REPÚBLICA BOLIVARIANA DE VENEZUELA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "REPÚBLICA BOLIVARIANA DE VENEZUELA"

Transcripción

1 - 1 - APUNTES DE FÍSICA III Profesor: José Fernando Pinto Parra LA RADIACIÓN Es un fenómeno que consiste en la propagación de energía en forma de ondas electromagnéticas o partículas subatómicas a través del vacío o de un medio material. La luz visible es sólo una de las muchas formas de energía electromagnética, así como también lo son las ondas de radio, el calor, los rayos ultravioletas o los rayos X, todas estas formas de energía radian de acuerdo a la teoría ondulatoria, que describe como esta energía viaja con forma sinusoidal a la velocidad de la luz y responde a la ecuación: c=f λ. Es importante señalar, que las ondas y las partículas tienen muchas características comunes, así como que la radiación suele producirse predominantemente en una de las siguientes dos formas: La radiación mecánica que corresponde a ondas que sólo se transmiten a través de la materia, como las ondas de sonido. La radiación electromagnética, que es independiente de la materia para su propagación, sin embargo, la velocidad, intensidad y dirección de su flujo de energía se ven influidos por la presencia de materia. Sin embargo otra forma de radiación es la corpuscular, que es la radiación transmitida en forma de partículas subatómicas (partículas α, neutrones, etc.) que se mueven a gran velocidad en un medio o el vacío, con apreciable transporte de energía. Si la radiación transporta energía suficiente como para provocar ionización en el medio que atraviesa, se dice que es una radiación ionizante, tales como los Rayos X, Rayos γ, y Partículas α, entre otros. En caso contrario se habla de radiación no ionizante. Una característica importante de la radiación, y que es independiente de su naturaleza corpuscular u ondulatoria, consiste en la capacidad de producir iones o no, esta permite clasificarlas en Radiación No Ionizante y en Radiación Ionizante. Radiación No Ionizante Son aquellas que no son capaces de producir iones al interactuar con los átomos de un material, tales como los Rayos UV y las ondas de radio, TV o de telefonía móvil. Se pueden clasificar en dos grandes grupos: o Los campos electromagnéticos, entre ellos distinguimos los generados por las líneas de corriente eléctrica o por campos eléctricos estáticos, así como las ondas de radiofrecuencia, utilizadas por las emisoras de radio, y las microondas utilizadas en electrodomésticos y en el área de las telecomunicaciones. o Las radiaciones ópticas entre las que mencionamos los rayos láser y la radiación solar, estas pueden provocar calor y ciertos efectos fotoquímicos al actuar sobre el cuerpo humano.

2 - 2 - Espectro Solar Radiación Ionizante Son radiaciones con energía necesaria para arrancar electrones de los átomos. Cuando un átomo queda con un exceso de carga eléctrica, ya sea positiva o negativa, se dice que se ha convertido en un ión (positivo o negativo). Entonces son radiaciones ionizantes los rayos X, las radiaciones alfa, beta y gamma. Las radiaciones ionizantes pueden provocar reacciones y cambios químicos con el material con el cual interaccionan. Por ejemplo, son capaces de romper los enlaces químicos de las moléculas o generar cambios genéticos en células reproductoras. Poder de penetración de las radiaciones Hemos dicho que la energía radiante se transmite por ondas electromagnéticas, por lo tanto su velocidad de propagación será la de la luz ( Km/s en el vacío). A manera de resumen, todos los cuerpos, cualquiera sea su temperatura, emiten energía en forma continua desde sus superficies. Esta energía se denomina energía radiante y es transportada por ondas electromagnéticas, de ecuación de la forma: E t x, E 0 senkxt Por lo que podemos afirmar que la energía radiante puede transmitirse aún en el vacío y es lo que conocemos como radiación.

3 - 3 - Ahora, de la radiación que incide sobre una superficie, una parte puede absorberse por el cuerpo, otra reflejarse y una tercera transmitirse a través del mismo. Si definimos como: Poder absorbente, a, que es la fracción de la radiación absorbida. Poder reflexivo, r, que es la fracción de la radiación reflejada. Poder transmisivo, t, que es la fracción de la radiación transmitida. En consecuencia se tiene que cumplir que: a r t 1 Como la mayoría de los sólidos son opacos a la radiación térmica, es decir que su poder transmisivo es igual a cero, entonces, para el caso de cuerpos opacos tenemos: a r 1 El poder transmisivo y el poder absorbente, dependen del espesor del cuerpo. RADIACIÓN TÉRMICA Ya vimos que todos los cuerpos emiten energía y a su vez la absorben de sus inmediaciones. Cuando se alcanza el equilibrio térmico, la velocidad de emisión y absorción son iguales. La materia en estado condensado (sólido o líquido) emite un espectro continuo de radiación. Este espectro depende sobremanera de la temperatura. A temperaturas ordinarias, los cuerpos se ven por la luz que reflejan, no por la que emiten. Sin embargo, a temperaturas altas los cuerpos son autoluminosos y es posible verlos brillar en cuartos oscuros. Si se eleva uniformemente la temperatura de un cuerpo caliente, se observa que: A mayor temperatura, mayor radiación térmica emitida. Entre más alta la temperatura, más alta es la frecuencia de la parte del espectro que radia más intensamente; los colores cambian de rojo vivo a rojo blanco a azul. Así, se puede estimar la temperatura de cuerpos incandescentes (estrellas, hierro, etc.) a través del

4 - 4 - análisis de su espectro o del color principal que es visible. La forma detallada del espectro de radiación térmica depende de la composición del cuerpo que la emite. Cuando el origen de la radiación es el calor, la energía se emite en función solo de la temperatura y se denomina radiación térmica, es la zona del espectro radiante comprendida entre las longitudes de onda de m a m. Como consecuencia de este fenómeno, dos cuerpos colocados en el vacío que están a diferentes temperaturas alcanzan el equilibrio térmico debido a que el de menor temperatura recibe energía radiante del otro cuerpo de mayor temperatura. Cuando la energía radiante es absorbida por un cuerpo, se transforma en calor; no obstante la energía radiante también puede ser reflejada (difundida) o refractada (propagada) por los cuerpos. Trataremos únicamente la energía radiante emitida por los sólidos y los líquidos, pues la emitida por los gases obedece a leyes muy diferentes. Cuando un cuerpo está más caliente que su entorno pierde calor hasta que su temperatura se equilibra con la de su entorno, este proceso de pérdida de calor se puede producir por tres tipos de procesos: conducción, convección y radiación térmica. De hecho la emisión de radiación puede ser el proceso dominante para cuerpos relativamente aislados del entorno o para muy altas temperaturas. Así un cuerpo muy caliente como norma general emitirá gran cantidad de ondas electromagnéticas. Pero consideremos los siguientes aspectos: La cantidad térmica radiada por unidad de superficie de un cuerpo excitado térmicamente por unidad de tiempo depende exclusivamente de la temperatura absoluta de dicho cuerpo, de la sustancia de la que está constituido y de la naturaleza de la superficie. La energía emitida que abandona la superficie por unidad de tiempo y de área la denominamos emitancia (W) está constituida especialmente por la emisión original de la superficie. La radiosidad (J) la energía total radiante que abandona una superficie por unidad de tiempo y superficie. Esta radiación constará de la emitancia, original procedente de la superficie más la fracción de cualquier radiación que incida sobre ésta. La irradiación (G) es la energía radiante total que incide sobre una superficie por unidad de tiempo y de superficie, sencillamente es la radiación que llega a una superficie sin tener para nada en cuenta lo que luego suceda. Una parte se absorberá y otra, al reflejarse, formará parte de la radiosidad de la superficie. J W rg donde r es el poder reflexivo. Para el cuerpo opaco se cumple que:

