TRIÁNGULOS Y CUADRILÁTEROS.

Save this PDF as:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TRIÁNGULOS Y CUADRILÁTEROS."

Transcripción

1 TRIÁNGULOS Y CUADRILÁTEROS. 1. Triángulos. Al polígono de tres lados se le llama triángulo. Clasificación: Según sus lados, un triángulo puede ser Equilátero, si tiene los tres lados iguales Isósceles, si sólo tiene dos lados iguales Escaleno, si sus tres lados son desiguales Según sus ángulos, un triángulo puede ser Acutángulo, si tiene los tres ángulos agudos Obtusángulo, si tiene un ángulo obtuso Rectángulo, si tiene un ángulo recto. Propiedades de un triángulo. En todo triángulo se cumplen las siguientes propiedades: a) La suma de sus ángulos interiores es igual a 180º. b) La suma de las longitudes de dos lados cualesquiera es mayor que la longitud del otro lado. c) El área o medida de su extensión se calcula con la fórmula A = base altura 3. Puntos y rectas notables de un triángulo. Las rectas notables de un triángulo son: alturas, medianas, mediatrices y bisectrices. Los puntos notables de un triángulo son: ortocentro, baricentro, circuncentro e incentro. 1

2 Medianas: una mediana de un triángulo correspondiente a un vértice es la recta que une dicho vértice con el punto medio del lado opuesto. Todo triángulo tiene tres medianas. Las tres medianas se cortan en un mismo punto llamado baricentro. Es el centro de gravedad del triángulo. Alturas: una altura de un triángulo correspondiente a un vértice es el segmento (o recta) trazado desde dicho vértice perpendicularmente al lado opuesto. Todo triángulo tiene tres alturas. Las tres alturas se cortan en un mismo punto llamado ortocentro. Mediatrices: una mediatriz de un triángulo correspondiente a un lado es la recta perpendicular a dicho lado trazada por su punto medio. Todo triángulo tiene tres mediatrices. Las tres mediatrices se cortan en un mismo punto llamado circuncentro. El circuncentro es el centro de la circunferencia circunscrita al triángulo. Bisectrices: una bisectriz de un triángulo correspondiente a un ángulo interior es la recta que divide a dicho ángulo en dos ángulos iguales. Todo triángulo tiene tres bisectrices. Las tres bisectrices se cortan en un mismo punto llamado incentro. El incentro es el centro de la circunferencia inscrita en el triángulo.

3 En un triángulo equilátero, el ortocentro, el baricentro, el circuncentro y el incentro coinciden. 4. Teorema de Pitágoras. En un triángulo rectángulo, el lado opuesto al ángulo recto se llama hipotenusa y los lados que determinan el ángulo recto se llaman catetos. El teorema de Pitágoras afirma lo siguiente: En todo triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos a = b + c 5. Cuadriláteros. Un cuadrilátero es el polígono de cuatro lados. En todo cuadrilátero, la suma de los ángulos interiores es 360º. Clasificación: Según la posición relativa de sus lados, los cuadriláteros se dividen en tres grupos: A) Paralelogramos: tienen los lados paralelos dos a dos B) Trapecios: tienen dos lados paralelos y otros dos lados no paralelos. C) Trapezoides: no tienen ningún par de lados paralelos. A) Características comunes a todos los paralelogramos: 1. Los lados opuestos de un paralelogramo son iguales.. Dos ángulos opuestos son iguales. 3. Dos ángulos consecutivos son suplementarios. 4. Las diagonales se cortan en su punto medio. Dentro de la familia de los paralelogramos se encuentran el cuadrado, el rectángulo, el rombo y el romboide. En particular, hay que saber que: - El cuadrado tiene los cuatro lados iguales y los cuatro ángulos rectos. Su área es A = lado - El rectángulo también tiene los cuatro ángulos rectos. Su área es A = base altura - El rombo tiene los cuatro lados iguales pero no tiene ángulos rectos. Su área es A = Diagonal mayor Diagonal menor - El romboide no tiene ángulos rectos. Su área es A = base altura 3

4 B) Características comunes a todos los trapecios: 1. En los trapecios a los dos lados paralelos se les llaman bases.. A la distancia entre las bases se le llama altura del trapecio. 3. El área de un trapecio es A = ( Base mayor + base menor ) altura Dentro de la familia de los trapecios se encuentran el trapecio isósceles, que es el que tiene iguales los lados no paralelos, y el trapecio rectángulo, que tiene uno de los lados no paralelos perpendicular a las bases. 4

