Transformada Z. Procesado Digital de Señales.4º Ingeniería Electrónica. Universitat de València. Profesor Emilio Soria.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Transformada Z. Procesado Digital de Señales.4º Ingeniería Electrónica. Universitat de València. Profesor Emilio Soria."

Transcripción

1 Trasformada Z

2 Defiició y uso e PDS. Dada ua secuecia discreta x) se defie su trasformada Z como Xz) x)z dode z es ua variable compleja. Represetacioes más usuales x) z Xz) Juega el mismo papel e procesado digital de señales que la Trasformada de Laplace e el aálisis de sistemas cotiuos. Usos más comues. Obteció de expresioes etrada-salida. Simplificació de estructuras. Implemetació de estructuras. Resolucio de ecuacioes e diferecias Puete etre el diseño aalógico y digital trasformació bilieal e impulso-ivariate)

3 Regió de Covergecia. E la expresió de la trasformada Z aparece u sumatorio cuyos límites so ± Ese sumatorio puede coverger o o) para determiados valores de la variable compleja z. Defiimos la Regió de Covergecia, tambié coocida como R.O.C, de ua trasformada Z a la regió del plao complejo dode la trasformada Z coverge Ejemplo x) a u) Xz) % a u) z % a z % a z 0 0 ) Hay que recordar que Codicio de R.O.C) r k 0 r % r < m z-plae Uit circle Xz) Si y sólo si a z a e R.O.C

4 Regió de Covergecia. Hay que destacar que diferetes señales discretas puede teer la misma trasformada Z pero diferetes R.O.C. Xz) a z Propiedades. La R.O.C cosiste e u aillo cetrado e el orige. La R.O.C o cotiee igú polo de la trasformada Z. Si x) es fiita la R.O.C es todo el plao complejo excepto, posiblemete z0 y z m R.O.C z <a Uit circle a z-plae e m a R.O.C z >a z-plae Uit circle e Si x) es causal, x)0 <0, la R.O.C es el exterior de ua circuferecia cuyo radio se correspode co el polo de la trasformada Z mayor e valor absoluto. Si es estrictamete aticausal, x)0 >0, es el iterior u círculo) de la circuferecia co radio igual al polo de meor valor absoluto de la trasformada Z. E otras situacioes se tiee u aillo. 4

5 Propiedades de la Trasformada Z. Property Time domai z-domai ROC Liearity ax [] bx [] ax z) bx z) R x R x Time-shift x[ 0 ] z 0 Xz) R x Scalig i z z0 x[] Xz/z 0) z 0 R x Differetiatio x[] z dxz) dz i z R x Time-reversal x[ ] X/z) /R x Cojugatio x [] X z ) R x Symmetry Im{x[]} 0 Xz) X z ) real) Symmetry Re{x[]} 0 Xz) X z ) imag) Covolutio x [] x [] X z)x z) R x R x Iitial value x[] 0, < 0 x[0] lim Xz) z quí el superídice idica que z0 ò z puede añadirse/elimiarse. /R x hace referecia a los putos e los que /z perteece a R x 5

6 Trasformadas Z comues. Sequece Trasform ROC. δ[] ll z. u[]. u[ ] z z > z z < 4. δ[ m] z m ll z except 0 if m > 0) or if m < 0) 5. a u[] az z > a 6. a u[ ] 7. a u[] 8. a u[ ] 9. [cos ω 0 ]u[] 0. [si ω 0 ]u[]. [r cos ω 0 ]u[]. [r si ω 0 ]u[] { a., 0 N, 0, otherwise az z < a az az ) z > a az az ) z < a [cos ω 0 ]z [ cos ω 0 ]z z z > [si ω 0 ]z [ cos ω 0 ]z z z > [r cos ω 0 ]z [r cos ω 0 ]z r z z > r [r si ω 0 ]z [r cos ω 0 ]z r z z > r a N z N az z > 0 6

7 Polos de la Trasformada Z-Tipo de señal. Existe ua relació directa etre los polos de la trasformada Z y el tipo de señal que da lugar a dicha trasformada. PLICCIÓN DIRECT EN EL DISEÑO DE SISTEMS DE CONTROL DIGITL 7

