RESOLUCIÓN DE TRIÁNGULOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RESOLUCIÓN DE TRIÁNGULOS"

Transcripción

1 RESOLUIÓN DE TRIÁNGULOS Págin 103 REFLEXION Y RESUELVE Prolem 1 Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr hllr l ltur de un pirámide de Egipto: omprr su somr on l de un vr vertil uy longitud es onoid. Hzlo tú siguiendo este método y siendo que: l vr mide 1 m, l somr de l vr mide 37 m, l somr del árol mide 5 m. Pr soluionr este prolem hrás utilizdo l semejnz de dos triángulos. 1 x 37 5 x x ,65 m 1 m 5 m 37 m L ltur del árol es de 6,65 m. Prolem ernrdo onoe l distni l que está del árol y los ángulos y ì ; y quiere lulr l distni l que está de rmen. ì ì Dtos: 63 m; o ; 3 o ì Pr resolver el prolem, primero reliz un diujo esl 1:1 000 (1 m 1 mm). Después, mide l longitud del segmento y, deshiendo l esl, otendrás l distni l que ernrdo está de rmen. 63 m 3 mm 1

2 Deshiendo l esl: m

3 UNIDD Prolem 3 nálogmente puedes resolver este otro: ernrdo ve desde su s el stillo y l dí. onoe ls distnis mos lugres, pues h heho el mino pie muhs vees; y quiere verigur l distni del stillo l dí. Pr ello dee, previmente, medir el ángulo. ì Dtos: 1 00 m; ì 700 m; 10 o. Utiliz hor l esl 1: (100 m 1 m). 100 m 1 m 1 00 m 1 m 700 m 7 m 1,7 m ò 1 70 m 700 m 7 m m 1 m NOT: El triángulo está onstruido l 50% de su tmño. Prolem lul, plindo el teorem de Pitágors: ) Los ldos igules de un triángulo retángulo isóseles uy hipotenus mide 1. x 1 x ) L ltur de un triángulo equilátero de ldo 1. Hz todos los álulos mnteniendo los rdiles. Dees llegr ls siguientes soluiones: x y y 3

4 ) 1 x + x 1 x x 1 1 x 1 ) 1 y + ( ) y 1 Págin 10 y 1. lul tg siendo que sen 0,39. Hzlo, tmién, on luldor. os 1 (sen ) 1 0,39 0,9 sen tg 0, os s 0,9 t on luldor: s ß 0,39 t { Ÿ ««} lul os siendo que tg 1,. Hzlo, tmién, on luldor. s + 1 s/ 1, Resolviendo el sistem se otiene s 0,79 y 0,6. on luldor: s t 1, { Ÿ\ \ } Págin Siendo que el ángulo está en el segundo udrnte (90 <<10 ) y sen 0,6, lul os y tg. 0,6 t os 1 0,6 0,7 0,6 tg 0,79 0,7. Siendo que el ángulo está en el terer udrnte (10 <<70 ) y os 0,3, lul sen y tg. sen 1 (0,3) 0,56 0,56 tg 0,67 0,3

5 UNIDD s 0,3 t 5

6 3. Siendo que el ángulo está en el urto udrnte (70 <<360 ) y tg 0,9, lul sen y os. s/ 0,9 El sistem tiene dos soluiones: s + 1 s 0,6; 0,7 s 0,6; 0,7 Teniendo en uent dónde está el ángulo, l soluión es l primer: sen 0,6, os 0,7. omplet en tu uderno l siguiente tl y mplíl pr los ángulos 10, 5, 0, 70, 300, 315, 330 y sen 0 1/ / 3/ 1 os 1 3/ 0 tg 0 3/3 yúdte de l representión de los ángulos en un irunfereni goniométri sen 0 1/ / 3/ 1 3/ / 1/ 0 os 1 3/ / 1/ 0 1/ / 3/ 1 tg 0 3/ / sen 1/ / 3/ 1 3/ / 1/ 0 os 3/ / 1/ 0 1/ / 3/ 1 tg 3/ /3 0 Págin Hll ls rzones trigonométris del ángulo 397 : ) Oteniendo l expresión del ángulo en el intervlo [0, 360 ). ) Oteniendo l expresión del ángulo en el intervlo ( 10, 10 ]. ) Diretmente on l luldor. ) ) sen 397 sen 37 0, sen 397 sen ( 13 ) 0, os 397 os 37 0,5 os 397 os ( 13 ) 0,5 tg 397 tg 37 1,5 tg 397 tg ( 13 ) 1,5 6

7 UNIDD. Ps d uno de los siguientes ángulos l intervlo [0, 360 ) y l intervlo ( 10, 10 ]: ) 396 ) 9 ) 65 d) 3 95 e) 7 61 f ) 1 90 Se trt de expresr el ángulo de l siguiente form: k o k, donde k Ì 10 ) ) ) d) e) f) undo hemos, por ejemplo, , por qué tommos 1? Porque, previmente, hemos relizdo l división 7 61 / 360 { }. Es el oiente entero. Págin 107 LENGUJE MTEMÁTIO 1. Di el vlor de ls siguientes rzones trigonométris sin preguntrlo l luldor. Después, ompruélo on su yud: ) sen(37 Ò ) ) os( 5 Ò ) ) tg(11 Ò ) d) os(7 Ò ) 1 ) sen ( ) sen ( 30 ) sen 30 1 ) os ( ) os (10 ) ) tg ( ) tg ( 135 ) tg d) os ( ) os ( ) os ( ) os ( 5 ) os 5. Repite on l luldor estos álulos: st1 P 10 { } st1 P 0 { } Expli los resultdos. ómo es posile que dig que el ángulo uy tngente vle 10 0 es 90 si 90 no tiene tngente? Es un ángulo que difiere de 90 un ntidd tn pequeñ que, pesr de ls muhs ifrs que l luldor mnej, l redonderlo d 90. 7

8 Págin lul ls rzones trigonométris de 55, 15, 15, 15, 35, 305 y 35 prtir de ls rzones trigonométris de 35 : sen 35 0,57; os 35 0,; tg 35 0, ò 55 y 35 son omplementrios. sen 55 os 35 0, os 55 sen 55 0,57 1 1,3 0,70 ) sen 55 0, tg 55 1,3 os 55 0,57 ( 1 Tmién tg 55 tg sen 15 os 35 0, os 15 sen 35 0, tg 15 1,3 tg 35 0, ò 15 y 35 son suplementrios. sen 15 sen 35 0,57 os 15 os 35 0, tg 15 tg 35 0, sen 15 sen 35 0,57 os 15 os 35 0, tg 15 tg 35 0, sen 35 os 35 0, os 35 sen 35 0,57 sen 35 os tg 35 1,3 os 35 sen 35 tg 35 0,

9 UNIDD sen 305 os 35 0, os 305 sen 35 0,57 sen 305 os 35 1 tg 305 1,3 os 305 sen 35 tg ( 35 ) sen 35 sen 35 0,57 os 35 os 35 0, sen 35 sen 35 tg 35 tg 35 0,70 os 35 os verigu ls rzones trigonométris de 35, 156 y 3, utilizndo l luldor solo pr hllr rzones trigonométris de ángulos omprendidos entre 0 y sen 35 sen 0,039 os 35 os 0,999 tg 35 (*) tg 0,039 (*) sen 35 sen tg 35 tg os 35 os sen 156 sen 0,067 os 156 os 0,9135 tg 0,5 OTR FORM DE RESOLVERLO: sen 156 os 66 0,067 os 156 sen 66 0, tg 156 0,5 tg 66, sen 3 sen 1 0,3090 os 3 os 1 0,9511 tg 3 tg 1 0,39 9