5 - 5 - J W 1 ag donde a, es el poder absorbente Cuerpo negro No todas las superficies emiten o absorben la misma cantidad de energía radiante cuando se calientan a la misma temperatura. Un cuerpo que absorba o emita a una temperatura determinada la máxima cantidad de energía se denomina superficie negra o simplemente cuerpo negro. De lo anterior se deduce que un cuerpo negro es aquel cuerpo ideal que es capaz de absorber o emitir toda la radiación que sobre él incide. Ningún cuerpo real absorbe e irradia radiación como un cuerpo negro perfecto. Las superficies del Sol y la Tierra se comportan aproximadamente como cuerpos negros. Si embargo, en muchos casos, la curva de la radiación de un cuerpo negro es una muy buena aproximación a la realidad, y las propiedades de los cuerpos negros proporcionan un entendimiento importante del comportamiento de los objetos reales. Como los cuerpos negros emiten una cantidad definida de energía para una longitud de onda y temperatura particular, se pueden dibujar las curvas de radiación del cuerpo negro para cada temperatura, mostrando la energía radiada en cada longitud de onda. Las curvas de emisión, o espectro de radiación, de un cuerpo negro tienen la siguiente forma: La gráfica permite observar que a cada temperatura el cuerpo negro emite una cantidad estándar de energía que está representada por el área bajo la curva en el intervalo. Además se observa que la curva de radiación depende de la temperatura del cuerpo negro y es más abrupta cuando mayor es su temperatura. También se aprecia que el cuerpo negro emite radiación en todas las longitudes de onda. Asimismo vemos que cuando mayor es la temperatura del cuerpo una mayor cantidad de energía radiada cae en la región del espectro visible. Esto también muestra que para cada temperatura existe una radiación en donde la

6 - 6 - densidad de la energía emitida es máxima. A la longitud de onda de esta radiación particular se denomina longitud de onda pico (λmáx.). Por ejemplo a la temperatura de 5000 K, la longitud de onda pico es casi 0,5 mm que está en la región de la luz visible, en la sección verde-amarillo. El valor de la longitud de onda pico de la radiación emitida (λmáx.) decrece cuando se eleva la temperatura del emisor. Es importante señalar que el cuerpo negro perfecto no existe en la realidad, sino que es un ente ideal que se utiliza como referencia respecto a otros radiadores. No obstante, existen numerosas superficies que son cuerpos negros casi perfectos, sobre todo para radiaciones de onda larga, por lo que para casos prácticos son considerados como tales con suficiente exactitud. El cuerpo negro es entonces, un cuerpo imaginario que se supone con capacidad para absorber toda la radiación térmica incidente; es decir, aquel en el que a =1 y r = 0. Este es el cuerpo "absolutamente negro", o, en otras palabras, un absorbente perfecto de la radiación. Se llaman "negros" porque las superficies pintadas de negro suelen presentar poderes absorbentes muy altos. Poder emisivo, absorbente, coeficiente de emisividad y coeficiente de absorción El poder emisivo o de emisión Φ E, de un cuerpo, se define como la cantidad de calor emitida por unidad de superficie y por unidad de tiempo, en una dirección dad. El valor de E depende fundamentalmente del valor de λ y de T. Se denomina coeficiente de emisividad a la relación entre el poder emisivo del cuerpo Φ E, y el poder emisivo del cuerpo negro Φ N, en iguales condiciones. Es decir: E El poder absorbente a, de un cuerpo, se define como la cantidad de calor absorbida por unidad de superficie y por unidad de tiempo. Su valor depende de λ y T. Se denomina coeficiente de absorción A, a la relación entre el poder absorbente del cuerpo A y el poder absorbente correspondiente al cuerpo negro en las mismas condiciones A N. a A Tanto el coeficiente de emisividad como el coeficiente de absorción tienen un rango de valor comprendido entre 0 y 1. N A N

7 - 7 - Distribución espectral de la energía radiante. Lumer y Pringssheim, efectuaron una serie de experimentos en los cuales tomaban las radiaciones emitidas a una cierta temperatura y medían su energía a distintas longitudes de onda. Así encontraron que la energía en las distintas longitudes de onda no era uniforme. Si E λ es la energía emitida con longitud de onda λ, la energía total a temperatura T está dada por: E T E d 0

8 - 8 - Por lo tanto, el área encerrada por cada curva representa la energía total emitida a esa temperatura, será proporcional a la cantidad de calor transmitida por unidad de superficie y unidad de tiempo. Se puede observar que a temperaturas bajas, la energía emitida corresponde a radiaciones de longitudes de onda ubicadas en la zona infrarroja, a medida que el cuerpo aumenta su temperatura, emite radiaciones de longitud de onda cada vez menores, alcanzando la zona roja de luz visible y posteriormente al cubrir todo el espectro visible, la luz blanca. Por este motivo, los cuerpos a temperaturas elevadas presentan color rojo y también blanco. La cantidad de energía transmitida, reflejada o absorbida por un cuerpo, depende de la naturaleza del material, de la superficie y de la longitud de onda de la radiación. En realidad no existen cuerpos totalmente permeables o impermeables. Por ejemplo, el vidrio es permeable a las radiaciones visibles pero absorbe las infrarrojas. Ley de Kirchhoff Todo cuerpo con una temperatura por encima del cero absoluto ( C) emite calor radiante (radiación infrarroja). La ley de radiación de Kirchhoff postula que la radiación recibida (absorbida) y la repelida (emitida) por un cuerpo real están en equilibrio térmico, o dicho de otro modo, un cuerpo siempre emite exactamente la misma cantidad de calor que la que recibe. A partir de esta teoría podemos deducir que: e = a Donde e es la razón de emisión de energía radiante y a la razón de absorción de energía radiante. Lo expresado por esta ley tanto para cuerpos reales como para cuerpos negros se ve en las siguientes imágenes.