8 Trasformada Z uilateral. Si la secuecia es causal; esto es x) 0 <0 X z) x)z 0 Se tiee etoces lo que se cooce como Trasformada Z uilateral. Hay que destacar que cuado se tega este tipo de trasformadas o hay que especificar la R.O.C ya que será siempre el exterior de u círculo; evidetemete ya que sólo se cosidera la parte causal de x) Si se desiga el par secuecia discreta- Trasformada Z uilateral por x) z X z) Se tiee etoces las siguietes propiedades. Retardo temporal. x k) z z k [X z) delato temporal. x k) z z k [X z) k x )z ] k x)z ] 8

9 Trasformada Z iversa. Métodos I) Se puede demostrar que Expasió e fraccioes F z) N z z p z p z p Ejemplo Fz) zz )/z z ) co R.O.C z > F z) z z z z z z ) ) Z % ' % &% pkz N quí la itegració es sobre u cotoro detro de la R.O.C de la Trasformada Z y que cotega al orige. Esta itegració se puede calcular de forma más secilla usado Teoría de Variable Compleja usado residuos; veamos este cálculo de forma mas práctica. ) F z z z 5 z 4 z ) ) )% % pk u T if ROC : z > pk % p k ) u T T) if ROC : z < pk & f T) 5 ) 4 ) 0 Si la R.O.C hubiese sido < z < etoces & f T) 4 ) 0 % ) ' & 5 9

10 Trasformada Z iversa. Métodos I) Este método de descomposició e fraccioes os permite itroducir de ua maera secilla lo que se cooce como respuesta atural y forzada de u sistema. Para ello cosideraremos u sistema co etrada x), su trasformada Z es Xz), respuesta impulsioal del sistema h), su correspodiete trasformada es Hz), y la salida y) co Yz) como trasformada. Descompoemos e fraccioes. Y z) H z) Xz) Y z) Hz) k z p Hz) X z) B k z p X z) El primer térmio se correspode co la respuesta propia y, como su ombre idica o depede de la etrada; depede de las características itrísecas del sistema mietras que el segudo, que agrupa a los polos de Xz), tedrá ua relació directa co dicha señal de etrada. Ejemplo h) % ' & x) % & ' u) ) H z) * 0.5 z * u) ) Xz) * ) z* Y z) 0.5 z ) z Y z) 0.5 z * & y), %, ' 0.5 z B ) % & ' ) z - /./ u) ) z 0

11 Trasformada Z iversa. Métodos II) Expasió e potecias de Z. La estrategia cosiste e expadir la trasformada Z e ua serie de potecias de Z para, seguidamete igualar esta expasió a la defiició de Trasformada Z Ejemplo Se pide determiar la secuecia discreta que da lugar a la siguiete trasformada Z. Hz) e z Esta fució o es racioal por lo que o se puede aplicar lo visto ateriormete El teorema de Taylor os asegura que podemos descompoer cualquier fucio fx) usado sus derivadas -ésimas e el orige de la siguiete forma. e x e z % 0 % 0 ) ) x z ) % 0 ) z ) f x) 0 % f 0) x ) Hz) x) z x) ) u)

12 Trasformada Z iversa. Métodos III) Otro método muy usado para determiar trasformadas Z iversas se debe al uso de la propiedad de la derivada de la trasformada Z Ejemplo Determia la secuecia que da lugar a la siguiete Trasformada Z Gz) Hz) p z ) Para ello os basaremos e la propiedad de la derivada usado la siguiete trasformada Z. p z ) z z p ) z dgz) dz z p p z ) plicado la propiedad de la derivada se tiee z p p z ) g) p u) z p z ) p u) plicado la propiedad del retardo temporal se tiee p z ) ) p u )

13 álisis de sistemas L.T.I usado la Trasformada Z. Por el mometo o hemos aplicado al aálisis de sistemas discretos la Trasformada Z. La maera de elazar el aálisis de los sistemas discretos co la trasformada Z va a veir dado por dos propiedades δ[] L T I system y)x)h) Yz)Hz)Xz) h[] La trasformada Z de la respuesta impulsioal va a ser el elemeto que os va a servir para aalizar los sistemas L.T.I discretos. Ua forma usual de describir u sistema discreto es mediate ua ecuació e diferecias. N y) a k y k) b s x s k Hz) Y z) Xz) P P so so N b s z s % ' a k z k * & ) k ) plicado la propiedad se tiee codicioes iiciales0) % N P Y z)' a k z k * Xz) b s z s & ) k so