10 3. Diuj, sore l irunfereni goniométri, ángulos que umpln ls siguientes ondiiones y estim, en d so, el vlor de ls restntes rzones trigonométris: ) sen 1, 3 tg > 0 ) os, > 90 ) tg 1, os < 0 d) tg, os < 0 ) sen 1/ < 0 tg > 0 os < 0 é3. er udrnte sen 1/ os 0,6 ) os 3/ > 90º é. udrnte sen 0,66 os 3/ ) d) tg 1 < 0 os < 0 tg > 0 os < 0 sen > 0 é. udrnte sen 0,7 os 0,7 sen < 0 é3. er udrnte sen 0,9 os 0,5 Págin Ls siguientes propuests están referids triángulos retángulos que, en todos los sos, se designn por, siendo el ángulo reto. ) Dtos: 3 m, 57. lul. ) Dtos: 3 m, 57. lul. ) Dtos: 50 m, 30 m. lul y. d) Dtos: 35 m, 3. lul. e) Dtos: 35 m, 3. lul. ) os os 17,3 m ) sen sen 6, m 10

11 UNIDD ) + 396,69 m tg 0,1 39 3' 57'' d) tg 56,01 m tg e) sen 66,05 m sen. Pr determinr l ltur de un poste nos hemos lejdo 7 m de su se y hemos medido el ángulo que form l visul l punto más lto on l horizontl, oteniendo un vlor de 0. uánto mide el poste? tg tg 0 5,7 m 0 7 m 3. Hll el áre de este udrilátero. Sugereni: Pártelo en dos triángulos. 16 m 3 m m 9 m sen ,13 m sen 10 1,67 m 3 m m 16 m El áre es l sum de 1 y : 1 1,0 m 17 m 11

12 Págin En un triángulo onoemos 6, 17 m y 13 m. lul l longitud del ldo. H 17 os 6 6,3 m H 17 sen 6 159, m H H 9,75 m H + H 6,3 m + 9,75 m 15,1 m 17 m 6 H 13 m. En un triángulo MNP onoemos M 3, N 3 y NP 7 m. lul MP. PH sen 3 PH 7 sen 3 3,05 m 7 PH PH 3,05 sen 3 MP 60,9 m MP sen 3 sen 3 M P 7 m 3 3 H N 3. En un triángulo onoemos 0 m, 33 m y 53. lul l longitud del ldo. H os 53 1,0 m 0 m? 53 H 33 m H sen 53 15,97 m H H 0,96 m H + H 6,35 m. Estmos en, medimos el ángulo jo el que se ve el edifiio ( ), nos lejmos 0 m y volvemos medir el ángulo (35 ). uál es l ltur del edifiio y qué distni nos enontrmos de él? Oserv l ilustrión: 35 0 m 1

13 UNIDD h tg h d tg d h tg 35 h (d + 0)tg 35 d tg 35 d tg (d + 0) tg 35 d 139,90 m tg tg 35 h d tg 15,97 m L ltur es 15,97 m. L primer distni es 139,90 m, y hor, después de lejrnos 0 m, estmos 179,90 m. Págin Repite l demostrión nterior en el so de que otuso. Ten en uent que: se sen (10 ) sen H h (10 ) H h sen h sen h sen sen (10 ) h sen sen sen sen sen. Demuestr detlldmente, sándote en l demostrión nterior, l siguiente relión: sen sen Lo demostrmos pr ángulo gudo. (Si fuese un ángulo otuso rzonrímos omo en el ejeriio nterior). Trzmos l ltur h desde el vértie. sí, los triángulos otenidos H y H son retángulos. 13

14 H h Por tnto, tenemos: h sen h sen sen h h sen sen sen sen sen Págin Resuelve el mismo prolem nterior ( m, 30 ) tomndo pr los siguientes vlores: 1,5 m, m, 3 m, m. Justifi gráfimente por qué se otienen, según los sos, ningun soluión, un soluión o dos soluiones. 1,5 m 1,5 0,5 sen 1, ) 3 sen sen sen sen 30 1,5 m 30 m 1,5 m 0 7 m Imposile, pues sen é [ 1, 1] siempre! No tiene soluión. on est medid, 1,5 m, el ldo nun podrí tor l ldo. 1

15 UNIDD m 0,5 5 m sen 1 90 sen sen sen sen 30 6 m m m 30 m Se otiene un úni soluión. 3 m 3 0,5 sen 0, 6 ) sen sen m 1 1 ' 37,1" 13 11',9" 105 m 3 m 3 m 30 m Ls dos soluiones son válids, pues en ningún so ourre que + > 10. m sen 0,5 sen 0,5 sen Un soluión válid. 150 m 30 m L soluión 150 no es válid, pues, en tl so, serí Imposile! 15

16 Págin 117. Resuelve los siguientes triángulos: ) 1 m; 16 m; 10 m ) m; 7 m; 0 ) m; 6 m; 5 m d) m; 3 m; 105 e) m; 5 y 60 f) 5 m; 35 ) + os os os os 0, ' 33" 1 mp 3 10 m 16 m x + os os os 0, ' 57,5" y 10 m 7 m ' 9,5" ) + os os ,9 97,06 17, m 7 sen sen sen 17, sen 0 z D 17 m 7 sen 0 sen 0,6 17, ',3" 16 5' 15,7" No válid (L soluión no es válid, pues + > 10 ). 10 ( + ) 1 5' 15,7" 16

17 UNIDD ) + os os os 0, ' 57,5" + os os os 0, ' 33" 10 ( + ) 3 37' 9,5" (NOT: ompárese on el prtdo ). Son triángulos semejntes). d) + os os ,1 5,59 m sen sen 5,59 sen 105 sen 105 sen 0,691 5,59 x ' 5,3" m16' 3,7" No válid 75 H(L soluión no es válid, pues + > 10 ). 10 ( + ) 31 16' 3,7" e) 10 ( + ) 75 sen sen sen 75 sen sen sen 75 sen 60 sen 5 sen 75,93 m sen 60 3,59 sen 75 17

18 Págin 1 EJERIIOS Y PROLEMS PROPUESTOS PR PRTIR Relión entre rzones trigonométris 1 lul ls demás rzones trigonométris del ángulo (0 < < 90 ) utilizndo ls reliones fundmentles: 3 3 ) sen ) os ) tg 3 d) sen e) os 0,7 f) tg 3 ) sen + os os 1 os 3 1 ( ) 1 1 os sen 3/ tg os 1/ 3 ) sen + 1 sen 1 1 ( ) 1 sen / tg 1 / 1 ) 1 + tg 1 3 ) ( os os os sen 1 d) os 1 ( ( 7 7 ) 3 ) os os os sen os 55 os / 3 55 tg 55/ 55 e) sen 1 (0,7) sen 0,16 sen 0,69 0,69 tg 0,96 0,