5 CIRCUNFERENCIA Y CÍRCULO. 1. Circunferencia.. Posiciones relativas de una recta y una circunferencia. Hay tres situaciones posibles: La circunferencia es la línea curva y cerrada formada por los puntos del plano situados a la misma distancia de un punto fijo llamado centro. Elementos de una circunferencia: Radio es el segmento que une el centro con un punto cualquiera de la circunferencia. Cuerda es el segmento que se obtiene al unir dos puntos cualesquiera de la circunferencia. Diámetro es la cuerda que pasa por el centro. Arco es el trozo de circunferencia comprendido entre dos puntos de ella. 1. Si la recta no toca a ningún punto de la circunferencia, se dice que la recta es exterior a la circunferencia.. Si la recta corta en dos puntos a la circunferencia, se dice que la recta es secante a la circunferencia. 3. Si la recta toca en un solo punto a la circunferencia, se dice que la recta es tangente a la circunferencia. En este caso, la recta es perpendicular al radio en el punto de contacto. 3. Posiciones relativas de dos circunferencias. Hay seis situaciones posibles: 1. Si las circunferencias no se tocan en ningún punto, estando una de ellas fuera de la otra, se dice que las circunferencias son exteriores. 5

6 . Si las circunferencias no se tocan en ningún punto, estando una de ellas dentro de la otra con distinto centro, se dice que las circunferencias son interiores. 3. Si las circunferencias no se tocan en ningún punto, estando una de ellas dentro de la otra y con el mismo centro, se dice que las circunferencias son concéntricas. 4. Si las circunferencias se cortan en dos puntos, se dice que las circunferencias son secantes. 5. Si las circunferencias se tocan en un solo punto, estando una de ellas fuera de la otra, se dice que las circunferencias son tangentes exteriores. 6. Si las circunferencias se tocan en un solo punto, estando una de ellas dentro de la otra, se dice que las circunferencias son tangentes interiores. 4. Longitud de un arco de circunferencia. Longitud de la circunferencia. Se llama ángulo central de una circunferencia al que tiene por vértice el centro de la circunferencia. Los lados del ángulo central cortan a la circunferencia en dos puntos B y C, determinando un arco de circunferencia Si la medida del ángulo es n grados y la circunferencia tiene radio r, entonces la longitud del arco BC es 6

7 Si en la fórmula anterior consideramos n = 360º, nos queda que la longitud de una circunferencia de radio r es 5. Círculo. Sector circular. Corona circular. Se llama círculo a la porción de plano que queda dentro de una circunferencia. Dado un ángulo central de medida n grados, se llama sector circular de amplitud n grados a la porción de plano que queda entre los lados del ángulo y el arco de circunferencia asociado. En una circunferencia de radio r, se tiene que: El área de un sector circular de amplitud n grados es Si en la fórmula anterior consideramos n = 360º, nos queda que el área del círculo es 6. Medida de superficies. Se llama área de una superficie a la medida de su extensión. Para medir la extensión de cualquier figura hay que establecer previamente una unidad de medida que nos sirva de patrón y hallar el número de veces que la figura contiene a esta unidad. El número que expresa esta medida se llama área de la figura y depende de la unidad elegida. El área de una figura puede calcularse por dos métodos. a) Por fórmulas: se descompone la figura en figuras planas cuyas áreas sean susceptibles de calcularse mediante una fórmula conocida. El área total de la figura será la suma de las áreas parciales calculadas previamente. Con este método, las unidades de superficie utilizadas habitualmente son algunas de las que figuran a continuación: km hm dam m dm cm mm b) Por cuadriculación: se sitúa la figura sobre una trama cuadriculada y el área total de la figura será el número de cuadraditos que ocupa. Para figuras situadas sobre una trama cuadriculada podemos establecer como unidad de medida el cuadradito que se repite en la trama. Ejemplo: al siguiente recinto se le puede calcular el área por los dos métodos. Cada cuadradito de la retícula tiene 0.5 cm de lado. Por lo tanto, cada cuadradito equivale a 0.5 cm de superficie. 7