9 - 9 - Supongamos dos cuerpos opacos, separados por una distancia grande y colgado de hilos finos e una cámara al vacío cuyas paredes se mantienen a temperatura constante., se demuestra la siguiente condición: Como se refiere a una condición ideal de equilibrio térmico, al aplicar la Ley de Kirchhoff, se tiene que: a1 e 1 2 e2 y por tanto y Ley de Stefan-Boltzmann. e1 a 1 A partir de las curvas experimentales del espectro de radiación del cuerpo negro en 1878, establecieron la siguiente ecuación para calcular teóricamente la energía total radiada por un cuerpo negro, que se encuentra a la temperatura absoluta T, por unidad de área y tiempo. De acuerdo con esta ley, la cantidad de energía radiante emitida o calor radiado es proporcional a su temperatura absoluta elevada a la cuarta potencia: P AT donde P es la potencia radiada α es un coeficiente que depende de la naturaleza del cuerpo, α = 1 para un cuerpo negro perfecto. A es el área de la superficie que radia σ es la constante de Stefan-Boltzmann con un valor de 5, W 4 m 2 K e a e 1 a 1 a e a 2 2 1

10 Ley de Wien La ley del desplazamiento de Wien afirma que el máximo de la intensidad de la radiación térmica emitida por un cuerpo negro ideal se desplaza, con el aumento de la temperatura, hacia la región de longitudes de onda más corta. La ley de Wien nos dice cómo cambia el color de la radiación cuando varía la temperatura de la fuente emisora, y ayuda a entender cómo varían los colores aparentes de los cuerpos negros. Los objetos con una mayor temperatura emiten la mayoría de su radiación en longitudes de onda más cortas; por lo tanto parecerán ser más azules. Los objetos con menor temperatura emiten la mayoría de su radiación en longitudes de onda más largas; por lo tanto parecerán ser más rojos. Además, en cualquiera de las longitudes de onda, el objeto más caliente irradia más (es más luminoso) que el de menor temperatura. La ley de Wien dice: " El producto de la temperatura absoluta de un cuerpo negro por la longitud de onda para la cual la radiación emitida es máxima, es igual a una constante". máx. T 2, m K La ley de Wien se utiliza para determinar las temperaturas de las estrellas a partir de los análisis de su radiación. Puede utilizarse también para representar las variaciones de temperaturas en diferentes regiones de la superficie de un objeto, lo que constituye una termografías.

11 Radiación de una cavidad La radiación electromagnética que existe dentro de una cavidad es una mezcla de ondas estacionarias de frecuencias, f, que se «ajustan» a la cavidad. La energía electromagnética se distribuye entre esas ondas estacionarias, de forma que a cada temperatura, T, la radiación está en equilibrio térmico con las paredes de la cavidad. Esta distribución de energía puede determinarse mediante el análisis de la luz que emerge de un pequeño orificio o abertura practicado en la pared de la cavidad. Como este orificio es equivalente a un cuerpo negro, la potencia irradiada a través del agujero es: 4 P AT donde S es el área de la abertura. La potencia irradiada por unidad de superficie de la abertura, o sea la irradiancia, viene dada por P R s La irradiancia espectral corresponde al flujo energético recibido a cada longitud de onda por una superficie situada perpendicularmente a la marcha de los rayos colocada a la distancia r del cuerpo negro emisor. La energía radiada (R f ) se distribuye sobre una superficie cada vez mayor en proporción al cuadrado del radio el flujo disminuye inversamente al cuadrado del radio a medida que nos alejamos de la fuente. Por tal motivo se define a la irradiancia espectral, R f, como la potencia irradiada por unidad de superficie y frecuencia. Podemos considerar que el producto R f df es la potencia irradiada por unidad de área para las frecuencias comprendidas entre f y f + df. La irradiancia espectral R f, sumada o integrada a todo el rango de frecuencias posibles, obteniendo que la irradiancia total R f 0 R f df

12 TEORÍA CLÁSICA DE LA RADIACIÓN Las teorías a principios de 1900 suponían que la superficie del material estaba compuesta por una infinidad de osciladores muy pequeños (los átomos) que se encuentran vibrando alrededor de un punto de equilibrio. Cuanto más caliente está el material, más rápido y con mayor amplitud vibran esos minúsculos osciladores, que pueden emitir parte de la energía que tienen en forma de onda electromagnética. Al emitir esta energía, oscilan más despacio: es decir, se enfrían. Para la época, Rayleigh y Jeans, presentaron un modelo clásico de la densidad de energía de la radiación de cavidad (cuerpo negro) que usaba la equivalencia matemática entre una onda estacionaria y un oscilador armónico. Al aplicar estas teorías clásicas a la radiación de cuerpo negro, se obtenía una curva teórica de la radiación emitid y ninguna curva teórica coincidía con la curva real. La más conocida era la propuesta por Lord Rayleigh en 1900, y perfeccionada por Sir James Jeans en Era elegante, se deducía de manera lógica a partir de las teorías conocidas y predecía que un cuerpo negro debería emitir una energía infinita. La curva que se obtenía a partir de la fórmula de Rayleigh-Jeans se ajustaba muy bien a la curva real para longitudes de onda largas, pero para longitudes de onda cortas divergía de una forma exagerada: no es que fuera algo diferente, es que era totalmente imposible. La irradiancia, que es proporcional a la energía por unidad de volumen en la cavidad, debe ser proporcional al producto del número de modos por unidad de volumen y la energía media por modo. Este razonamiento nos conduce a la ecuación de Rayleigh-Jeans: donde 23 k 1,3810 jouke K. 2f R f c 2 2 kt

13 La ecuación de Rayleigh-Jeans está de acuerdo con la experiencia sólo a bajas frecuencias; a frecuencias altas claramente es errónea porque aumenta (como f 2 ) sin alcanzar un máximo. El aumento monótono con la frecuencia de la fórmula de Rayleigh-Jeans se denominó la «catástrofe ultravioleta». LEY DE LA RADIACIÓN DE PLANCK Para tratar de resolver el problema planteado por la Catástrofe Ultravioleta. En 1900 Max Planck presentó una fórmula que describía la distribución en frecuencias de la radiación de un cuerpo negro. Para conseguir las bases físicas de su fórmula, Planck renunció a la teoría de la distribución uniforme de la energía por grados de libertad, a las ideas de la Física Clásica y a las concepciones de la continuidad de las magnitudes físicas (y en especial a la energía) y concluyó que en el proceso de la radiación térmica la energía es absorbida y/o emitida en forma discontinua, por cuantos de energía, hizo algunas propuestas que en su momento fueron calificadas de infundadas y extremadamente radicales. Estas propuestas pueden resumirse en los siguientes puntos: 1. Un oscilador (incluido un modo de vibración estacionario) de frecuencia f, sólo puede cambiar su energía en múltiplos de una cantidad discreta denominada cuanto de energía, E hf donde h es la constante de Planck. 2. La energía de un oscilador está cuantizada, esto es, su energía está restringida a uno de los valores hf n donde el número cuántico n es un entero. E n