19 UNIDD 1 f) os 1 1 os os sen sen Siendo que el ángulo es otuso, omplet l siguiente tl: sen os tg 0,9 0,5 0,1 0, 0,75 sen os tg 0,9 0,6 0,99 0,6 0,5 0,96 0,39 0, 0,1 0, 0,7 0,,36 0,75,5 0,75 0,57 ) ) ) d) e) f) ) sen + os 1 0,9 + os 1 os 1 0,9 os 0,1536 os 0,39 7 otuso os < 0 tg sen,36 os (Se podrín lulr diretmente on l luldor sen 1 0,9, teniendo en uent que el ángulo está en el segundo udrnte). ) tg ,565 os 0,6 os 0, os os ( 0,75) ( 0,) 0,6 tg sen sen tg os os ) sen 1 os 1 0,01 0,956 sen 0,99 tg sen 0,99,5 os 0,1 d) sen 1 os 1 0,6 0,36 sen 0,6 tg sen 0,6 0,75 os 0, (NOT: es el mismo ángulo que el del prtdo )). e) os 1 sen 1 0,5 0,75 os 0,7 0,5 tg sen 0,57 os 0,7 19

20 f) tg os 0,059 os 0, os sen tg os ( ) ( 0,) 0,96 3 Hll ls restntes rzones trigonométris de : ) sen /5 < 70 ) os /3 tg < 0 ) tg 3 < 10 ) sen < 0 < 70 é 3. er udrnte os 1 sen os 5 tg sen /5 os 3/5 3 sen < 0 os < 0 tg > 0 ) os > 0 tg < 0 sen < 0 é. u drnte sen 1 os sen tg sen os ) tg < 0 < 10 sen > 0 os < 0 é. udrnte 1 tg os 1 os os sen os tg os ( 3) ( ) Expres on un ángulo del primer udrnte: ) sen 150 ) os 135 ) tg 10 d) os 5 e) sen 315 f ) tg 10 g) tg 30 h)os 00 i) sen 90 ) sen 150 sen 30 ) os 135 os 5 0

21 UNIDD ) sen 10 sen 30 tg 10 os 10 os 30 tg 30 d) os 55 sen 15 e) sen 315 sen 5 f ) sen 10 sen 60 tg 10 os 10 os 60 tg 60 ( sen 10 os 30 1 Tmién tg 10 os 10 sen 30 tg 30 ) g) tg 30 sen 30 os 30 sen 0 tg 0 os 0 h) os 00 os 0 i) sen 90 os 0 (Tmién sen 90 sen 70 ) 5 Si sen 0,35 y < 90, hll: ) sen (10 ) )sen ( + 90 ) ) sen (10 + ) d) sen (360 ) e) sen (90 ) f) sen (360 + ) ) sen (10 ) sen 0,35 ) sen ( + 90 ) os sen + os 1 os 1 0,35 0,775 ò os 0,9 sen ( + 90 ) os 0,9 ) sen (10 + ) sen 0,35 d) sen (360 ) sen 0,35 e) sen (90 ) os 0,9 (luldo en el prtdo )) f) sen (360 + ) sen 0,35 6 Si tg /3 y 0 < < 90, hll: ) sen ) os ) tg (90 ) d) sen (10 ) e) os (10 + ) f) tg (360 ) ) tg sen os sen tg os 1 os 1 tg + 1 os 1

22 3 os sen tg os 3 13

23 UNIDD ) luldo en el prtdo nterior: os ) tg (90 ) sen (90 ) os os (90 ) sen 3 d) sen (10 ) sen Hll on l luldor el ángulo : ) sen 0,75 < 70 ) os 0,37 > 10 ) tg 1,3 sen < 0 d) os 0,3 sen < e) os (10 + ) os 13 f) tg (360 ) sen (360 ) sen tg os (360 ) os 3 ) on l luldor 35' 5" é. udrnte sen < 0 omo dee ser é 3. er udrnte < 70 Luego ' 5" 35' 5" ) on l luldor: 111 ' 56,3" os < 0 > 10 é 3. er udrnte ' 56,3" 17' 3,7" ) tg 1,3 > 0 sen < 0 os < 0 é 3. er udrnte on l luldor: tg 1 1,3 5 ' 17,39" ' 17,39" 3 ' 17," 3

24 d) os 0,3 > 0 sen < 0 é. udrnte on l luldor: os 1 0,3 76 ' 10,5" 76 ' 10,5" 3 17' 9,6" Resoluión de triángulos retángulos Resuelve los siguientes triángulos retángulos ( 90 ) hllndo l medid de todos los elementos desonoidos: ) 5 m, 1 m. Hll,,. ) 3 m, 37. Hll,,. ) 7 m, 5. Hll,,. d) 5, km, 71. Hll,,. ) m 5 tg 0,16 37' 11, ',5" 1 m 5 m ) sen 71,5 m sen m 19 x y 3 m 3 ) os 13, m os tg 57,06 m tg 37 tg 7 tg 5 11, m 7

25 UNIDD 5 7 m 5

26 d) sen 5, sen 71 5, km 5, 5, km 71 os 5, 5, 9 Si queremos que un int trnsportdor de 5 metros eleve l rg hst un ltur de 15 metros, qué ángulo se deerá inlinr l int? 15 sen 0,6 36 5' 11,6" 5 5 m 15 m 10 Un esler de m está poyd en un pred formndo un ángulo de 50 on el suelo. Hll l ltur l que lleg y l distni que sepr su se de l pred. m 50 d h h sen 50 h 1,53 m d os 50 d 1,9 m 11 El ldo de un romo mide m y el ángulo menor es de 3. uánto miden ls digonles del romo? 50 1 m 3 m sen 19 y y sen 19,6 m d 5, m os 3 x x os 19 7,6 m D 15, m 6

27 UNIDD 1 lul l proyeión del segmento 15 m sore l ret r en los siguientes sos: ) 7 ) 50 r ' ' ) 15 d) 90 '' ) os '' 15 os 7,6 m ) '' 15 os 5 9,6 m ) '' 15 os 15 1,9 m d) '' 15 os 90 0 m 13 ) Hll l ltur orrespondiente l ldo en d uno de los siguientes triángulos: I II III m 17 m 5 m 3 3 m 15 m 1 m ) Hll el áre de d triángulo. ) I) sen 0 h h 7,9 m m h II) sen 3 h 13,5 m 5 h III) sen 3 h,1 m 1 7,9 ) I) 7,7 m 15 13,5 II) 99,3 m,1 III) 11,5 m 1 En el triángulo, D es l ltur reltiv l ldo. on los dtos de l figur, hll los ángulos del triángulo. 3 m m D, m En En ì D: sen 1 ' 37''; D 90 11' 3'' 3 ì D : tg 5 7' ''; D 6 3' 1'', Ángulos: 11 3' 35''; 1 ' 37''; 5 7' '' 7