8 FIN Zona TIC Thatquiz.com: Geometría-Geometría Descartes: descartes.cnice.mecd.es/indice_ud.php Primer Ciclo de ESO. Áreas de figuras planas 1. Polígonos regulares y círculos; descartes.cnice.mecd.es/indice_ud.php 3º de ESO 1. Ángulos en la circunferencia. Arco capaz descartes.cnice.mecd.es/indice_ud.php 4º de ESO A 1. Relaciones entre figuras geométricas en el plano descartes.cnice.mecd.es/indice_ud.php 4º de ESO B 1. La circunferencia Hot Potatoes: WEB CV/DPTO MATES/POTATOES RED/1. Geometría elemental;. Figuras planas; 3. Matemáticas de ESO Clic: 1. GEOPRIM;. GEOCLICE-37 PAQUETES; 3. GEOMES-CIRCUMT, COSSOS1T FIN 8

9 9

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS Un punto se nombra con letras mayúsculas: A, B, C Una recta, formada por infinitos puntos, se nombra con letras minúsculas: a, b, c Dos rectas pueden ser paralelas, secantes o coincidentes. 1. Paralelas

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

Unidad 11. Figuras planas

Unidad 11. Figuras planas Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS. EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

Ángulos 1º = 60' = 3600'' 1' = 60''

Ángulos 1º = 60' = 3600'' 1' = 60'' Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para

Más detalles

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo

Más detalles

1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto).

1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 6.- Espacio: Conjunto de puntos con tres dimensiones: largo, ancho y alto. Es infinito, sin límites. 2.- Recta:

Más detalles

Triángulos IES BELLAVISTA

Triángulos IES BELLAVISTA Triángulos IES BELLAVISTA Definiciones y notación Un triángulo es la figura plana limitada por tres rectas que se cortan dos a dos. Los puntos de corte se denominan vértices. El triángulo tiene tres lados

Más detalles

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm. ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:

Más detalles

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado... Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

ESTUDIO GEOMÉTRICO SOBRE EL TRIÁNGULO

ESTUDIO GEOMÉTRICO SOBRE EL TRIÁNGULO ESTUDIO GEOMÉTRICO SOBRE EL TRIÁNGULO 1. EL TRIÁNGULO COMO POLÍGONO Debemos comenzar el estudio geométrico del triángulo considerándolo como el más sencillo de los polígonos. Así, vamos a considerar algunas

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA

REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA MAT B Repartido Nº I REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA Conceptos primitivos Partiremos de un conjunto que llamaremos espacio, E, a cuyos elementos llamamos puntos, (a los cuales escribiremos

Más detalles

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS:

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: Un polígono es un figura cerrada formada por segmentos de recta que no se

Más detalles

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180 CLASIFICACIÓN DE ÁNGULOS Nombre Definición Figura Ángulo recto Mide 90 Ángulo agudo Mide menos de 90 Ángulo obtuso Mide más de 90 Ángulo extendido Mide 180 Ángulo completo Mide 360 ÁNGULOS COMPARATIVOS

Más detalles

Tema 5: Polígonos. Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio.

Tema 5: Polígonos. Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio. Tema 5: Polígonos 5.1 Elementos Fundamentales de Geometría Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio. A P * B Cualquier punto P de la mediatriz equidista de los extremos

Más detalles

CENAFE MATEMÁTICAS POLÍGONOS

CENAFE MATEMÁTICAS POLÍGONOS POLÍGONOS Es la porción del plano comprendida dentro de una línea poligonal cerrada. Es la superficie del plano limitada por una línea poligonal. La medida de un polígono es su área. Criterios de clasificación:

Más detalles

Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica

Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica Ángulos. DEFINICIÓN FIGURA OBSERVACIONES Ángulo. Es la abertura formada por dos semirrectas unidas en un solo punto llamado vértice. Donde: α = Ángulo O = Vértice OA = Lado inicial OB = Lado terminal Un

Más detalles

Segmento : porción de recta comprendida entre dos de sus puntos, llamados extremos.