14 Planck fue capaz de demostrar que aceptando los principios anteriores de cuantización, la energía promedio por oscilador de un conjunto de osciladores de frecuencia f a la temperatura T está dada por: hf hf kt e 1 La constante h que relaciona la energía y la frecuencia, conocida como constante de Planck, está considerada como una constante fundamental, al igual forma que la velocidad de la luz, c o la carga del electrón, e. h 6, joule s La ley de la radiación de Planck para la irradiancia espectral de la radiación de un cuerpo negro: 3 2hf R f hf 2 kt c e 1 Esta expresión explica todas las características de la radiación de un cuerpo negro, incluyendo la ley de Stefan-Boltzmann, resolviendo así la catástrofe ultravioleta. Lo radical en la hipótesis de Planck es que la energía de un oscilador está cuantizada, y que la energía sólo puede poseer valores discretos y no un valor intermedio. Para un oscilador mecánico o eléctrico clásico, la energía es una variable continua. Es decir, si la energía está cuantizada, la amplitud sólo podría tener valores discretos. Nadie había observado esta cuantificación de la amplitud de un oscilador. La energía y la amplitud de los osciladores de tamaño ordinario parecen comportarse como una variable continua. Esto es debido a que los valores cuantizados son muy próximos unos a otros debido al valor tan pequeño de la constante de Planck.

15 El efecto Compton Cuando se analiza la radiación electromagnética que ha pasado por una región en la que hay electrones libres, se observa que además de la radiación incidente, hay otra de frecuencia menor. La frecuencia o la longitud de onda de la radiación dispersada dependen de la dirección de la dispersión. Sea la longitud de onda de la radiación incidente, y la longitud de onda de la radiación dispersada. Compton encontró que la diferencia entre ambas longitudes de onda estaba determinada únicamente por el ángulo de dispersión, del siguiente modo: ' c 1 cos donde c es una constante que vale m. 1. La radiación electromagnética dispersada consiste en dos longitudes de ondas, la original λ y una adicional λ', que casi tiene el mismo valor de λ. 2. λ' siempre es mayor de λ. 3. λ' depende de q, ángulo de dispersión; y no del medio dispersor. 4. Al aumentar el ángulo de dispersión, aumenta la intensidad de la componente desplazada. 5. Al aumentar q disminuye la intensidad de la componente no desplazada. 6. Al aumentar q aumenta el desplazamiento de los máximos, (λ' - λ) 7. La magnitud de los desplazamientos de la longitud de onda (λ' - λ) es independiente de la naturaleza dispersora. Se explica el efecto Compton en términos de la interacción de la radiación electromagnética con electrones libres, que suponemos inicialmente en reposo en el sistema de referencia del observador. Utilizando los principios de conservación de la energía y del momento lineal en estos choques, todos los resultados eran coherentes si se suponía que la luz se comportaba como una partícula (un fotón) que colisiona con el electrón, con energía dada por la relación de Planck E = h.f con momento lineal igual a p =h/λ. Puede resultar útil recordar que, de acuerdo con la teoría clásica, la energía y cantidad de movimiento de una onda electromagnética está marcada por E = pc; entonces, relacionando esta E mediante la ecuación anterior y recordando que c = λ.f se obtiene fácilmente, λ.

UNIDAD VIII: RADIACION TERMICA. Introducción. Ley de KIRCHOFF. Ley de PLANCK. Transporte de calor por radiación.

UNIDAD VIII: RADIACION TERMICA. Introducción. Ley de KIRCHOFF. Ley de PLANCK. Transporte de calor por radiación. UNIDAD VIII: RADIACION TERMICA Ley de KIRCHOFF. Ley de PLANCK. Transporte de calor por radiación. Introducción La temperatura de un cuerpo que esta más caliente que su entorno tiende a decrecer con el

Más detalles

Radiación. Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler. L. Infante 1

Radiación. Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler. L. Infante 1 Radiación Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler L. Infante 1 Cuerpo Negro: Experimento A medida que el objeto se calienta, se hace más brillante ya que emite más radiación

Más detalles

radiación Transferencia de Calor p. 1/1

radiación Transferencia de Calor p. 1/1 Transferencia de Calor p. 1/1 radiación la radiación térmica corresponde a la parte del espectro electromagnético con logitudes de onda por encima del bajo UV y el visible hasta las microondas... Transferencia

Más detalles

5.1. Magnitudes radiométricas

5.1. Magnitudes radiométricas 5. Radiometría y fotometría 5.1. Magnitudes radiométricas y fotométricas tricas 1 5. Radiometría y fotometría. 2 Magnitudes radiométricas y fotométricas tricas Radiometría rama de la Física dedicada a

Más detalles

Unidad 1 Estructura atómica de la materia. Teoría cuántica

Unidad 1 Estructura atómica de la materia. Teoría cuántica Unidad 1 Estructura atómica de la materia. Teoría cuántica 1.El átomo y la constitución de la materia DALTON NO ACEPTADO POR LOS FÍSICOS que creían en la idea de que los átomos se encontraban como disueltos

Más detalles

Se tiene para tener una idea el siguiente cuadro de colores perceptibles por el ojo humano dependiendo de la longitud de onda.

Se tiene para tener una idea el siguiente cuadro de colores perceptibles por el ojo humano dependiendo de la longitud de onda. La luz es una forma de energía la cual llega a nuestros ojos y nos permite ver, es un pequeño conjunto de radiaciones electromagnéticas de longitudes de onda comprendidas entre los 380 nm y los 770 nm.(nm

Más detalles

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar

Más detalles

leyes de la radiación Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz Ingeniería Técnica en Topografía lección 2 Teledetección

leyes de la radiación Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz Ingeniería Técnica en Topografía lección 2 Teledetección lección 2 1 sumario 2 Fuentes de radiación. El cuerpo negro. Leyes de la radiación. Terminología radiométrica. fuentes de radiación 3 Energía radiante: es la energía transportada por una onda electromagnética.

Más detalles

Practica nº n 5: Fenómenos de Difracción.

Practica nº n 5: Fenómenos de Difracción. Facultad de Farmacia Universidad de Granada Departamento de Química Física Practica nº n 5: Fenómenos de Difracción. OBJETIVOS 1.Observar los fenómenos de difracción Rendija simple Rendija doble 2.Calcular

Más detalles

LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO RESUMEN. GENERACIÓN DE LINEAS: Leyes de Kirchhoff

LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO RESUMEN. GENERACIÓN DE LINEAS: Leyes de Kirchhoff LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO Aproximarnos a los procesos que absorben y generan radiación electromagnética en la Tierra y en el espacio. Basada en presentación de Tabaré

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON.

EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON. EL ÁTOMO CONTENIDOS. 1.- Antecedentes históricos.( ) 2.- Partículas subatómicas. ( ) 3.- Modelo atómico de Thomsom. 4.- Los rayos X. 5.- La radiactividad. 6.- Modelo atómico de Rutherford. 7.- Radiación

Más detalles

LOS OBJETOS. Textos y fotos Fernando Moltini

LOS OBJETOS. Textos y fotos Fernando Moltini LOS OBJETOS Textos y fotos Fernando Moltini Como son percibidos los colores de los objetos. Un cuerpo opaco, es decir no transparente absorbe gran parte de la luz que lo ilumina y refleja una parte más

Más detalles

Ondas : Características de las ondas

Ondas : Características de las ondas Ondas : Características de las ondas CONTENIDOS Características de las Ondas Qué tienen en común las imágenes que vemos en televisión, el sonido emitido por una orquesta y una llamada realizada desde un

Más detalles

El Espectro Electromagnético Radiación Ionizante y NO Ionizante

El Espectro Electromagnético Radiación Ionizante y NO Ionizante 27-03-2015 El Espectro Electromagnético Radiación Ionizante y NO Ionizante 01-04-2015 El Espectro Electromagnético Radiación Ionizante y NO Ionizante Las radiaciones, atendiendo a su energía, se clasifican

Más detalles

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0

Más detalles

Ejercicios de Física cuántica y nuclear. PAU (PAEG)

Ejercicios de Física cuántica y nuclear. PAU (PAEG) 1. Las longitudes de onda del espectro visible están comprendidas, aproximadamente, entre 390 nm en el violeta y 740 nm en el rojo. Qué intervalo aproximado de energías, en ev, corresponde a los fotones

Más detalles

TEMA 4: OPTICA. Cómo puede un buceador estimar la profundidad a la que se encuentra?

TEMA 4: OPTICA. Cómo puede un buceador estimar la profundidad a la que se encuentra? Cómo puede un buceador estimar la profundidad a la que se encuentra? http://www.buceando.es/ Física A qué distancia podemos distinguir los ojos de un gato montés? Soy daltónico? La luz: naturaleza dual

Más detalles

DEPARTAMENTO DE FÍSICA COLEGIO "LA ASUNCIÓN"

DEPARTAMENTO DE FÍSICA COLEGIO LA ASUNCIÓN COLEGIO "LA ASUNCIÓN" 1(8) Ejercicio nº 1 La ecuación de una onda armónica es: Y = 0 02 sen (4πt πx) Estando x e y expresadas en metros y t en segundos: a) Halla la amplitud, la frecuencia, la longitud

Más detalles

COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ. abril 2012

COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ. abril 2012 COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ abril 2012 LUZ La luz es una radiación que hace posible la visión en la medida que se refleja en las diferentes superficies LUZ Y MATERIALES (τ) (α) (ρ) E

Más detalles

Introducción al calor y la luz

Introducción al calor y la luz Introducción al calor y la luz El espectro electromagnético es la fuente principal de energía que provee calor y luz. Todos los cuerpos, incluído el vidrio, emiten y absorben energía en forma de ondas

Más detalles

Tema 2: Propiedades y medición de la radiación electromagnética

Tema 2: Propiedades y medición de la radiación electromagnética Tema 2: Propiedades y medición de la radiación electromagnética Espectro de la radiación electromagnética Conceptos básicos para la medición: Densidad de flujo Luminosidad Intensidad Brillo superficial

Más detalles

CAPITULO I: La Luz CAPITULO I: LA LUZ 1

CAPITULO I: La Luz CAPITULO I: LA LUZ 1 CAPITULO I: La Luz CAPITULO I: LA LUZ 1 1.- La luz 1.1.- El nanómetro 1.2.- El espectro visible 1.3.- Naturaleza de la luz 1.4.- Fuentes de luz 2.- La Materia y la luz 2.1.- Fórmula R.A.T. 22-2.2. Absorción

Más detalles

Cuerpo negro. Un cuerpo que absorbe toda la radiación que incide en él se llama Cuerpo Negro Ideal(CNI). R =σt 4

Cuerpo negro. Un cuerpo que absorbe toda la radiación que incide en él se llama Cuerpo Negro Ideal(CNI). R =σt 4 Equilibrio térmico Cuando luz incide sobre un cuerpo, parte de ésta es reflejada y otra parte es absorbida por el cuerpo. La luz absorbida aumenta la energía interna del cuerpo, aumentando su temperatura.

Más detalles

COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ

COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ LUZ La luz es una radiación que hace posible la visión en la medida que se refleja en las diferentes superficies LUZ Y MATERIALES (τ) (α) (ρ) E incidente

Más detalles

VENTAJAS DE LA ILUMINACIÓN LED

VENTAJAS DE LA ILUMINACIÓN LED VENTAJAS DE LA ILUMINACIÓN LED Qué es un LED? LED viene de las siglas en inglés Lighting Emitting Diode (Diodo emisor de Luz). El LED es un diodo semiconductor que al ser atravesado por una corriente eléctrica

Más detalles

VIBRACIÓN Y ONDAS. Se denomina rayo a la línea perpendicular a los frentes de onda, como se muestra en la figura.

VIBRACIÓN Y ONDAS. Se denomina rayo a la línea perpendicular a los frentes de onda, como se muestra en la figura. VIBRACIÓN Y ONDAS DEFINICIÓN DE ONDA Una partícula realiza un movimiento vibratorio cuando realiza una oscilación alrededor del punto de equilibrio. Un ejemplo de movimiento vibratorio lo constituye la

Más detalles

Interacciones Eléctricas La Ley de Coulomb

Interacciones Eléctricas La Ley de Coulomb Interacciones Eléctricas La Ley de Coulomb 1. Introducción La Electrostática se ocupa del estudio de las interacciones entre cargas eléctricas en reposo. Las primeras experiencias relativas a los fenómenos

Más detalles

M. Eugenia Villaseca R. Licenciada y Profesora de Biología PUCV

M. Eugenia Villaseca R. Licenciada y Profesora de Biología PUCV M. Eugenia Villaseca R. Licenciada y Profesora de Biología PUCV Comprender la utilidad de los modelos atómicos y de la teoría atómica para explicar los procesos de transformación físico-química de la materia

Más detalles

J.M.L.C. IES Aguilar y Cano ALGUNOS DERECHOS RESERVADOS

J.M.L.C. IES Aguilar y Cano ALGUNOS DERECHOS RESERVADOS La radiactividad o radioactividad es un fenómeno físico natural, por el cual algunas sustancias o elementos químicos llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas

Más detalles

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2 3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una

Más detalles

Como esta formada la materia?

Como esta formada la materia? Como esta formada la materia? Demócrito, filósofo griego que vivió en el siglo IV a. C. propuso que, si se dividía la materia en trozos cada vez más pequeños, debería llegarse a una porción que ya no podría

Más detalles

EXTRUCTURA ATOMICA ACTUAL

EXTRUCTURA ATOMICA ACTUAL ATOMOS Y ELEMENTOS TEMA 4 Química ATOMOS EXTRUCTURA ATOMICA ACTUAL PARTICULA UBICACION CARGA MASA PROTON NUCLEO + SI NEUTRON NUCLEO 0 SI ELECTRON ORBITAS - DESPRECIABLE La masa del átomo reside en el núcleo.