14 álisis de sistemas L.T.I usado la Trasformada Z. Causalidad. U sistema es causal si cumple que h)0 <0 La trasformada Z de ua señal estrictamete causal, vale 0 para <0, es el exterior de ua circuferecia. U sistema es causal si la R.O.C de la Trasformada Z es el exterior de ua circuferecia; icluyedo z Estabilidad. U sistema discreto es estable BIBO si ate cualquier etrada acotada la salida permaece acotada. Se ha visto que Yz)Hz)Xz). Si se factoriza esta expresió se tiee De Xz) o me preocupo?) si me fijo e la parte de Hz) y aplico Trasformadas Z iversa recordado que segú los polos sea simples o o se tiee ) k Y z) p k z ) OXz)) k g) p u) g) s p u) sí pues si se busca ua salida acotada la úica forma es que p < y si p que pasaría?). U sistema es estable si la Trasformada Z de la respuesta impulsioal tiee todos los polos detro de la circuferecia de radio uidad cualquiera que sea su orde de multiplicidad). 4

15 álisis de sistemas L.T.I usado la Trasformada Z. Estructuras. La trasformada Z permite la implemetació de los sistemas discretos de diferetes formas estructuras). Los elemetos básicos e estas estructuras so los siguietes Sumador x [] x [] x [] x [] dditio Multiplicador cte) a x[] ax[] Multiplicatio Retardo. x[] z x[ ] Delay La primera e ser aalizada es la que se cooce como forma directa I; aplicado la ecuació e diferecias se tiee Y z) Hz)Xz) Hz) b 0 b z b M z M a 0 a z a N z N, ime domai as a differece equatio: a 0 y[] a N y[ N] b 0 x[] b M x[ M]. y[] a 0 b 0 x[] b M x[ M] x[] z z z b 0 b b M b M a y[ ] a N y[ N]). /a 0 y[] a a N a N z z z er, this ot the oly possible realisatio. 5

16 álisis de sistemas L.T.I usado la Trasformada Z. Estructuras. La siguiete es la que se cooce como forma directa II o caóica ) W z) Y z) x[] Xz) a 0 a N z N b 0 b M z M) W z), w[] /a 0 a a N a N z z b N z b 0 b b N Y z) Hz)Xz), y[] Hz) b 0 b z b M z M a 0 a z a N z N, me domai as a differece equatio ) w) a 0 x) a w )... a N w N) y) b 0 w)... b M w M ) Esta estructura se basa e utilizar los retardos de la variable itermedia, w) a la hora de calcular la salida del sistema y). Este hecho se traduce e u ahorro e el úmero de retardos ecesarios para la implemetació del sistema discreto de tal forma que esta estructura es la que meos retardos ecesita. 6

17 Cascade Form álisis de sistemas L.T.I assumig usado M N): la Trasformada Z. Estructuras. g) p Yet aother realisatio is possible whe Hz) is factorised u) N g) s H k p z) c kz Hz) b as agai Otra posible estructura es e g) p u) 0 H 6/7 assumig M N): z) H N z), cascada; si la fució de a d u) k z. 0 g) s p u) trasferecia Hz) se puede factorizar de la siguiete forma De forma ecubierta estamos aplicado propiedades de la covolució asociativa y distributiva para ser exactos). Cascade Form Cascade Form k Y z) p k z ) OXz)) s k k Yet Yet aother aotherrealisatio is ispossible possiblewhe whe Hz) Hz) is factorised is factorised as agai as agai Hz) b 0 H z) H N z), This Hleads k z) to a cascade c kz a 0 d k z. form: This leads to a cascade form: b 0 /a 0 x[] H z) z b 0 /a 0 b 0 /a 0 x[] x[] H N z) d N z) H z) w) H w) N z) caoica a x) cada H N z) bloque a w se )... a N w x) a w )... a N w a 0 a 0 z z d c d N c N Parallel Form d c d N c N c N Uder certai coditios, we have foud that we ca write a ratioal z y k ) x y k k ) cw k ) x k c k ) w k ) d k y k ) elec600 d N H k z) c kz d k z. tiee z w z k ) x k ) d k w k ) z N gai, complex cojugate poles should be combied. 6/7 elec600 y[] y[] d c We combie complex zeros ad poles with their complex cojugate poles combie se with pairs puede their to complex factorizar avoid complex implemetig zeros co- de la ad siguiete poles complex forma with arithmetic their complex i hard- co- trasfer fuctio i a partial fractio expasio: Estructura We combie e paralelo; complex zeros ahora ad We Hz) k jugate pairs to avoid implemetig jugate ware. complex pairsarithmetic to avoid Hz) i implemetig hardware. H Hz) H z) H N z) y H N z), H z) z) k ) complex k x k ) arithmetic d k d k k yz k H k z) y d k z k ) k x k ) d k y k ). i) hardware. That is, for cojugate This leads pairs directly of zeros, to theparallel c k form c k, of ad implemetatio: poles, d k That is, for cojugate pairs of zeros, d H E estas dos estructuras, e el caso k, c That we is, k de combie c for k teer cojugate, adhpoles, kz) pairs ad d k H of k zeros, z) to obtai c z) k c k, ad poles, d k d k, we combie H kz) ad H k z) d x[] y[] polos complejos se asocia k, por we to obtai pares combie H kz) ad H k,k z) H Re{c k z) k}zto obtai c k z z Re{dd cojugados para dar estructuras de orde. k }z d k z. H k,k z) Re{c H k,k z) Re{c k}z c k z Re{d k}z c k z k }z d k z. Re{d k }z d k z. H N z) y[] Y z) p k z ) OXz)) s k plicado ua estructura 7 7/7 elec600 6/7