Segmento : porción de recta comprendida entre dos de sus puntos, llamados extremos. ÍNDICE Elementos fundamentales Ángulos Triángulos y cuadriláteros Áreas y volúmenes Poliedros ELEMENTOS FUNDAMENTALES DE GEOMETRÍA Conceptos fundamentales Punto Recta Plano Semirecta : porción de recta

Más detalles

Geometría 1 de Secundaria: I Trimestre. yanapa.com. Rayo. I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano

Geometría 1 de Secundaria: I Trimestre. yanapa.com. Rayo. I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano Rayo Segmento : Rayo de Origen O y que pasa por B : Rayo de Origen O y que pasa por A La Recta : Se lee Segmento AB : Se lee

Más detalles

1. INCENTRO Y ORTOCENTRO EN UN TRIÁNGULO ACUTÁNGULO.

1. INCENTRO Y ORTOCENTRO EN UN TRIÁNGULO ACUTÁNGULO. 1. INCENTRO Y ORTOCENTRO ❶ Sitúate en el ortocentro como punto de partida. ❷ Recorre la altura hasta el lado más alejado. ❸ Desplázate por el perímetro hasta el vértice más próximo. ❹ Dirígete al incentro.

Más detalles

1.1. Trazar la mediatriz del segmento Trazar la perpendicular que pasa por el punto Trazar la perpendicular que pasa por C.

1.1. Trazar la mediatriz del segmento Trazar la perpendicular que pasa por el punto Trazar la perpendicular que pasa por C. 1.1. Trazar la mediatriz del segmento. 1.2. Trazar la perpendicular que pasa por el punto. A B P 1.3. Trazar la perpendicular que pasa por C. 1.4. Trazar la perpendicular que pasa por el extremo de la

Más detalles

Módulo III: Geometría Elmentos del triángulo Teorema de Pitágoras Ángulos en la circunferencia

Módulo III: Geometría Elmentos del triángulo Teorema de Pitágoras Ángulos en la circunferencia Módulo III: Geometría Elmentos del triángulo Altura Bisectriz Simetral o mediatriz Transversal de gravedad Teorema de Pitágoras Ángulos en la circunferencia Ángulo del centro Ángulo inscrito Ángulo interior

Más detalles

Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360

Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360 Triángulos Es un polígono formado por tres segmentos cuyos tres puntos de intersección no están en línea recta. Triángulo ABC A,B y C son vértices del triángulo α, β, γ s interiores. a, b y c, longitud

Más detalles

DEPARTAMENTO DE MATEMATICAS

DEPARTAMENTO DE MATEMATICAS 1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un

Más detalles

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas

Más detalles

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea

Más detalles

Created with novapdf Printer (www.novapdf.com)

Created with novapdf Printer (www.novapdf.com) GEOMETRÍA LONGITUDES Longitud de la circunferencia Es una línea curva cerrada que equidistan todos sus puntos del centro. Radio Centro: punto situado a igual distancia de todos los puntos de la circunferencia.

Más detalles

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos

Más detalles

MATEMÁTICAS (GEOMÉTRÍA)

MATEMÁTICAS (GEOMÉTRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMÉTRÍA) GRADO:6 O DOCENTE: Nubia E. Niño C. FECHA: 9 / 06 / 15 Guía Didáctica 3 1 Desempeños: * Identifica, clasifica

Más detalles

EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos

EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos EL TRIÁNGULO 1. EL TRIÁNGULO. PRIMERAS PROPIEDADES El triángulo es un polígono que tiene tres lados y tres ángulos. Es, por tanto, el polígono más simple y el conocimiento de sus características y propiedades

Más detalles

LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90

LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90 LA GEOMETRÍA PLANA La geometría plana trata de aquellos elementos que solo tienen dos dimensiones y, que por lo tanto, se encuentran y operan en un plano. Los elementos básicos con los que se suele trabajar

Más detalles

ACTIVIDADES PROPUESTAS

ACTIVIDADES PROPUESTAS GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el

Más detalles

Clasificación de los triángulos

Clasificación de los triángulos COLEGIO ITALO BOLIVIANO CRISTOFORO COLOMBO PROF. HEINS VEGA Clasificación de los triángulos Triángulo: Figura geométrica cerrada delimitada por tres segmentos de recta. Los segmentos son los lados del

Más detalles

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II Unidad 1: Percibimos y representamos los objetos 1.- Descripción de las figuras geométricas en el plano. Clasificación de triángulos y cuadriláteros.

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

ACTIVIDADES. b. Completa la actividad haciendo lo mismo para los vértices restantes. Qué observas?