Más detalles

Tema 15 RADIACIONES IONIZANTES Y NO IONIZANTES

Tema 15 RADIACIONES IONIZANTES Y NO IONIZANTES Tema 15 RADIACIONES IONIZANTES Y NO IONIZANTES CONCEPTO DE RADIACION Concepto y tipos de radiaciones Radiaciones ionizantes Unidades de medida Efectos biológicos: radiosensibilidad Reglamento de protección

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice

Más detalles

F2 Bach. Movimiento ondulatorio

F2 Bach. Movimiento ondulatorio 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales 4. Propiedad importante de la ecuación de ondas armónica 5.

Más detalles

7. Difracción n de la luz

7. Difracción n de la luz 7. Difracción n de la luz 7.1. La difracción 1 7. Difracción de la luz. 2 Experiencia de Grimaldi (1665) Al iluminar una pantalla opaca con una abertura pequeña, se esperaba que en la pantalla de observación

Más detalles

III Unidad Modulación

III Unidad Modulación 1 Modulación Análoga (AM, FM). Digital (MIC). 2 Modulación Longitud de onda Es uno de los parámetros de la onda sinusoidal. Es la distancia que recorre la onda sinusoidal en un ciclo (Hertz). Su unidad

Más detalles

Núcleo Atómico. El núcleo es una masa muy compacta formada por protones y neutrones.

Núcleo Atómico. El núcleo es una masa muy compacta formada por protones y neutrones. Núcleo Atómico Profesor: Robinson Pino H. 1 COMPONENTES DEL NÚCLEO ATÓMICO El núcleo es una masa muy compacta formada por protones y neutrones. PROTÓN PROTÓN(p + ) Es una partícula elemental con carga

Más detalles

Espectroscopia de absorción visible-ultravioleta

Espectroscopia de absorción visible-ultravioleta Práctica 6 Espectroscopia de absorción visible-ultravioleta Objetivo Parte A.- Comprobación de la Ley de Beer-Lambert y determinación del coeficiente de absorción molar para disoluciones acuosas de NiSO

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

Interacción de neutrones con la materia. Laura C. Damonte 2014

Interacción de neutrones con la materia. Laura C. Damonte 2014 Interacción de neutrones con la materia Laura C. Damonte 2014 Interacción de neutrones con la materia La interacción de los neutrones con la materia tiene interés tanto experimental y teórico como también

Más detalles

Robert A. MILLIKAN ( )

Robert A. MILLIKAN ( ) Robert A. MILLIKAN (1906 1914) Modelo atómico de Rutherford - Todo átomo está formado por un núcleo y corteza. - El núcleo, muy pesado, y de muy pequeño tamaño, formado por un número de protones igual

Más detalles

Visión Nocturna. El Museo de la Ciencia y el Cosmos presenta su taller sobre. La Universidad de La Laguna. por Alberto Molino Benito

Visión Nocturna. El Museo de la Ciencia y el Cosmos presenta su taller sobre. La Universidad de La Laguna. por Alberto Molino Benito El Museo de la Ciencia y el Cosmos presenta su taller sobre Visión Nocturna por En colaboración con La 1. Tienes claro lo que es una onda? 1.1 Mirando con lupa a las ondas. Cómo podemos expresar una ONDA?

Más detalles

ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O

ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O Calor y temperatura 1ª) Qué es la energía térmica? La energía térmica es la energía que posee un cuerpo (o un sistema material) debido al movimiento

Más detalles

II Unidad Diagramas en bloque de transmisores /receptores

II Unidad Diagramas en bloque de transmisores /receptores 1 Diagramas en bloque de transmisores /receptores 10-04-2015 2 Amplitud modulada AM Frecuencia modulada FM Diagramas en bloque de transmisores /receptores Amplitud modulada AM En la modulación de amplitud

Más detalles

Dónde: -Por una superficie de 1 m 2, -Por un grosor de 1 m, -Cuando la diferencia de temperatura entre las dos caras es de 1 K.

Dónde: -Por una superficie de 1 m 2, -Por un grosor de 1 m, -Cuando la diferencia de temperatura entre las dos caras es de 1 K. Aislamiento térmico Aislamiento térmico es la capacidad de los materiales para oponerse al paso del calor por conducción a través de ellos. Se evalúa por la resistencia térmica que tienen. La medida de

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio,

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio, PROBLEMAS ÓPTICA 1. Una de las frecuencias utilizadas en telefonía móvil (sistema GSM) es de 900 MHz. Cuántos fotones GSM necesitamos para obtener la misma energía que con un solo fotón de luz violeta,

Más detalles

LEYES DE LOS GASES. Leyes de los gases. Leyes de los gases

LEYES DE LOS GASES. Leyes de los gases. Leyes de los gases LEYES DE LOS GASES Estado gaseoso Medidas en gases Ley de Avogadro Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac (2ª) Ecuación n general de los gases ideales Teoría

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas

Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B.4. Detección de luz e imágenes 1. Un detector de Ge debe ser usado en un sistema de comunicaciones

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

QUIMICA GENERAL. Docente : Raquel Villafrades Torres

QUIMICA GENERAL. Docente : Raquel Villafrades Torres Universidad Pontificia Bolivariana QUIMICA GENERAL Docente : Raquel Villafrades Torres TEORIA ATOMICA DE DALTON (1808) BASES Ley de conservación de la masa: La masa total de las sustancias presentes después

Más detalles

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un rayo de luz de frecuencia 5 10¹⁴ Hz incide con un ángulo de incidencia de 30 sobre una lámina de vidrio de caras plano-paralelas de espesor

Más detalles

PRINCIPIOS DE LA DINÁMICA

PRINCIPIOS DE LA DINÁMICA Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características SGUICES001CB32-A16V1 Ítem Alternativa Habilidad 1 B Reconocimiento 2 D Reconocimiento 3 E Comprensión 4 C Comprensión 5 A Aplicación

Más detalles

SEGUNDO DE BACHILLERATO QUÍMICA. a A + b B c C + d D

SEGUNDO DE BACHILLERATO QUÍMICA. a A + b B c C + d D TEMA 5. CINÉTICA QUÍMICA a A + b B c C + d D 1 d[a] 1 d[b] 1 d[c] 1 d[d] mol v = = = + = + a dt b dt c dt d dt L s El signo negativo en la expresión de velocidad es debido a que los reactivos desaparecen,

Más detalles

3.4. Ondas sonoras simples: elementos y propiedades de las ondas sonoras

3.4. Ondas sonoras simples: elementos y propiedades de las ondas sonoras 0 3.4. Ondas sonoras simples: elementos y propiedades de las ondas sonoras En los sonidos del habla no existen ondas sonoras simples. Las ondas sonoras simples son siempre periódicas. También reciben el

Más detalles

Un modelo atómico, por lo tanto consiste en representar de manera grafica, la dimensión atómica de la materia. El objetivo de estos modelos es que el

Un modelo atómico, por lo tanto consiste en representar de manera grafica, la dimensión atómica de la materia. El objetivo de estos modelos es que el Modelos atómicos Debido a que no se podían ver los átomos los científicos crearon modelos para describirlos, éstos fueron evolucionando a lo largo de la historia a medida que se descubrieron nuevas cosas.