18 ) ) ) z z ) X z) * x)z ' u) * z & * Y z) Y z) 0.5 z B z Y z) z 0.5Yz) z 0.5 z z B 0.5 z 0.5 z z z Y z) z Y z)* & & z * z 0.5 z z z * &, / & y) % ' ) % ' u) & ) % &/- u),, % Y z) y), /. y), % ' ) % ' // u) 0.5 z, '. z ' /. Y z) Y z) Se puede relacioar el mudo digital co el mudo aalógico relacioado las Trasformadas más 0.5 z z H p) 0.5 z z * utilizadas e esos domiios como so la Trasformada y la Trasformada dos & & Laplace; existiedo pb de HH p) p) Zy), / ) u) % % bso formas de hacer este cambio. *Estas trasformacioes - p p b las, que 'se cooce ' /. como Trasformació & & * & &, % ) % / u) bilieal y Trasformacióy) impulso-ivariate. b t 0) % / u) ht)y) e, % t > ' /., ' ' ' /. b t t, b ht) e e H t p) > 00 Impulso-ivariate. ht) t > pb h T ) eb T u) El bloque básico de aálisis desistemas lieales cotiuosbb usado trasformadas H p) T h TT ) ) e e T u) h u) H p) p b de Laplace es el defiido por es aálogo a lo que ocurre e procesado digital). pb ht) eb t t > 0 La trasformada iversa Si se u) H z) b t h T ) eb T ht) e t>0 bt z ebt de Hp) viee dada por muestrea ht) e tz>0& H z) H z) T bt bt H z) % e e z z h T ) eb T u) b T Trasformació bilieal. z h T ) e ' u) H z) x x ))) hora el paso es comparar el operador x) ) ebt z x ) ) ) T ) ) T y e itegrador eel mudohaalógico z) es ebt el digital; e el aalógico Hp)/p u z H z) zbt& z e itegrador; qué sistema digital hace ua p % T X z) T X z) z) z z T z ' operació semejate?. Para determiarlo z) z z de forma secilla hay que platearse el sigificado de la itegral: área ecerrada T z & x) ' u) ) X z) & * ) )) ) ) ) ) ) álisis de sistemas L.T.I usado la Trasformada Z. ) ) ) )) H z) por ua curva y el eje de abcisas )) % z ' 8 ) z & p %

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por:

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por: Tema 4. Trasformada Z. La trasformada Z para sistemas discretos desempeña u papel aálogo a la trasformada de Laplace para sistemas cotiuos. os va a permitir represetar la relació etrada salida de u sistema

Más detalles

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción CAPÍTULO SEIS LA TRANSFORMADA Z 6. Itroducció E el Capítulo 5 se itrodujo la trasformada de Laplace. E este capítulo presetamos la trasformada Z, que es la cotraparte e tiempo discreto de la trasformada

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

Análisis en el Dominio del Tiempo para Sistemas Discretos

Análisis en el Dominio del Tiempo para Sistemas Discretos OpeStax-CNX module: m12830 1 Aálisis e el Domiio del Tiempo para Sistemas Discretos Do Johso Traslated By: Erika Jackso Fara Meza Based o Discrete-Time Systems i the Time-Domai by Do Johso This work is