ACTIVIDADES. b. Completa la actividad haciendo lo mismo para los vértices restantes. Qué observas? ACADEMIA SABATINA RECTAS Y PUNTOS DEL TRIÁNGULO ACTIVIDADES 1. Materiales: triángulos de papel, regla y compás. a. Toma un triángulo cualquiera, escoge uno de sus vértices y haz un doblez de tal modo que

Más detalles

POLÍGONOS Y CIRCUNFERENCIA

POLÍGONOS Y CIRCUNFERENCIA 5. POLÍGONOS Y CIRCUNFERENCIA EN ESTA UNIDAD VAS A APRENDER POLÍGONOS RECTA, SEMIRRECTA Y SEGMENTO LÍNEA POLIGONAL POLÍGONOS TRIÁNGULOS - Clasificación. - Puntos notables. - Recta de Euler. - Teorema de

Más detalles

INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO

INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO CUADRILATERO INTRODUCCION Son polígonos de 4 lados. La suma de los ángulos interiores es igual a 360º y la suma de los ángulos exteriores es igual a 360º. Vértices : A, B, C, D Lados : a, b, c, d Ángulos

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo La circunferencia y el círculo 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA:

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documento es de distribución gratuita y llega gracias a iencia Matemática www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio! 2 Polígonos Relaciones fundamentales 2.0 Introducción

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 12 Figuras planas y espaciales Recuerda lo fundamental Curso:... Fecha:... TRIÁNGULOS Mediana de un triángulo es un segmento que...... Las tres medianas de un triángulo se cortan en el...... Las mediatrices

Más detalles

POLÍGONO ÁNGULOS DE UN POLÍGONO CLASIFICACIÓN: La denominación de polígono palabra compuesta de poli, del griego: muchos; y gonos del griego: ángulos

POLÍGONO ÁNGULOS DE UN POLÍGONO CLASIFICACIÓN: La denominación de polígono palabra compuesta de poli, del griego: muchos; y gonos del griego: ángulos POLÍGONO La denominación de polígono palabra compuesta de poli, del griego: muchos; y gonos del griego: ángulos Un polígono es una porción del plano limitada por una línea poligonal cerrada. Los segmentos

Más detalles

Las Figuras Planas. Vértice. Ángulo. Diagonal. Lado. Los polígonos. El Polígono. CEPA Carmen Conde Abellán Matemáticas II

Las Figuras Planas. Vértice. Ángulo. Diagonal. Lado. Los polígonos. El Polígono. CEPA Carmen Conde Abellán Matemáticas II Las Figuras Planas Melilla Los polígonos Te has fijado alguna vez en el metro que usan los carpinteros? Está formado por segmentos de madera que se pliegan con facilidad. Este instrumento tiene forma de

Más detalles

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm 2 cm 5 cm 8 cm 2 a) b) 5 m 8 m 17 m 15 m 3 a) b) 5

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 250

13Soluciones a los ejercicios y problemas PÁGINA 250 PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 5 dm b) 8 8 cm P 5 4 0

Más detalles

1 Ángulos en las figuras planas

1 Ángulos en las figuras planas Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis

Más detalles

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS Nombre: Grado: 9 5 1. Costrucciones 2. las rectas y puntos notables de un triángulo Sabemos que los polígonos son figuras cerradas planas, de lados rectos,

Más detalles

TRIÁNGULOS. TEOREMA DE PITÁGORAS.

TRIÁNGULOS. TEOREMA DE PITÁGORAS. TRIÁNGULOS. TEOREMA DE PITÁGORAS. Un triángulo ABC es la figura geométrica del plano formada por 3 segmentos llamados lados cuyos extremos se cortan a en 3 puntos llamados vértices. Los vértices se escriben

Más detalles

EDUCACIÓN PLÁSTICA Y AUDIOVISUAL 1ºESO. Curso

EDUCACIÓN PLÁSTICA Y AUDIOVISUAL 1ºESO. Curso EDUCACIÓN PLÁSTICA Y AUDIOVISUAL 1ºESO Curso 2016-17 ÍNDICE DE CONTENIDOS 1ª EVALUACIÓN Septiembre, octubre, noviembre 2016 TEMA 1 - DIBUJO TÉNICO: TRAZADOS GEOMÉTRICOS 1.1. ELEMENTOS GEOMÉTRICOS FUNDAMENTALES

Más detalles

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 88 CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes de sus lados.