28 15 Desde un punto P exterior un irunfereni de 10 m de rdio, se trzn ls tngentes dih irunfereni que formn estre sí un ángulo de 0. lul l distni de P d uno de los puntos de tngeni. 10 m O 0 P En OP 10 : tg 0 P P 7,7 m Distni de P d uno de los puntos de tngeni: 7,7 m Págin 13 Teorem de los senos 16 lul y en el triángulo en el que: 55, 0, 15 m m 10 ( ) ,33 m sen sen sen 55 sen 5 sen 15 9,6 m sen sen 0 sen 5 17 Hll el ángulo y el ldo en el triángulo en el que: 50, 3 m, 1 m. 3 1 sen sen sen 50 sen 1 sen 50 sen ' 6 '' (Tiene que ser < ) 10 ( + ) 93 9' 5'' 3 sen 93 9' 5'' sen sen sen 50 9,9 m

29 UNIDD 1 Resuelve los siguientes triángulos: ) m ) m 1 m 17 sen 35 ) 10 (35 + ) 103 ; 10 m sen sen sen 103 sen 17 sen 11,67 m sen sen sen 105 ) sen 35 5' 9''; 39 3' 51'' sen sen 30 sen 30 sen 39 3' 51'' 19,79 m sen sen Dos migos situdos en dos puntos, y, que distn 500 m, ven l torre ì ì de un iglesi,, jo los ángulos 0 y 55. Qué distni hy entre d uno de ellos y l iglesi? 10 ( ) sen 0 sen 5 3,6 m 500 sen 55 sen 5 11,1 m L distni de l iglesi es de 11,1 m, y l de l iglesi, 3,6 m. Teorem del oseno 0 lul en el triángulo, en el que:, 7, m, 15,3 m. 15,3 m 7, m + os 7, + 15,3 7, 15,3 os 0, m 1 Hll los ángulos del triángulo en el que 11 m, m, 35 m. 11 m m 35 m os os 15 3' 1'' os os 3 7' '' ( + ) 11 17' 51'' 9

30 Resuelve los siguientes triángulos: ) 3 m 17 m 0 ) 5 m 57 m 65 ) 3 m 1 m 3 m ) os 0 1,9 m ,9 3 1,9 os 9 56' '' 10 ( + ) 110 3' 5'' ) os 65 79,7 m ,7 5 79,7 os 0 1' 5'' 10 ( + ) 7 1' 55'' ) os os 10 ( + ) 133 0' 35'' 30 10' 9'' 17 ' 56'' 3 Desde l puert de mi s,, veo el ine,, que está 10 m, y el kiosko, K, que está 5 m, jo un ángulo K 0. Qué distni hy en- ì tre el ine y el kiosko? 10 m 0 5 m K os 0 77, m es l distni entre el ine y el kiosko. x,5 + x Resoluión de triángulos ulesquier tg 15 tg 55 Resuelve los siguientes triángulos: ) 100 m 7 63 ) 17 m ) 70 m 55 m 73 d) 1 m 00 m 10 e) 5 m 30 m 0 m f) 100 m 15 m 150 m g) 15 m 9 m 130 h) 6 m m 57 30

31 UNIDD ) 10 ( + ) 70 sen sen 77,3 m 100 sen 70 sen sen 7 sen sen 63 9, m sen 70 sen 63 sen 70 ) 10 ( + ) sen 70 16,5 m sen 75 sen 70 sen sen 35 sen 75 sen 35 10,09 m sen 75 ) os ,7 75,3 m , ,3 os os ,3 70 0,5 6 3' 9," 55 75,3 10 ( + ) 16' 10,6" d) os ,6 m + os os + os 1, ,6 00 0,969 1' 5,5" 10 ( + ) 37 5' 55,5" e) + os os , ' 9," os 0,665 30' 33" 10 ( + ) 9 51' 57,6" + f) os , ' 3,"

32 os , ' 6,7" ( + ) 5 ' 3,9" 3

33 UNIDD 15 g) 9 9 sen 130 sen 0,596 sen 130 sen ' 6," 15 3' 13," L soluión no es válid, pues + > ( + ) 3' 13," sen 7,5 m sen 130 sen sen 130 0,690 h) 6 6 sen 57 sen sen 57 sen 1 3 5' 35,7" 11 1',3" L soluión no es válid, pues + > ( + ) 1',3" sen 9,5 m sen 57 sen sen 57 PR RESOLVER 5 Un esttu de,5 m de lto está olod sore un pedestl. Desde un punto del suelo se ve el pedestl jo un ángulo de 15 y l esttu, jo un ángulo de 0. lul l ltur del pedestl. x tg 15 y y x tg 15,5 + x tg 55 y y,5 + x tg 55,5 tg 15 x tg 55,5 tg 15 + x tg 15 x 0,5 m (el pedestl) tg 55 tg 15,5 m 0 15 y x 33

34 6 Un vión vuel entre dos iuddes, y, que distn 0 km. Ls visules desde el vión y formn ángulos de 9 y 3 on l horizontl, respetivmente. qué ltur está el vión? V (vión) h 9 x 0 km 3 h tg 9 x x h tg 9 h tg 3 x 0 x 0 tg 3 h tg 3 h tg 9 0 tg 3 h h tg tg tg 3 tg 9 h tg 9 0 tg 3 tg 9 h 7, km tg 3 + tg 9 7 Hll el ldo del otógono insrito y del otógono irunsrito en un irunfereni de rdio 5 m m l 30' x 5 x sen 30' x 1,91 m 5 Ldo del otógono insrito: l 3, m 5 30' y tg 30' y,07 m 5 Ldo del otógono irunsrito: l',1 m 5 m y l' 3

35 UNIDD lul los ldos y los ángulos del triángulo. En el triángulo retángulo D, hll y D. En D, hll y D. Pr hllr, ses que En D: 50 3,6 m 3 7 m 50 3 m D os 50 D tg 50 D 3 tg 3 En D : sí, y tenemos: ( + ) 99 3' 1" 30 56' 59" D 7 3,6 7 sen 0,51 D os 7 7 m D + D 9 m,7 m D 7 os 6 9 En un irunfereni de rdio 6 m trzmos un uerd 3 m del entro. ì Hll el ángulo O. P El triángulo O es isóseles. O P 3 m 6 m O OP 3 m O 6 m ì OP 90 ì 3 1 ì os PO PO

36 ì ì O PO

37 UNIDD 30 Pr lolizr un emisor lndestin, dos reeptores, y, que distn entre sí 10 km, orientn sus ntens hi el punto donde está l emisor. Ests direiones formn on ángulos de 0 y 65. qué distni de y se enuentr l emisor? E E 10 ( + ) 75 plindo el teorem de los senos: sen 0 10 sen 65 sen km sen 0 6,65 km dist de. sen 75 sen sen 65 sen 75 9,3 km dist de En un entrenmiento de fútol se olo el lón en un punto situdo 5 m y m de d uno de los postes de l porterí, uyo nho es de 7 m. jo qué ángulo se ve l porterí desde ese punto? (porterí) 7 m 5 m m (lón) plindo el teorem del oseno: + os os ,