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

Tema 5 Series numéricas

Tema 5 Series numéricas Tema 5 Series uméricas Objetivos 1. Defiir series co wxmaxima. 2. Calcular sumas parciales de ua serie. 3. Iterpretar la defiició de suma de ua serie. 4. Calcular la suma de ua serie geométrica. 5. Calcular

Más detalles

Aplicaciones del cálculo integral vectorial a la física

Aplicaciones del cálculo integral vectorial a la física Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua imarrero@ull.es Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Sistemas de Segundo Orden

Sistemas de Segundo Orden Apute I Departameto de Igeiería Eléctrica Uiversidad de Magallaes Aputes del curso de Cotrol Automático Roberto Cárdeas Dobso Igeiero Electricista Msc. Ph.D. Profesor de la asigatura Este apute se ecuetra

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

Tema 6. Sucesiones y Series. Teorema de Taylor

Tema 6. Sucesiones y Series. Teorema de Taylor Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación Aálisis de Señales y Sistemas Digitales FFT Cocepto Algoritmo Implemetació 2010 FFT Trasformada Rápida de Fourier Cocepto La trasformada rápida de fourier (FFT) es u algoritmo que permite él cálculo eficiete

Más detalles

TEMA 7 Trenes de Engranajes

TEMA 7 Trenes de Engranajes Igeiería Idustrial. Teoría Máquias TEMA 7 Trees de Egraajes Haga clic para modificar el estilo de subtítulo del patró Objetivos: Itroducir el mudo de los trees de egraajes, aalizado los diversos tipos

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

Cómo simplificar expresiones algebraicas?

Cómo simplificar expresiones algebraicas? Cómo simplificar expresioes algebraicas? Prof. Jea-Pierre Marcaillou OBJETIVOS: La calculadora CASIO ClassPad 330 dispoe de los comados [simplify] y [combie] del submeú desplegable Trasformació del meú

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números. Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,

Más detalles

Teoría de la conmutación. Álgebra de Boole

Teoría de la conmutación. Álgebra de Boole Álgebra de Boole Defiicioes y axiomas Propiedades Variables y fucioes booleaas Defiicioes Propiedades Formas de represetació Fucioes booleaas y circuitos combiacioales Puertas lógicas Puertas lógicas fudametales

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales. Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,

Más detalles

Funciones de variable compleja

Funciones de variable compleja Tema 10 Fucioes de variable compleja 10.1 Fucioes complejas de variable compleja Defiició 10.1 Ua fució compleja de variable compleja es ua aplicació f: A C dode A C. Para cada z A, fz) C, luego fz) =

Más detalles

Resolución de ecuaciones no lineales

Resolución de ecuaciones no lineales Resolució de ecuacioes o lieales Solucioa ecuacioes o lieales tipo f()= Normalmete cada método tiee sus requisitos Métodos so iterativos Métodos iterativos para resolver f()= E geeral métodos iterativos

Más detalles

Números reales Números. irracionales. Figura 3.1. Construcción del conjunto de los números complejos.

Números reales Números. irracionales. Figura 3.1. Construcción del conjunto de los números complejos. Números Complejos El cojuto de los úmeros complejos La supremacía de los úmeros reales como cojuto umérico máximo duró poco; o existe u úmero real a que satisfaga la ecuació x 2 + a = 0. Para ello, es

Más detalles

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES MATEMÁTICA I - 0 - Capítulo 6 ------------------------------------------------------------------------------------ CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES Las matrices iversas se puede usar

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

Donde el par Tm a la salida del motor se expresa en N.m y la velocidad del motor w se expresa en rad/s.

Donde el par Tm a la salida del motor se expresa en N.m y la velocidad del motor w se expresa en rad/s. U automóvil (Citroe XM V6) tiee la geometría idicada e la figura. Su masa total es.42 Kg. Dispoe de u motor cuya relació par-velocidad puede expresarse mediate la relació: Tm=-,52.-3.w2+,38.w-5,583 N.m

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

SUCESIONES Y SERIES DE FUNCIONES

SUCESIONES Y SERIES DE FUNCIONES CAPÍTULO XV. SUCESIONES Y SERIES DE FUNCIONES SECCIONES A. Campo de covergecia. Covergecia uiforme. B. Series de potecias. Itervalos de covergecia. C. Desarrollo de fucioes e series de potecias. D. Aplicacioes

Más detalles

Introducción al Método de Fourier. Grupo

Introducción al Método de Fourier. Grupo Itroducció al Método de Fourier. Grupo 536. 14-1-211 Problema 1.) Ua cuerda elástica co ρ, y logitud L coocidos, tiee el extremo de la izquierda libre y el de la derecha sujeto a u muelle de costate elástica

Más detalles

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a.