Más detalles

1º ESO GEOMETRÍA PLANA: ÁNGULOS Y TRIÁNGULOS

1º ESO GEOMETRÍA PLANA: ÁNGULOS Y TRIÁNGULOS 1º ESO GEOMETRÍA PLANA: ÁNGULOS Y TRIÁNGULOS 1.- ÁNGULOS Un ángulo es la porción de plano limitada por dos semirrectas o rayos que tienen el mismo origen. Los lados del ángulo son las semirrectas que lo

Más detalles

Guía 2: Puntos, rectas y circunferencias notables en el triángulo. Teorema de Pitágoras. Ternas Pitagóricas

Guía 2: Puntos, rectas y circunferencias notables en el triángulo. Teorema de Pitágoras. Ternas Pitagóricas Guía 2: Puntos, rectas y circunferencias notables en el triángulo. Teorema de Pitágoras. Ternas Pitagóricas duardo Sarabia 27 de enero de 2011 Puntos, rectas y circunferencias notables en el triángulo.

Más detalles

Grupo: 3º ESO B Matemáticas en Red

Grupo: 3º ESO B Matemáticas en Red CUADERNO DE TRABAJO 4: TRIÁNGULOS ACTIVIDAD 4.1. MEDIANAS DE UN TRIÁNGULO. BARICENTRO Dibuja un triángulo ABC. Puedes utilizar la herramienta Exponer/Ocultarr rótulo para visualizar los nombres de los

Más detalles

1.1. Puntos y rectas notables en el triángulo. Sean A, B y C los vértices de un triángulo de lados opuestos a, b y c, respectivamente.

1.1. Puntos y rectas notables en el triángulo. Sean A, B y C los vértices de un triángulo de lados opuestos a, b y c, respectivamente. apítulo 1 Rectas notables 1.1. Puntos y rectas notables en el triángulo ltura, mediana y bisectriz Sean, y los vértices de un triángulo de lados opuestos a, b y c, respectivamente. H a c h b a H c H b

Más detalles

Puntos y rectas en el triángulo

Puntos y rectas en el triángulo Puntos y rectas en el triángulo En los triángulos hay un conjunto de rectas y puntos importantes. Las rectas son las bisectrices, las mediatrices, las alturas, las medianas y las bisectrices exteriores.

Más detalles

Los Elementos. Libro I 2 Los fundamentos de la Geometría Teoría de los triángulos, paralelas y el Teorema de Pitágoras.

Los Elementos. Libro I 2 Los fundamentos de la Geometría Teoría de los triángulos, paralelas y el Teorema de Pitágoras. Los Elementos Está obra está compuesta por trece libros. El Libro I trata congruencia, paralelas y el teorema de Pitágoras, y en el se incluyen las definiciones de los conceptos, nociones comunes y postulados

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ANGULOS Y TRIANGULOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ANGULOS Y TRIANGULOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ANGULOS Y TRIANGULOS CONCEPTOS BÁSICOS Punto, línea recta y plano: son conceptos que no de nimos pero utilizamos su representación grá

Más detalles

ángulo agudo ángulo agudo triángulo acutángulo triángulo acutángulo ángulo ángulo Nombre Ángulo que es menor que un ángulo recto

ángulo agudo ángulo agudo triángulo acutángulo triángulo acutángulo ángulo ángulo Nombre Ángulo que es menor que un ángulo recto Tarjetas de vocabulario ángulo agudo ángulo agudo Ángulo que es menor que un ángulo recto acutángulo acutángulo Un con tres ángulos agudos ángulo ángulo Una figura formada por dos semirrectas que tienen

Más detalles

CIRCUNFERENCIA Y CÍRCULO

CIRCUNFERENCIA Y CÍRCULO CIRCUNFERENCIA Y CÍRCULO 1. Circunferencia y círculo. Elementos. 2. Posiciones relativas de una recta y una circunferencia. 3. Posiciones relativas de dos circunferencias. 4. Ángulos centrales. 5. Ángulos

Más detalles

GEOMETRÍA. 1. Líneas y ángulos. Partimos de la existencia de infinitos puntos cuyo conjunto llamamos ESPACIO.

GEOMETRÍA. 1. Líneas y ángulos. Partimos de la existencia de infinitos puntos cuyo conjunto llamamos ESPACIO. 1. Líneas y ángulos Partimos de la existencia de infinitos puntos cuyo conjunto llamamos ESPACIO. Los puntos del espacio se consideran agrupados en conjuntos parciales de infinitos puntos llamados PLANOS.