Más detalles

PRACTICO N 1: ESPECTROFOTOMETRIA

PRACTICO N 1: ESPECTROFOTOMETRIA UNIVERSIDAD MAYOR FACULTAD DE MEDICINA ESCUELA DE TECNOLOGIA MEDICA BIOQUIMICA PRACTICO N 1: ESPECTROFOTOMETRIA 1.- INTRODUCCIÓN Utilizando términos quizás excesivamente simplistas puede definirse la espectrofotometría

Más detalles

INTERACCION DE LA RADIACION CON LA MATERIA

INTERACCION DE LA RADIACION CON LA MATERIA Pág. 1 de 11 INTERACCION DE LA RADIACION CON LA MATERIA Cuando se habla de reacciones nucleares se hace referencia a todo tipo de interacción con los núcleos atómicos. Un tema más general, que engloba

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROPAGACIÓN DE ONDAS DE AGUA

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROPAGACIÓN DE ONDAS DE AGUA UNIVERSIDAD DE LA LAGUNA FACULTAD DE MATEMÁTICAS INGENIERÍA TÉCNICA DE OBRAS HIDRÁULICAS FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROPAGACIÓN DE ONDAS DE AGUA OBJETIVO GENERAL: ESTUDIO DE LAS ONDAS - Emplear

Más detalles

J.J Thomson propone el primer modelo de átomo:

J.J Thomson propone el primer modelo de átomo: MODELOS ATÓMICOS. DALTON En 1808, Dalton publicó sus ideas sobre el modelo atómico de la materia las cuales han servido de base a la química moderna. Los principios fundamentales de esta teoría son: 1.

Más detalles

LA RIOJA / JUNIO 04. LOGSE / FÍSICA / EXAMEN COMPLETO

LA RIOJA / JUNIO 04. LOGSE / FÍSICA / EXAMEN COMPLETO LA RIOJA / JUNIO 0. LOGSE / FÍSICA / EXAMEN COMPLEO EXAMEN COMPLEO El alumno elegirá una sola de las opciones de problemas, así como cuatro de las cinco Cuestiones propuestas. No deben resolverse problemas

Más detalles

El calor y la temperatura

El calor y la temperatura Unidad 3 El calor y la temperatura DPTO. BIOLOGÍA-GEOLOGÍA BELÉN RUIZ GONZÁLEZ LA ENERGÍA TÉRMICA Lee la primera columna de la página 39 y contesta a continuación las siguientes preguntas: De qué está

Más detalles

Tema 2. La radiación electromagnética (REM) Teledetección 2º Curso de IT en Topografía EPS Jaén

Tema 2. La radiación electromagnética (REM) Teledetección 2º Curso de IT en Topografía EPS Jaén Tema 2. La radiación electromagnética (REM) Teledetección 2º Curso de IT en Topografía EPS Jaén 1. Movimiento ondulatorio 2. La radiación electromagnética (REM) 3. El espectro electromagnético 4. Terminología

Más detalles

SUPERFICIE ESPECULAR Y LAMBERTIANA

SUPERFICIE ESPECULAR Y LAMBERTIANA SUPERFICIE ESPECULAR Y LAMBERTIANA Especular: es la superficie ideal en la que se cumple perfectamente la ley de la reflexión (ángulo incidente = ángulo reflejado). Lambertiana: es la superficie, también

Más detalles

Observa la imagen de la derecha. Puedes identificar el núcleo y la nube de electrones? Qué crees que representan las esferas azules, rojas y grises?

Observa la imagen de la derecha. Puedes identificar el núcleo y la nube de electrones? Qué crees que representan las esferas azules, rojas y grises? reflexiona Nuestro mundo está lleno de diversidad. Existe una variedad asombrosa en todos los materiales, sustancias y seres vivos que existen en la Tierra. Observa la imagen de la derecha. Incluso en

Más detalles

EJERCICIOS DE TERMOQUÍMICA

EJERCICIOS DE TERMOQUÍMICA EJERCICIOS DE TERMOQUÍMICA En los exámenes de Acceso a la Universidad se proponen una serie de cuestiones (más teóricas) y problemas (prácticos) para resolver. En estos apuntes vamos a resolver ambos tipos

Más detalles

PORTAFOLIO DE EVIDENCIAS QUÍMICA I DE SEGUNDA OPORTUNIDAD I LEE DETENIDAMENTE CADA ENUNCIADO Y CONTESTA SEGÚN SE TE PIDA.

PORTAFOLIO DE EVIDENCIAS QUÍMICA I DE SEGUNDA OPORTUNIDAD I LEE DETENIDAMENTE CADA ENUNCIADO Y CONTESTA SEGÚN SE TE PIDA. PORTAFOLIO DE EVIDENCIAS QUÍMICA I DE SEGUNDA OPORTUNIDAD I LEE DETENIDAMENTE CADA ENUNCIADO Y CONTESTA SEGÚN SE TE PIDA. 1.- Ciencia que estudia las características y la composición de los materiales,

Más detalles

El átomo: sus partículas elementales

El átomo: sus partículas elementales El átomo: sus partículas elementales Los rayos catódicos estaban constituidos por partículas cargadas negativamente ( a las que se llamo electrones) y que la relación carga/masa de éstas partículas era

Más detalles

RESUMEN DE PROPIEDADES DE LAS ONDAS ELECTROMAGNETICAS

RESUMEN DE PROPIEDADES DE LAS ONDAS ELECTROMAGNETICAS RESUMEN DE PROPIEDADES DE LAS ONDAS ELECTROMAGNETICAS 1. Pueden ser generadas por la aceleración de cargas eléctricas oscilantes con alta frecuencia. 2. Las ondas se desplazan a través del vacio con: B

Más detalles

Introducción a la teoría del COLOR

Introducción a la teoría del COLOR Introducción a la teoría del COLOR Qué es la LUZ? La luz es una corriente de partículas infinitamente pequeñas llamadas fotones que se irradia desde cualquier fuente luminosa a la fantástica velocidad

Más detalles

TEORÍA DEL COLOR COLORES LUZ Y MEZCLA ADITIVA

TEORÍA DEL COLOR COLORES LUZ Y MEZCLA ADITIVA COLORES LUZ Y MEZCLA ADITIVA Newton (1642-1727) primero y Young (1773-1829) después, establecieron un principio que hoy nadie discute: la luz es color. Para llegar a este convencimiento, Isaac Newton se

Más detalles

Física y Química 3º ESO

Física y Química 3º ESO 1. Física y Química. Ciencias de la medida forman parte de las necesitan Ciencias de la naturaleza medir las propiedades de los cuerpos que se dividen en para lo cual se emplean lo que siempre conlleva

Más detalles

El espectro electromagnético y los colores

El espectro electromagnético y los colores Se le llama espectro visible o luz visible a aquella pequeña porción del espectro electromagnético que es captada por nuestro sentido de la vista. La luz visible está formada por ondas electromagnéticas

Más detalles

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo.