38 Págin 1 3 lul el áre y ls longitudes de los ldos y de l otr digonl: ì D ì 50. lul los ldos del triángulo D y su áre. Pr hllr l otr digonl, onsider el triángulo D m D Los dos triángulos en que l digonl divide l prlelogrmo son igules. Luego strá resolver uno de ellos pr lulr los ldos: 50 h 1 m 0 10 ( + ) 110 sen 50 1 sen 0 sen sen 50 1,7 m sen 110 sen 110 6,6 m sí: D 6,6 m D 1,7 m Pr lulr el áre del triángulo : h sen 50 h sen ,6 sen 50 5,5 m sen 0 1 sen h 1 sen 50 Áre El áre del prlelogrmo será: Áre D Áre 5,5 91 m Pr lulr l otr digonl, onsideremos el triángulo D: plindo el teorem del oseno: D 6,6 + 1,7 6,6 1,7 os , D 13,9 m 3

39 UNIDD ,6 m 70 1,7 m D 39

40 33 Dos ros prten de un puerto on rumos distintos que formn un ángulo de 17. El primero sle ls 10 h de l mñn on un veloidd de 17 nudos, y el segundo sle ls 11 h 30 min, on un veloidd de 6 nudos. Si el lne de sus equipos de rdio es de 150 km, podrán ponerse en ontto ls 3 de l trde? (Nudo mill / hor; mill 1 50 m). P 17 L distni que reorre d uno en ese tiempo es: ro P m/h 5 h m ro P m/h 3,5 h m Neesrimente, > P y > P, luego: > m omo el lne de sus equipos de rdio es m, no podrán ponerse en ontto. (NOT: Puede lulrse on el teorem del oseno 91 3,7 m). 3 En un retángulo D de ldos m y 1 m, se trz desde un perpendiulr l digonl, y desde D, otr perpendiulr l mism digonl. Sen M y N los puntos donde ess perpendiulres ortn l digonl. Hll l longitud del segmento MN. D N 1 m M m En el triángulo, hll. En el triángulo M, hll M. Ten en uent que: MN M Los triángulos ND y M son igules, luego N M omo MN N M, entones: MN M Por tnto, st on lulr en el triángulo y M en el triángulo M. 0

41 UNIDD En : (por el teorem de Pitágors) lulmos En M : (en ): M os 1, m 1 tg 1,5 56 1' 35," Por último: MN M 1,, 5,6 m M os (56 1' 35,"), m 35 Hll l ltur del árol QR de pie inesile y más jo que el punto de oservión, on los dtos de l figur. Q 30 0 R P 50 m P' Llmemos x e y ls medids de l ltur de ls dos prtes en que qued dividid l torre según l figur dd; y llmemos z l distni de P l torre. Q x tg x z tg z x y R z 30 0 P 50 m P' x tg 30 x (z + 50) tg 30 z + 50 z tg (z + 50) tg tg 30 z tg z tg tg 30 z 5,13 m tg tg 30 Sustituyendo en x z tg 5,13 tg 60,1 m x y Pr lulr y: tg 0 y z tg 0 5,13 tg 0 19,7 m z Luego: QR x + y 79, m mide l ltur de l torre. 1

42 36 lul l ltur de QR, uyo pie es inesile y más lto que el punto donde se enuentr el oservdor, on los dtos de l figur. Q R 1 P 3 P' 50 m Llmemos x l distni del punto más lto l líne horizontl del oservdor; y, l distni de l se de l torre l mism líne; y z, l distni R'P, omo se indi en l figur. x tg (1 + ) tg 0 x z tg 0 z x tg 3 x (z + 50) tg 3 z tg 3 z tg 0 (z + 50) tg 3 z 15, tg 0 tg 3 Sustituyendo en x z tg 0 15, tg 0 1,37 m Pr lulr y: y tg 1 y z tg 1 z x Q 15, tg 1 7, m Por tnto: QR x y 7,97 m mide l ltur de l torre. y R 1 R' z P 3 50 m P' UESTIONES TEÓRIS 37 Expli si ls siguientes igulddes referids l triángulo son verdders o flss: 1) ) os sen 3) ) sen tg 5) tg tg 1 6) tg 1 m 7) sen os 0 ) os 9) 10) 1 sen 7 m tg

43 UNIDD 11) sen sen os 1 1) 1 os 3

44 1) Verdder, pues sen sen ) Verdder, pues os os 3) Fls, pues tg 0 m h ) Fls, 3 pues m sen sen 5) Verdder, pues tg tg 6) Verdder, pues tg tg m 7) Verdder, pues sen os ) Verdder, pues os h 0 50 tg x sen 9) Fls, pues tg 10) Verdder, pues sen + os 1 omo os 1 sen os 1 sen 1 (porque? ) sen 1) Verdder, pues os 11) Fls, pues sen os 3 Prue que en un triángulo ulquier se verifi: R sen sen sen R es el rdio de l irunfereni irunsrit. Trz el diámetro desde uno de los vérties del triángulo. pli el teorem de los senos en los triángulos y '. ' O plimos el teorem de los senos en los triángulos y ': En sen sen sen

45 UNIDD En ' sen ' ' sen ' m 3 5

46 Suede que: ' (ángulos insritos en un irunfereni que rn el mismo ro) ' R ' 90 (medid de ángulos insritos en un irunfereni) R L iguldd qued: sen sen 90 sen Por último, sustituyendo en l primer expresión, se otiene el resultdo: R sen sen sen 39 Prue que solo existe un triángulo on estos dtos: 3 m, 1,5 m, 60 Existe lgún triángulo on estos dtos?: 135, 3 m, 3 m + os 1,5 ( ) + os , ,75 0 1,5 m 60 3 m L euión de segundo grdo solo tiene un ríz. Solo hy un soluión. (NOT: Tmién se pueden estudir ls dos soluiones que slen pr on el teorem del seno y ver que un de ells no es válid, pues quedrí + > 10 ). Podemos resolverlo on el teorem del oseno, omo ntes, o on el teorem del seno. Resolvemos este prtdo on el segundo método meniondo: 3 3 sen sen sen sen sen 135 sen 3 6

47 UNIDD sen Pero: > 10 Imposile! Luego l soluión no es válid y, por tnto, onluimos que no hy ningún triángulo on esos dtos. 7

48 f) 10 ( + ) sen sen sen 110 sen 35 omo 3,05 m 5 sen 35 sen 110 3,05 m 5. Ls ses de un trpeio miden 17 m y 10 m, y uno de sus ldos, 7 m. El ángulo que formn ls rets sore ls que se enuentrn los ldos no prlelos es de 3. lul lo que mide el otro ldo y el áre del trpeio. Los triángulos P y DP son semejntes, luego: x 10 x x 10 (x + 7) x plindo el teorem del oseno en el triángulo P tenemos: x + y xy os y 10y os 3 0 y 16,96y y 0 No válido y 16,96 m De nuevo, por semejnz de triángulos, tenemos: P D DP 10 (z + 16,96) 17 16,96 16,96 z + 16,96 10z 11,7 z 11,7 m mide el otro ldo, D, del trpeio. omo PD es un triángulo isóseles donde sí: h z D P 17 m, entones: D 3 sen 3 ò h z sen 3 11,7 sen 3 6, Áre D h 6,91,93 m

49 UNIDD 6. Un ro pide soorro y se reien sus señles en dos estiones de rdio, y, que distn entre sí 50 km. Desde ls estiones se miden los siguientes ángulos: 6 y 53. qué distni de d estión se enuentr ì ì el ro? km 53 sen 50 sen 6 36, km sen sen sen sen 1 sen sen 50 sen 53 0, km sen 1 sen sen 7. Pr hllr l ltur de un gloo, relizmos ls mediiones indids en l figur. uánto dist el gloo del punto? uánto del punto? qué ltur está el gloo? G x H m ì G sen 63 sen 63 sen 5 sen 5 to. 0 0 sen 7 6,9 m dist el gloo del punto. sen 7 sen 5 sen 5 9