Más detalles

La carrera geométrica

La carrera geométrica La carrera geométrica Materiales: el tablero 1, un personaje por cada jugador y un dado. 1. Cada jugador ubica su ficha en la salida. 2. Por turno, cada jugador tira el dado y mueve su ficha tantos casilleros

Más detalles

Soluciones Primer Nivel - 5º Año de Escolaridad

Soluciones Primer Nivel - 5º Año de Escolaridad Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

GEOMETRÍA Y TRIGONOMETRÍA

GEOMETRÍA Y TRIGONOMETRÍA GEOMETRÍA Y TRIGONOMETRÍA 1 Conceptos básicos 1. Una figura geométrica es un conjunto de puntos. 2. Puntos colineales son cualesquiera puntos que están exactamente en una recta. 3. La distancia entre un

Más detalles

1. Teoremas válidos para triángulos rectángulos

1. Teoremas válidos para triángulos rectángulos 1. Teoremas válidos para triángulos rectángulos Sea ABC triángulo rectángulo en C, entonces: El lado opuesto al ángulo recto, AB, es llamado HIPOTENUSA, y los lados AC y BC, CATETOS. cateto hipotenusa

Más detalles

Clasificación de los triángulos

Clasificación de los triángulos Página 213 Clasificación de los triángulos 1. Di cómo son, según sus lados y según sus ángulos, los triángulos siguientes: A B C D A isósceles y obtusángulo. C equilátero y acutángulo. B escaleno y acutángulo.

Más detalles

Tema 2: Figuras geométricas

Tema 2: Figuras geométricas Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. 1 2 La circunferencia (p. 31) El cerebro humano es muy

Más detalles

1º ESO CAPÍTULO 10: FIGURAS PLANAS

1º ESO CAPÍTULO 10: FIGURAS PLANAS 1º ESO CAPÍTULO 10: FIGURAS PLANAS 157 1. ELEMENTOS DEL PLANO Índice 1.1. PUNTOS, RECTAS, SEMIRRECTAS, SEGMENTOS. 1.2. RECTAS PARALELAS Y SECANTES. 1.3. ÁNGULOS. TIPOS DE ÁNGULOS. 1.4. MEDIDA DE ÁNGULOS.

Más detalles

SUBRAYE LA RESPUESTA CORRECTA EN CADA PREGUNTA.

SUBRAYE LA RESPUESTA CORRECTA EN CADA PREGUNTA. CUADERNILLO DE GEOMETRIA I.- SUBRAYE LA RESPUESTA CORRECTA EN CADA PREGUNTA. 1.- SON LOS TRIÁNGULOS QUE TIENEN TODOS LOS ÁNGULOS IGUALES. A) EQUILÁTERO B) ACUTÁNGULO C) ISÓSCELES D) ESCALENO E) RECTÁNGULO

Más detalles

Construcción de formas poligonales. Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes).

Construcción de formas poligonales. Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes). UNIDAD 2 Construcción de formas poligonales Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes). E n esta Unidad se presentan construcciones de triángulos a partir de datos

Más detalles

*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio.

*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x a, y b ). Q(x a, y b ) 2 b + ya yb d= ( ) ( ) 2 x a x *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *ALTURA: perpendicular bajada del vértice al

Más detalles

1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro.

1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA: *Centro: Punto central.

Más detalles

MYP (MIDDLE YEARS PROGRAMME)

MYP (MIDDLE YEARS PROGRAMME) MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa

Más detalles

UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de:

UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de: UNIDAD DIDÁCTICA 10ª Etapa: Educación Primaria. Ciclo: 3º Curso 6º Área del conocimiento: Matemáticas Nº UD: 10ª (12 sesiones de 60 minutos; a cuatro sesiones por semana) Título: Los polígonos, el círculo,

Más detalles

Introducción a la geometría

Introducción a la geometría Introducción a la geometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan de estudios (217 temas)

Más detalles

Polígono. Superficie plana limitada por una línea poligonal cerrada.

Polígono. Superficie plana limitada por una línea poligonal cerrada. POLÍGONO B C r A d O a l E D Polígono. Superficie plana limitada por una línea poligonal cerrada. r O r =a Elementos, puntos y líneas en los polígonos. (Regulares) LADO Cada uno de los segmentos de la

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos 1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular

Más detalles

Tema 2: Figuras geométricas

Tema 2: Figuras geométricas Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. La circunferencia (p. 31) El cerebro humano es muy bueno

Más detalles

001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ).