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo. 1. CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través de los sentidos de la vista y del oído. Ambos son estimulados por medio de ondas de diferentes

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física

XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física PRUEBA EXPERIMENTAL A NOMBRE: RUT: CURSO: NUMERO TOTAL DE PAGINAS ESCRITAS: PUNTAJE TOTAL La constante de Planck de la física cuántica y

Más detalles

Descarga Glow. Introducción. Características de la descarga glow

Descarga Glow. Introducción. Características de la descarga glow Descarga Glow Introducción La descarga glow es una descarga eléctrica autosostenida que se produce en un medio gaseoso. Consideremos un dispositivo como el que se esquematiza en la Figura 1. Una fuente

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Razona la veracidad o la falsedad de la siguiente proposición: «En el movimiento ondulatorio hay transporte de materia y de energía». La proposición es falsa. En el

Más detalles

1.- Qué es una onda?

1.- Qué es una onda? Ondas y Sonido. 1.- Qué es una onda? Perturbación de un medio, que se propaga a través del espacio transportando energía. El medio perturbado puede ser de naturaleza diversa como aire, agua, un trozo de

Más detalles

Clase N 1. Modelo Atómico I

Clase N 1. Modelo Atómico I Pre-Universitario Manuel Guerrero Ceballos Clase N 1 Modelo Atómico I ICAL ATACAMA Módulo Plan Común Modelos Atómicos Teoría Atómica De Dalton Los elementos están formados por partículas extremadamente

Más detalles

Módulo 5: La luz. Ondas electromagnéticas

Módulo 5: La luz. Ondas electromagnéticas Módulo 5: La luz 1 Ondas electromagnéticas Partículas cargadas eléctricamente (cargas) en movimiento forman una corriente eléctrica Una corriente eléctrica que cambia (debida al movimiento) crea un campo

Más detalles

Los fundamentos de la espectroscopia: teoría CONSTRUYENDO UNA CIENCIA MEJOR ENTRE AGILENT Y USTED

Los fundamentos de la espectroscopia: teoría CONSTRUYENDO UNA CIENCIA MEJOR ENTRE AGILENT Y USTED Los fundamentos de la espectroscopia: teoría CONSTRUYENDO UNA CIENCIA MEJOR ENTRE AGILENT Y USTED 1 Agilent es una empresa comprometida con la comunidad educativa y no duda en ofrecer acceso a materiales

Más detalles

Unidad 16: Temperatura y gases ideales

Unidad 16: Temperatura y gases ideales Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 16: Temperatura y gases ideales Universidad Politécnica de Madrid 14 de abril de 2010

Más detalles

LiceoTolimense Química Séptimo 1 Periodo ESTRUCTURA INTERNA DE LA MATERIA

LiceoTolimense Química Séptimo 1 Periodo ESTRUCTURA INTERNA DE LA MATERIA ESTRUCTURA INTERNA DE LA MATERIA Lectura comprensiva Desde la antigüedad los filósofos se preguntaban de qué estaban formadas las cosas que los rodeaban. Primero pensaron que la materia era continua, es

Más detalles

Soluciones Problemas Capítulo 3: Mecánica cuántica I. λ (nm)

Soluciones Problemas Capítulo 3: Mecánica cuántica I. λ (nm) Soluciones Problemas Capítulo 3: Mecánica cuántica I ) (a) La distribución espectral viene dada por R(λ) (/4)cu(λ), donde u(λ) es la densidad de energía radiada que a su vez viene dada por la ley de Planck:

Más detalles

1 Medidas e incertidumbre

1 Medidas e incertidumbre 1 Medidas e incertidumbre Las observaciones experimentales y las medidas proporcionan las pruebas para casi todos los avances que se producen en el conocimiento científico del mundo y del universo que

Más detalles

Fundamentos físicos de la teledetección

Fundamentos físicos de la teledetección Tema 1 Fundamentos físicos de la teledetección 1.1 La radiación electromagnética Dada la importancia que la radiación electromagnética tiene como transmisor de información en todas las formas de teledetección,

Más detalles

MODELOS ATOMICOS. Solución Å; Ultravioleta; 1106 m/s

MODELOS ATOMICOS. Solución Å; Ultravioleta; 1106 m/s MODELOS ATOMICOS 1. Calcular el valor del radio de la órbita que recorre el electrón del hidrogeno en su estado normal. Datos. h = 6 63 10 27 erg s, m(e ) = 9 1 10 28 gr, q(e ) = 4 8 10-10 u.e.e. Solución.

Más detalles

Del LASER I Principio de funcionamiento del láser

Del LASER I Principio de funcionamiento del láser Del LASER I Principio de funcionamiento del láser Gilberto Basilio Sánchez La palabra láser proviene del acrónimo en inglés Ligth Amplification by Stimulated Emission of Radiation; en español, láser(1)

Más detalles

SESIÓN 13 EQUILIBRIO QUÍMICO EN FASE GASEOSA

SESIÓN 13 EQUILIBRIO QUÍMICO EN FASE GASEOSA I. CONTENIDOS: 1. Leyes de los gases. 2. Presión y temperatura. 3. Principio de Le Chatelier. 4. Constante de equilibrio. SESIÓN 13 EQUILIBRIO QUÍMICO EN FASE GASEOSA II. OBJETIVOS: Al término de la Sesión,

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas III; La luz

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas III; La luz Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común Guía 11 Ondas III; La luz Nombre: Fecha: Naturaleza de la luz 1. Teoría corpuscular: Newton formula que la luz estaba formada por pequenos

Más detalles

ESCALARES Y VECTORES

ESCALARES Y VECTORES ESCALARES Y VECTORES MAGNITUD ESCALAR Un escalar es un tipo de magnitud física que se expresa por un solo número y tiene el mismo valor para todos los observadores. Se dice también que es aquella que solo

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO INTRODUCCIÓN Es muy probable que alguna vez hayas estado por mucho tiempo observando las ondas producidas sobre la superficie del agua en un estanque, al lanzar un objeto o caer una gota sobre ella; o

Más detalles

FÍSICA Y QUÍMICA 4º ESO. MCU. Características. Magnitudes angulares. Ley del movimiento.

FÍSICA Y QUÍMICA 4º ESO. MCU. Características. Magnitudes angulares. Ley del movimiento. FÍSICA Y QUÍMICA 4º ESO Unidad 1. El movimiento Sistema de referencia. o Carácter relativo del movimiento. Conceptos básicos para describir el movimiento. o Trayectoria, posición, desplazamiento. o Clasificación

Más detalles

Dispositivos Electrónicos

Dispositivos Electrónicos Dispositivos Electrónicos AÑO: 2010 TEMA 3: PROBLEMAS Rafael de Jesús Navas González Fernando Vidal Verdú E.T.S. de Ingeniería Informática Ingeniero Técnico en Informática de Sistemas: Curso 1º Grupo

Más detalles