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a. Arquitectura del Computador 4 ALGEBRA DE BOOLE 4. Itroducció. El álgebra de Boole es ua herramieta de fudametal importacia e el mudo de la computació. Las propiedades que se verifica e ella sirve de base

Más detalles

MATE1214 -Calculo Integral Parcial -3

MATE1214 -Calculo Integral Parcial -3 MATE114 -Calculo Itegral Parcial -3 Duració: 60 miutos 1. Cosidere la curva paramétrica descrita por = te t, y = 1 + t. Halle la pediete de la recta tagete a esta curva cuado t = 0.. Calcular la logitud

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

APLICACIONES LINEALES.

APLICACIONES LINEALES. APLICACIONES LINEALES. INTODUCCIÓN: APLICACIONES ENTE CONJUNTOS. Ua aplicació etre dos cojutos A y B es ua regla que permite asigar a cada elemeto de A, uo de B. La aplicació del cojuto A e el cojuto B

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

SUCESIONES DE NÚMEROS REALES. PROGRESIONES

SUCESIONES DE NÚMEROS REALES. PROGRESIONES www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos

Más detalles

CAPÍTULO V. SUCESIONES Y SERIES

CAPÍTULO V. SUCESIONES Y SERIES (Aputes e revisió para orietar el apredizaje) CAPÍTULO V. UCEIONE Y ERIE DEFINICIÓN. Ua sucesió ifiita, o simplemete sucesió, es ua fució cuyo domiio está costituido por el cojuto de los úmeros aturales

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros

Más detalles

ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas).

ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas). ÁLGEBRA ELEMENTAL 1.- EXPRESIONES ALGEBRAICAS (GENERALIDADES) 1.1.- Alguas defiicioes Ua epresió algebraica es ua epresió matemática que cotiee úmeros, letras que represeta úmeros cualesquiera sigos matemáticos

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema 3. rasformacioes Lieales. QUÉ ES UN RNSFORMCIÓN? E térmios geerales, ua trasformació es ua fució que permite trasformar u vector que perteece a u espacio vectorial (domiio)

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

Tema 1: Números Complejos

Tema 1: Números Complejos Números Complejos Tema 1: Números Complejos Deició U úmero complejo es u par ordeado (x, y) de úmeros reales Éste puede iterpretarse como u puto del plao cuya abscisa es x y cuya ordeada es y El cojuto

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles

21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2)

21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2) EJERCICIOS de POTENCIAS º ESO opc. B RECORDAR a m a a m m ( a ) a b a a (a b) a m a a b m a m+ b a a - a b a - b a Tambié es importate saber que algo ( base egativa) par (- ) ( base egativa) impar (- )

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica. págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

El término de error en los esquemas de diferencias finitas

El término de error en los esquemas de diferencias finitas El térmio de error e los esquemas de diferecias fiitas Selee Solorza, Carlos Yee-Romero, Adia Jorda-Aramburo y Samuel Cardeña-Sáchez Facultad de Ciecias, Uiversidad Autóoma de Baja Califoria, Km. 103 carretera

Más detalles

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito. MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre

Más detalles

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006 Estalmat. Real Academia de Ciecias. Curso 5/6 Diámica compleja Cojutos de Julia y Madelbrot. Método de Newto. Miguel Reyes Mayo 6 Los úmeros complejos Los úmeros complejos so los úmeros de la forma dode

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS 4º ESO º Trimestre Autor: Vicete Adsuara Ucedo INDICE Tema : Vectores e el Plao.. Ejercicios Tema 9 Tema : Depedecia Lieal...7 Ejercicios Tema. 0 Tema 3: El Plao Afí...... Ejercicios

Más detalles

1. Sucesiones y series numéricas

1. Sucesiones y series numéricas ITINFORMÁTICA CÁLCULO INFINITESIMAL BOLETÍN CON SOLUCIONES DE LOS EJERCICIOS CURSO 005-06 Sucesioes y series uméricas Escribir ua expresió para el -ésimo térmio de la sucesió: +, + 3 4, + 7 8, + 5 6, 3,