001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 1.6 Criterios específicos de evaluación. 001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 002. Calcula el total de elementos que se puedan codificar con una determinada clave. 003.

Más detalles

Triángulos y Cuadriláteros

Triángulos y Cuadriláteros 04 Lección Apertura Matemáticas Triángulos y Cuadriláteros APRENDO JUGANDO Competencia Identifica las características de los triángulos y los cuadriláteros. Diseño instruccional Por la importancia que

Más detalles

Construcciones. Proporciones. Áreas

Construcciones. Proporciones. Áreas Construcciones Proporciones Áreas Rectángulo y Cometa Dibuja una cometa inscrita en un rectángulo Qué relación hay entre sus áreas respectivas? Cómo cambiará el perímetro de la cometa a medida que E y

Más detalles

geometría 2008 cbc taller de dibujo cátedra arq. víctor murgia

geometría 2008 cbc taller de dibujo cátedra arq. víctor murgia geometría 2008 cbc taller de dibujo cátedra arq. víctor murgia CBC TALLER DE DIBUJO Cátedra Arq. VÍCTOR MURGIA 2008 3 INTRODUCCIÓN AL LENGUAJE GEOMÉTRICO línea recta Este texto trata sobre conceptos básicos

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: GEOMETRIA DOCENTE: CILENA MARIA GOMEZ BASTIDAS TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0 FECHA DURACION

Más detalles

4.1 Medida de ángulo: sistema sexagesimal. Para medir la amplitud de un ángulo podemos utilizar el sistema sexagesimal. 180º

4.1 Medida de ángulo: sistema sexagesimal. Para medir la amplitud de un ángulo podemos utilizar el sistema sexagesimal. 180º PÍTULO 4 Tópicos de Geometría Geometría, palara que proviene del griego, geo: tierra; metrein: medir, es una de las ramas mas antiguas de las ciencias, que tal vez ha tenido y tenga mayor incidencia en

Más detalles

LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. ELEMENTOS GENERALES DE UN POLÍGONO.

LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. ELEMENTOS GENERALES DE UN POLÍGONO. LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. Polígono es la superficie plana limitada por una línea poligonal cerrada. Línea poligonal es la figura formada

Más detalles

Con un radio de un centímetro traza una línea ondulada compuesta por 4 semicircunferencias.

Con un radio de un centímetro traza una línea ondulada compuesta por 4 semicircunferencias. 5.- FIGURAS PLANAS Al finalizar el sexto curso de Educación Primaria, los estudiantes deben describir figuras geométricas usando el vocabulario apropiado; usar instrumentos de dibujo (regla, compás, escuadra,

Más detalles

Dibujar un rombo de diagonal BD y lado AB dados. Se dibuja la diagonal DB y se trazan arcos con centro en sus extremos y radio AB, para hallar A y C.

Dibujar un rombo de diagonal BD y lado AB dados. Se dibuja la diagonal DB y se trazan arcos con centro en sus extremos y radio AB, para hallar A y C. Algunos problemas de cuadriláteros Propiedades Para la resolución de problemas de cuadriláteros es necesario conocer algunas de sus propiedades : - Las diagonales de un paralelogramo se cortan en sus respectivos

Más detalles

CLASIFICACIÓN DE LAS FIGURAS Y CUERPOS GEOMÉTRICOS. Según los lados. Triángulos. Según los ángulos. Paralelogramo. Cuadriláteros.

CLASIFICACIÓN DE LAS FIGURAS Y CUERPOS GEOMÉTRICOS. Según los lados. Triángulos. Según los ángulos. Paralelogramo. Cuadriláteros. CLASIFICACIÓN DE LAS FIGURAS Y CUERPOS GEOMÉTRICOS Equilátero Polígonos Según los lados Isósceles Figuras geometrícas Nombre según los lados 3-Triángulo 4-Cuadrilátero 5-Pentágono 6-Hexágono 7-Heptágono

Más detalles

AYUDAS SOBRE LA LINEA RECTA

AYUDAS SOBRE LA LINEA RECTA AYUDAS SOBRE LA LINEA RECTA AYUDA : Grafiquemos la función Solución: Se debe escoger algunos números que representan a la variable x, para obtener el valor de la variable y respectivamente así: El proceso:

Más detalles