ω, F, P) y la función X : Ω R. La imagen de Ω bajo X se define como sigue ImgX) = x R ω Ω : Xω) = x}. Si ImgX) es un conjunto contable,

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 4 Distribución de Probabilidades Distribución de Probabilidades Distribución de Probabilidades Variables Aleatorias: Discreta y Continua Función Densidad

Más detalles

Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero

Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero Fundamentos de la Teoría de la Probabilidad Ing. Eduardo Cruz Romero www.tics-tlapa.com Teoría elemental de la probabilidad (1/3) El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DISCRETA

DISTRIBUCIONES DE PROBABILIDAD DISCRETA Probabilidad DISTRIBUCIONES DE PROBABILIDAD DISCRETA Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 Combinando métodos descriptivos y probabilidades En este capítulo vamos

Más detalles

VARIABLES ALEATORIAS INTRODUCCIÓN

VARIABLES ALEATORIAS INTRODUCCIÓN DOCENTE: SERGIO ANDRÉS NIETO DUARTE CURSO: ESTADÍSTICA DE LA PROBABILIDAD VARIABLES ALEATORIAS INTRODUCCIÓN Normalmente, los resultados posibles (espacio muestral E) de un experimento aleatorio no son

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos PROBABILIDAD CÁLCULO DE PROBABILIDADES Experimentos y sucesos Experimento aleatorio Es aquel cuyo resultado depende del azar, es decir no se puede predecir de antemano qué resultado se va a obtener aunque

Más detalles

HOJA DE TRABAJO UNIDAD 3

HOJA DE TRABAJO UNIDAD 3 HOJA DE TRABAJO UNIDAD 3 1. Defina que es probabilidad Es el estudio de experimentos aleatorios o libres de determinación, el resultado es al azar. Se refiere al estudio de la aleatoriedad y a la incertidumbre.

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 6)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 6) TEMA Nº 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Ser capaz de definir correctamente una o más variables aleatorias sobre los resultados de un experimento aleatorio y determinar

Más detalles

Variables aleatorias

Variables aleatorias Capítulo 5 Variables aleatorias 5.1. Introducción Normalmente, los resultados posibles (espacio muestral E) de un experimento aleatorio no son valores numéricos. Por ejemplo, si el experimento consiste

Más detalles

Discretas. Continuas

Discretas. Continuas UNIDAD 0. DISTRIBUCIÓN TEÓRICA DE PROBABILIDAD Discretas Binomial Distribución Teórica de Probabilidad Poisson Normal Continuas Normal Estándar 0.1. Una distribución de probabilidad es un despliegue de

Más detalles

Métodos Estadísticos de la Ingeniería Práctica 5: Distribuciones de Probabilidad y el Teorema Central del

Métodos Estadísticos de la Ingeniería Práctica 5: Distribuciones de Probabilidad y el Teorema Central del Métodos Estadísticos de la Ingeniería Práctica 5: Distribuciones de Probabilidad y el Teorema Central del Límite Área de Estadística e Investigación Operativa Mariano Amo Salas y Licesio J. Rodríguez-Aragón

Más detalles

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO

Más detalles

TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD

TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD A partir de un experimento aleatorio cualquiera, se obtiene su espacio muestral E. Se llama variable aleatoria a una ley (o función) que a cada elemento del espacio

Más detalles

Selección de distribuciones de probabilidad

Selección de distribuciones de probabilidad Selección de distribuciones de probabilidad Patricia Kisbye FaMAF 6 de mayo, 2010 Análisis estadístico de datos simulados Los sistemas reales tienen fuentes de aleatoriedad: Tipo de sistema Fabricación

Más detalles

Tema 6. Variables Aleatorias Discretas

Tema 6. Variables Aleatorias Discretas Presentación y Objetivos. Tema 6. Variables Aleatorias Discretas En esta unidad se presentan algunos ejemplos estándar de variables aleatorias discretas relacionadas de diversas formas dependiendo de su

Más detalles

Universidad Católica de Valparaíso Facultad de Ingeniería Escuela de Ingeniería de Transporte

Universidad Católica de Valparaíso Facultad de Ingeniería Escuela de Ingeniería de Transporte 1. NÚMEROS ALEATORIOS 1.0 INTRODUCCIÓN El papel que desempeñan las variables aleatorias uniformemente distribuidas en la generación de variables aleatorias tomadas de otras distribuciones de probabilidad,

Más detalles

Bioestadística. Curso Capítulo 3

Bioestadística. Curso Capítulo 3 Bioestadística. Curso 2012-2013 Capítulo 3 Carmen M a Cadarso, M a del Carmen Carollo, Xosé Luis Otero, Beatriz Pateiro Índice 1. Introducción 2 2. Variable aleatoria 2 2.1. Variables aleatorias discretas...............................