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia

Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia Aálisis e el Domiio de la Frecuecia Sistemas de Cotrol El desempeño se mide por características e el domiio del tiempo Respuesta e el tiempo es díficil de determiar aalíticamete, sobretodo e sistemas de

Más detalles

Teorema del Muestreo

Teorema del Muestreo Teorema del Muestreo Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice 1.1. Itroducció 1.2. Coversió aalógico-digital y digital-aalógico 1.3. Proceso

Más detalles

7.2. Métodos para encontrar estimadores

7.2. Métodos para encontrar estimadores Capítulo 7 Estimació putual 7.1. Itroducció Defiició 7.1.1 U estimador putual es cualquier fució W (X 1,, X ) de la muestra. Es decir, cualquier estadística es ua estimador putual. Se debe teer clara la

Más detalles

(finitas o infinitas)

(finitas o infinitas) Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.

Más detalles

a 1, a 2, a 3, a 4,..., a n,... La sucesión {a 1, a 2, a 3,...}también se denota mediante a n n 1 a n 1 n n 1 a n sn 3, n 3 a n cos n 3, 4 125, 6

a 1, a 2, a 3, a 4,..., a n,... La sucesión {a 1, a 2, a 3,...}también se denota mediante a n n 1 a n 1 n n 1 a n sn 3, n 3 a n cos n 3, 4 125, 6 . SUCESIONES Se puede cosiderar que ua sucesió es ua lista de úmeros escritos e u orde defiido: a, a 2, a 3, a 4,..., a,... El úmero a recibe el ombre de primer térmio, a 2 es el segudo térmio y, e geeral,

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Cálculo para la ingeniería Tomo II. Salvador Vera

Cálculo para la ingeniería Tomo II. Salvador Vera Cálculo para la igeiería Tomo II Salvador Vera 9 de eero de 5 ii Copyright c by Salvador Vera Ballesteros, 998-4. Ídice geeral 7. Series Numéricas 7.. El sigo del sumatorio: Sigma Σ... 7... Propiedades

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

INTRODUCCIÓN A LAS ECUACIONES EN DIFERENCIAS

INTRODUCCIÓN A LAS ECUACIONES EN DIFERENCIAS INTRODUCCIÓN A LAS ECUACIONES EN DIFERENCIAS GENNY ALEXANDRA NAVARRETE MOLANO Trabajo de grado para optar por el titulo de Matemático DIRECTOR: JOSÉ JOAQUÍN VALDERRAMA Matemático Uiversidad Nacioal de

Más detalles

La sucesión de Lucas

La sucesión de Lucas a sucesió de ucas María Isabel Viggiai Rocha Cosideramos la sucesió umérica { } defiida por: - - si 3 y y 3. Esta sucesió es coocida como la sucesió de ucas y a sus térmios se los llama úmeros de ucas.

Más detalles

CAPITULO 2. Aritmética Natural

CAPITULO 2. Aritmética Natural CAPITULO Aritmética Natural Itroducció 1 Sumatorias Iducció Matemática Progresioes Teorema del Biomio 1. Coteidos. Itroducció 1) Asumiremos que el cojuto de úmeros reales R, +,, ) es u cuerpo ordeado completo.

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

Olimpiadas Matem aticas, U. de A.

Olimpiadas Matem aticas, U. de A. OLIMPIADAS DE MATEMATICA, 04 Uiversidad de Atioquia Cotextos AVISO: Los textos aquí publicados so resposabilidad total de sus creadores Estos so materiales e costrucció Errores y/o cometarios por favor

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

en. Intentemos definir algunas operaciones en

en. Intentemos definir algunas operaciones en OPERACIONES EN 8 E la secció aterior utilizamos fucioes de el primer couto y estudiar sus propiedades e Itetemos defiir alguas operacioes e Recordemos de cursos ateriores que tomamos al couto de los compleos

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 013 MODELO OPCIÓN A EJERCICIO 1 (A) Sea R la regió factible defiida por las iecuacioes x 3y, x 5, y 1. (0 5 putos) Razoe si el puto (4 5,1 55) perteece

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

Sucesiones y ĺımite de sucesiones

Sucesiones y ĺımite de sucesiones Tema 3 Sucesioes y ĺımite de sucesioes Ídice del Tema Sucesioes........................................ 60 Progresioes....................................... 63 3 Covergecia......................................

Más detalles