50 Págin 15 PR PROFUNDIZR 0 Dos vís de tren de 1, m de nho se ruzn formndo un romo. Si un ángulo de orte es de 0, uánto vldrá el ldo del romo? 1, 1, sen 0 l,1 m l sen 0 1, m 0 l 0 1 Pr hllr l distni entre dos puntos inesiles y, fijmos dos puntos y D tles que D 300 m, y medimos los siguientes ángulos: ì ì D 5 D 0 lul. ì D ì 6 3 D m 6 Si onoiésemos y, podrímos hllr. lulemos, pues, y : on el teorem del oseno en En el triángulo D: Por el teorem del seno: 300 sen 69 D 300 sen 65 sen 65 sen 69 91, m m En el triángulo D: Por el teorem del seno: 300 sen 6 sen 0 D m 300 sen 0 1,0 m sen 6 50

51 UNIDD x x sen 75 x 5, sen 75,3 m es l ltur del gloo. 5, 51

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUIÓN DE TRIÁNGULOS Págin 0 PR EMPEZR, REFLEXION Y RESUELVE Prolem Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr llr l ltur de un pirámide de Egipto: omprr

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

4. Trigonometría II. c) c 2 b 2 a 2 2ba cos C c 11,17 cm a A 61,84. B 38,11 se n B sen C d) A B C 180 A 70 a b 5,32. l 40 sen.

4. Trigonometría II. c) c 2 b 2 a 2 2ba cos C c 11,17 cm a A 61,84. B 38,11 se n B sen C d) A B C 180 A 70 a b 5,32. l 40 sen. 9 ) os 11,17 m se n 61,84 38,11 se n d) 180 70 se n 5,3 se n 10,48 lul un ulquier de ls lturs de los triángulos resueltos en el ejeriio nterior y utilízl después pr lulr su áre. Pr resolver este ejeriio

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 03 - Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

cos sa, a 10 cm. Calcula el valor de los ángulos agudos, y la c) Factorizando y expresando cos 2 1 sen 2,se obtiene: medida de los catetos.

cos sa, a 10 cm. Calcula el valor de los ángulos agudos, y la c) Factorizando y expresando cos 2 1 sen 2,se obtiene: medida de los catetos. 0 Demuestr, de form rzond, ls siguientes igulddes: lul el ángulo de elevión del Sol sore el orizonte, se ) ( sen ) ose o se siendo que un esttu proyet un somr que mide otg os tres vees su ltur. ) ( sen

Más detalles

Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente.

Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente. 89566 _ 009-06.qxd /6/08 :55 Págin Trigonometrí INTRODUCCIÓN En est unidd se pretende que los lumnos dquiern los onoimientos ásios en trigonometrí, que serán neesrios en ursos posteriores, sore todo pr

Más detalles

Triángulos y generalidades

Triángulos y generalidades Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro

Más detalles

C? a = 5 m. Área? B? c = 4 m. b 2 = a 2 c 2. b = 3 m c = 4 m. c cos B = a. 4 cos B = B = 36 52' 12'' 5 C C = 90 B. 1 Área = b c 2. a = 5,41 cm. Área?

C? a = 5 m. Área? B? c = 4 m. b 2 = a 2 c 2. b = 3 m c = 4 m. c cos B = a. 4 cos B = B = 36 52' 12'' 5 C C = 90 B. 1 Área = b c 2. a = 5,41 cm. Área? 4 Resoluión de triángulos. Resoluión de triángulos retángulos Piens y lul lul mentlmente l inógnit que se pide en los siguientes triángulos retángulos: ) = 6 m, = 8 m; ll l ipotenus ) = 35 ; ll el otro

Más detalles

Resolución de triángulos rectángulos

Resolución de triángulos rectángulos Resoluión de triángulos retángulos Ejeriio nº 1.- Uno de los tetos de un triángulo retángulo mide 4,8 m y el ángulo opuesto este teto mide 4. Hll l medid del resto de los ldos y de los ángulos del triángulo.

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO Unidd uno Geometrí y Trigonometrí 4. TRIÁNGULOS 4.1 Definiión y notión de triángulos El triángulo es un polígono de tres ldos. Los puntos donde se ortn se llmn vérties. Los elementos de un triángulo son:

Más detalles

UNIDAD 7 Trigonometría

UNIDAD 7 Trigonometría UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier

Más detalles

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS Geometrí y Trigonometrí Resoluión de triángulos oliuángulos 9. RESOLUIÓN DE TRIÁNGULOS OLIUÁNGULOS Un triángulo es oliuángulo undo no present un ángulo reto, se denomin de dos forms: triángulo utángulo

Más detalles

UNIDAD Nº 1: LAS RELACIONES TRIGONOMETRICAS Y SUS APLICACIONES, GUIA 2 DOCENTE: LIC ROSMIRO FUENTES ROCHA

UNIDAD Nº 1: LAS RELACIONES TRIGONOMETRICAS Y SUS APLICACIONES, GUIA 2 DOCENTE: LIC ROSMIRO FUENTES ROCHA REPUBLICA DE COLOMBIA SECRETARIA DE EDUCACION DISTRITAL DE SANTA MARTA INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Resoluión Nº 88 de noviemre.8/ Emnd de l Seretri De Eduión Distritl DANE Nº7-99

Más detalles

UNIDAD 7 Trigonometría

UNIDAD 7 Trigonometría UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas Deprtmento e Mtemátis PROBLEMAS DE TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS. 1º Un señl e rreter ini que l peniente e ese trmo es el 1%, lo que quiere eir que por metros que reorre en horizontl siene 1

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS

LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS Prlels y Perpendiulres Lámin nº 1 Prlels y Perpendiulres Lámin nº 1 Trzr un perpendiulr en el extremo de un segmento de 60 mm. de longitud. Trzr un perpendiulr

Más detalles

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse.

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse. X. LA ELIPSE 10.1. DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO Definiión Se llm elipse l lugr geométrio de un punto P que se mueve en el plno, de tl modo que l sum de ls distnis del punto P dos puntos fijos

Más detalles

TEOREMA DE PITÁGORAS

TEOREMA DE PITÁGORAS TEOREMA DE PITÁGORAS 1.- El ldo de un udrdo mide 10 m. Cuánto mide su digonl? (Aproxim el resultdo hst ls déims)..- Ls digonles de un romo miden 15 m y 17 m, respetivmente. Cuánto miden sus ldos? (Aproxim

Más detalles

PROBLEMAS DE OLIMPIADAS MATEMÁTICAS SOBRE GEOMETRÍA El triángulo

PROBLEMAS DE OLIMPIADAS MATEMÁTICAS SOBRE GEOMETRÍA El triángulo . PROLEMS DE OLIMPIDS MTEMÁTIS SORE GEOMETRÍ El triángulo ELISETH GONZÁLEZ FUENTES Máster de Mtemátis Universidd de Grnd. 014 Prolems sore triángulos Trjo Fin de Máster presentdo en el Máster Interuniversitrio

Más detalles

Triángulos congruentes

Triángulos congruentes Leión#4 Triángulos ongruentes y triángulos similres Ojetivos Aplir ls propieddes de triángulos ongruentes Aplir ls propieddes de ongrueni Aplir ls propieddes de triángulos similres Aplir el teorem de Pitágors

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

Razones trigonométricas de un ángulo agudo. Relaciones fundamentales

Razones trigonométricas de un ángulo agudo. Relaciones fundamentales B C Mtemátis I - º Billerto Rzones trigonométris de un ángulo gudo. Reliones fundmentles En todo triángulo retángulo BC ls rzones trigonométris (seno, oseno y tngente) de uno de sus ángulos gudos, en este

Más detalles

Problema 1. En cuál de los dos diseños el ángulo de inclinación de la rampa con el suelo es mayor?