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

Tema 4. Variables aleatorias discretas

Tema 4. Variables aleatorias discretas Tema 4. Variables aleatorias discretas 508 Estadística. ETDI. Curs 2002/03 Cuestiones de Verdadero/Falso 1. En un proceso de Bernoulli, hay exactamente dos posibles resultados en cada prueba. 2. La fórmula

Más detalles

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri Estadística 010 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DISCRETA

DISTRIBUCIONES DE PROBABILIDAD DISCRETA Probabilidad DISTRIBUCIONES DE PROBABILIDAD DISCRETA Copyright 010, 007, 004 Pearson Education, Inc. All Rights Reserved. 4.1-1 Combinando métodos descriptivos y probabilidades En este capítulo vamos a

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD VARIABLE ALEATORIA Una variable x valuada numéricamente varía o cambia, dependiendo del resultado particular del experimento que se mida. Por ejemplo, suponga que se tira

Más detalles

CI 41C HIDROLOGÍA HIDROLOGÍA PROBABILÍSTICA

CI 41C HIDROLOGÍA HIDROLOGÍA PROBABILÍSTICA CI 41C HIDROLOGÍA HIDROLOGÍA PROBABILÍSTICA alcantarilla Puente? Badén http://www.disasternews.net/multimedia/files/drought5_9412.jpg Fenómenos en Ingeniería (según certeza de ocurrencia) determinísticos

Más detalles

C L A S E N 5 I N S E M E S T R E O T O Ñ O,

C L A S E N 5 I N S E M E S T R E O T O Ñ O, Unidad 1 a. Probabilidades y Estadística 1 C L A S E N 5 I N 3 4 0 1 S E M E S T R E O T O Ñ O, 2 0 1 2 Características de las v.a 2 Parámetros v.a. La función de densidad o la distribución de probabilidad

Más detalles

6-1 y. Sec Distribuciones de probabilidad discreta Pearson Prentice Hall. All rights reserved

6-1 y. Sec Distribuciones de probabilidad discreta Pearson Prentice Hall. All rights reserved Sec. 6-1 y 3 6-2 Distribuciones de probabilidad discreta Variables aleatorias Una variable aleatoria (v.a.) es un número real asociado al resultado de un experimento aleatorio Su valor se determina al

Más detalles

Procesos estocásticos. Definición

Procesos estocásticos. Definición Procesos estocásticos Definición http://humberto-r-alvarez-a.webs.com Definición de proceso estocástico Estudio del comportamiento de una variable aleatoria a lo largo del tiempo El ajuste de cualquier

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 4 Distribución de Probabilidades Distribución de Probabilidades Distribución de Probabilidades Variables Aleatorias: Discreta y Continua Función Densidad

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

Estadística Grupo V. Tema 10: Modelos de Probabilidad

Estadística Grupo V. Tema 10: Modelos de Probabilidad Estadística Grupo V Tema 10: Modelos de Probabilidad Algunos modelos de distribuciones de v.a. Hay variables aleatorias que aparecen con frecuencia en las Ciencias Sociales y Económicas. Experimentos dicotómicos

Más detalles

Distribuciones de probabilidad discretas

Distribuciones de probabilidad discretas Lind, Douglas; William G. Marchal y Samuel A. Wathen (2012). Estadística aplicada a los negocios y la economía, 15 ed., McGraw Hill, China. Distribuciones de probabilidad discretas Capítulo 6 FVela/ McGraw-Hill/Irwin

Más detalles

Variables Aleatorias Discretas

Variables Aleatorias Discretas Unicatólica 15 de agosto de 2016 Variables aleatorias Se dice que hemos definido una variable aleatoria para un experimento aleatorio cuando hemos asociado un valor numérico a cada resultado del experimento.

Más detalles

Estadística Inferencial. Sesión 2. Distribuciones muestrales

Estadística Inferencial. Sesión 2. Distribuciones muestrales Estadística Inferencial. Sesión 2. Distribuciones muestrales Contextualización. Toda cantidad que se obtiene de una muestra con el propósito de estimar un parámetro poblacional se llama estadístico muestral

Más detalles

CONTENIDOS MÍNIMOS PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE DE 2016 MATEMÁTICAS 1º BACHILLERATO HHCCSS IES DOMINGO PÉREZ MINIK

CONTENIDOS MÍNIMOS PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE DE 2016 MATEMÁTICAS 1º BACHILLERATO HHCCSS IES DOMINGO PÉREZ MINIK CONTENIDOS MÍNIMOS PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE DE 2016 MATEMÁTICAS 1º BACHILLERATO HHCCSS IES DOMINGO PÉREZ MINIK BLOQUE 1. ESTADÍSTICA 1. ESTADÍSTICA UNIDIMENSIONAL Variable estadística

Más detalles

Probabilidad Condicional

Probabilidad Condicional Probabilidad Condicional Ejemplo: Se tiene que dos bolas son seleccionadas aleatoriamente (sin reemplazo) de un caja que contiene r bolas rojas y b bolas azules. Cuál es la probabilidad de que la primera

Más detalles

Ms. C. Marco Vinicio Rodríguez

Ms. C. Marco Vinicio Rodríguez Ms. C. Marco Vinicio Rodríguez mvrodriguezl@yahoo.com http://mvrurural.wordpress.com/ Uno de los objetivos de la estadística es saber acerca del comportamiento de parámetros poblacionales tales como:

Más detalles

Variables Aleatorias y Distribución de Probabilidades

Variables Aleatorias y Distribución de Probabilidades Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables

Más detalles