Problema 1. En cuál de los dos diseños el ángulo de inclinación de la rampa con el suelo es mayor? ONTENIDOS Ls reliones trigonométris en un triángulo retángulo Seno y oseno de un ángulo Tngente de un ángulo Relión entre l tngente y l pendiente de un ret Teorems del seno y del oseno Existen vris situiones

Más detalles

Segundo Periodo ELEMENTOS DE TRIGONOMETRIA (2)

Segundo Periodo ELEMENTOS DE TRIGONOMETRIA (2) Segundo Periodo ELEMENTOS DE TRIGONOMETRIA (2) Derehos ásios de prendizje: Comprende y utiliz l ley del seno y el oseno pr resolver prolems de mtemátis y otrs disiplins que involuren triángulos no retángulos.

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis

Más detalles

11La demostración La demostración en matemáticas (geometría)

11La demostración La demostración en matemáticas (geometría) L demostrión en mtemátis (geometrí) ág. 1 Tl vez los lumnos y lumns hyn demostrdo, en lgun osión, lgun fórmul o lgun propiedd mtemáti, o hyn ontempldo su demostrión. omo semos, pr ellos, el proeso no es

Más detalles

Fracciones equivalentes

Fracciones equivalentes 6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,

Más detalles

Semejanza. Teoremas de Thales y Pitágoras

Semejanza. Teoremas de Thales y Pitágoras 11 Semejnz. Teorems de Thles y Pitágors 1. Figurs semejntes P I E N S Y L U L Si l Torre del Oro mide proximdmente 0 m de lto, uánto mide proximdmente de lto l Girld de Sevill? Si l Torre de Oro mide 1

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE ESPECIALISTA EN LA ENSEÑANZA DE LAS MATEMÁTICAS U de A INTRODUCCIÓN En el desrrollo de l geometrí

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

Profr. Efraín Soto Apolinar. Ley de senos

Profr. Efraín Soto Apolinar. Ley de senos Profr. Efrín Soto Apolinr. Ley de senos Hst hor hemos resuelto triángulos retángulos, pero tmién es omún enontrr prolems on triángulos que no son retángulos, omo utángulos u otusángulos. Pr resolver estos

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMS DE MTEMÁTICS (Oposiiones de Seundri) TEM 37 L SEMEJNZ EN EL PLNO. CONSECUENCIS. TEOREM DE THLES. RZONES TRIGONOMÉTRICS. 1. Introduión.. Homoteis: Definiión y propieddes. 3. L semejnz en el plno. 3.1.

Más detalles

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo

Más detalles

BLOQUE IV. Geometría. 11. Semejanza. Teorema de Thales y Pitágoras 12. Cuerpos en el espacio 13. Áreas y volúmenes

BLOQUE IV. Geometría. 11. Semejanza. Teorema de Thales y Pitágoras 12. Cuerpos en el espacio 13. Áreas y volúmenes LOQUE IV Geometrí 11. Semejnz. Teorem de Thles y Pitágors 1. uerpos en el espio 13. Áres y volúmenes 11 Semejnz. Teorems de Thles y Pitágors 1. Figurs semejntes P I E N S Y L U L Si l Torre del Oro mide

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGIN 13 EJERCICIOS Operciones con ángulos y tiempos 1 Efectú ls siguientes operciones: ) 7 31' 15" 43 4' 57" b) 163 15' 43" 96 37' 51" c) (37 4' 19") 4 d) (143 11' 56") : 11 ) 7 31' 15" 43 4' 57"

Más detalles

Razones trigonométricas de un ángulo agudo. Denominación Definición Propiedad básica. cos α = c a. tg α = tan α = b c. Propiedad fundamental

Razones trigonométricas de un ángulo agudo. Denominación Definición Propiedad básica. cos α = c a. tg α = tan α = b c. Propiedad fundamental Trigonometrí 1 Trigonometrí Rzones trigonométris de un ángulo gudo Denominión Definiión Propiedd ási Seno sen = 0 sen 1 Coseno Tngente os = tg = tn = Propiedd fundmentl sen + os = 1 Rzones trigonométris

Más detalles

1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2)

1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2) Mr l opión que ontiene el vetor fijo definido por los puntos A(3,4) y B(-2,-5). AA AB = (-1,1) AA AB = (5,9) AB = (-5,-9) AB = (1,-1) Mr tods ls opiones que definen el vetor fijo AB = (-2,1). AA A(-5,-3)

Más detalles

Criterios de igualdad entre triángulos.

Criterios de igualdad entre triángulos. TRIÁNGULO Triángulo. Superfiie pln liitd por tres línes (ldos). Polígono ás pequeño. lsifiión de los triángulos. Ldos Ángulos UTÁNGULO Tiene los tres ángulos gudos. RTÁNGULO Tiene un ángulo reto y dos

Más detalles

Geometría y trigonometría: Educación Matemática Segundo Nivel o Ciclo de Educación Media para Educación para Personas Jóvenes y Adultas

Geometría y trigonometría: Educación Matemática Segundo Nivel o Ciclo de Educación Media para Educación para Personas Jóvenes y Adultas Guí de prendizje Nº 4 Geometrí y trigonometrí: Herrmients pr resolver prolems Eduión Mtemáti Segundo Nivel o ilo de Eduión Medi pr Eduión pr Persons Jóvenes y dults DE_6016.indd 1 25-01-13 17:44 DE_6016.indd

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Sinopsis. Caracterización de ángulos en su entorno. Se recomienda recurso interactivo. Adobe Edge Animator. Para dibujos: Adobe Illustrator Corel Draw

Sinopsis. Caracterización de ángulos en su entorno. Se recomienda recurso interactivo. Adobe Edge Animator. Para dibujos: Adobe Illustrator Corel Draw AN_M_G08_U04_L02_03_04 Se reomiend reurso intertivo Sinopsis Un vtr similr Ninj expli el tem ángulos lternos internos y externos, olterles, orrespondientes y opuestos l vértie. Adoe Edge Animtor Pr diujos:

Más detalles

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS u r s o : Mtemátic Mteril N 13 GUÍ TÓRIO PRÁTI Nº 11 UNI: GOMTRÍ POLÍGONOS URILÁTROS POLÍGONOS FINIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus

Más detalles

Resolución de Triángulos Rectángulos

Resolución de Triángulos Rectángulos PÍTULO 5 Resoluión de Triángulos Retángulos En l ntigüedd l rquitetur (pirámides, templos pr los dioses,...) exigió un lto grdo de preisión. Pr medir lturs se sn en l longitud de l somr el ángulo de elevión

Más detalles

Lección 3.4. Leyes del Seno y Coseno. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 17

Lección 3.4. Leyes del Seno y Coseno. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 17 Leión 3.4 Leyes del Seno y Coseno /0/04 Prof. José G. Rodríguez Ahumd de 7 Atividdes 3.4 Refereni Texto: Seíón 8. Ley de los Senos; Problems impres -5 págins 577 y 578 (53 y 533); Seión 8. Ley de los Cosenos;

Más detalles

Figura 1. Teoría y prática de vectores

Figura 1. Teoría y prática de vectores UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio UDB Físi Cátedr FÍSICA I VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo

Más detalles

TEMA 1 EL NÚMERO REAL

TEMA 1 EL NÚMERO REAL Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8

Más detalles

Teorema de Pitágoras

Teorema de Pitágoras Profr. Efrín Soto Apolinr. Teorem de Pitágors En geometrí, uno de los teorems más importntes es el teorem de Pitágors porque se pli muy freuentemente pr resolver prolems. En todo triángulo retángulo que

Más detalles

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010 UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio --- UDB Físi Cátedr VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo de su

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

Resolución de Triángulos Rectángulos

Resolución de Triángulos Rectángulos PÍTULO 5 Resoluión de Triángulos Retángulos En l ntigüedd l rquitetur (pirámides, templos pr los dioses,...) eigió un lto grdo de preisión. Pr medir lturs se sn en l longitud de l somr el ángulo de elevión

Más detalles

Colegio Diocesano Asunción de Nuestra Señora Ávila Tema 7

Colegio Diocesano Asunción de Nuestra Señora Ávila Tema 7 Colegio Dioesno Asunión de Nuestr Señor Ávil Tem 7 Pr onoer l sidurí de Tles de Mileto (646 546.C.), se uent que los serdotes de Egipto lo sometieron un dur prue: verigur l ltur de l pirámide de Kéops.

Más detalles

GEOMETRÍA DEL TRIÁNGULO

GEOMETRÍA DEL TRIÁNGULO GEOMETRÍA DEL TRIÁNGULO Definiión de triángulo Se llm triángulo un onjunto { ABC,, } de tres puntos no linedos del plno. Los puntos A, B y C reien el nomre de vérties del triángulo. Los segmentos (o en

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

Escaleno: Obtusángulo: un ángulo obtuso TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS

Escaleno: Obtusángulo: un ángulo obtuso TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS TRIÁNGULO: Superfiie pln limitd por tres segmentos o ldos que se ortn dos dos en tres vérties. NOMNLTUR: Los vérties se nombrn on letrs minúsuls y los ldos on letrs myúsuls emplendo l mism letr que el

Más detalles

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo

Más detalles

Ejercicios de optimización

Ejercicios de optimización Ejercicios de optimizción 1. Entre todos los triángulos isósceles de perímetro 0, cuál es el de áre máxim? Función mximizr: A yh Relcionr vribles: Estudimos l función: h h y x h x y x y 0 x 0y 0 y 0 0y

Más detalles

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución. Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se

Más detalles

10.- Teoremas de Adición.

10.- Teoremas de Adición. Trigonometrí 10.- Teorems de Adición. Rzones trigonométrics de los ángulos A + B y A B. Hy que tener cuiddo de no confundir l rzón trigonométric de l sum de dos ángulos, con l sum de dos rzones trigonométrics.

Más detalles

MATEMÁTICAS BÁSICAS ELIPSE. B 2B 1 del eje mayor es el eje menor. Cada extremo del eje mayor V 1 y V 2 se llama vértice. El punto DEFINICIÓN DE ELIPSE

MATEMÁTICAS BÁSICAS ELIPSE. B 2B 1 del eje mayor es el eje menor. Cada extremo del eje mayor V 1 y V 2 se llama vértice. El punto DEFINICIÓN DE ELIPSE Fultd de ontdurí dministrión. UN lipse utor: r. José nuel Beerr spinos TÁTIS BÁSIS LIPS FINIIÓN LIPS Un elipse es el lugr geométrio de todos los puntos P del plno, tles que l sum de sus distnis dos puntos

Más detalles

1. Conceptos previos. Traslación gráficas en los ejes de coordenadas

1. Conceptos previos. Traslación gráficas en los ejes de coordenadas Tem 8. Cónis. Coneptos previos. Trslión gráfis en los ejes de oordends.... L irunfereni... 3.. Definiión euión de l irunfereni... 3.. Euión de l rets tngentes normles l irunfereni.... 6.3 Posiiones reltivs

Más detalles

Qué tipo de triángulo es? Prof. Enrique Díaz González

Qué tipo de triángulo es? Prof. Enrique Díaz González Universidd Intererin de Puerto Rio Reinto de Pone 1 Revist 360 / N o. 6/ 011 Qué tipo de triángulo es? Prof. Enrique Díz González En lguns situiones de tipo prátio, se neesit onoer si un deterindo triángulo

Más detalles

GRAMATICAS REGULARES - EXPRESIONES REGULARES

GRAMATICAS REGULARES - EXPRESIONES REGULARES CIENCIAS DE LA COMPUTACION I 29 GRAMATICAS REGULARES - EXPRESIONES REGULARES Grmátis Ls grmátis formles definen un lenguje desriiendo ómo se pueden generr ls dens del lenguje. Un grmáti forml es un udrupl

Más detalles

7.1 Ecuación en forma común o canónica de la hipérbola. En la gráfica dada a continuación (Fig. 1) es posible encontrar los elementos siguientes:

7.1 Ecuación en forma común o canónica de la hipérbola. En la gráfica dada a continuación (Fig. 1) es posible encontrar los elementos siguientes: UNIDAD VII. LA HIPÉRBOLA. DEFINICIÓN: L Hipérol es el onjunto de puntos en el plno u difereni de sus distnis dos puntos fijos en el mismo plno, llmdos foos, es onstnte e igul. 7.1 Euión en form omún o

Más detalles

1.6. BREVE REPASO DE LOGARITMOS.

1.6. BREVE REPASO DE LOGARITMOS. .. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

1.6 Perímetros y áreas

1.6 Perímetros y áreas 3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente

Más detalles

SEMEJANZA DE TRIÁNGULOS

SEMEJANZA DE TRIÁNGULOS MISIÓN 010-I GEOMETRÍ SEMEJNZ E TRIÁNGULOS 1. EFINIIÓN os triángulos se llmn semejntes uno tienen sus ángulos respetivmente ongruentes y los los homólogos proporionles. Los los homólogos son los opuestos

Más detalles

TRIGONOMETRÍA CONTENIDO TRIGONOMETRÍA

TRIGONOMETRÍA CONTENIDO TRIGONOMETRÍA CONTENIDO TRIGONOMETRÍA Tem. Pág. Coneptos y definiiones. Ángulos. Grdos. Aros. Rdines 4 Polígonos y irunfereni. 5 4 Sistems oordendos. Retngulres. Polres. 6 5 Triángulos. Definiión. Clsifiión. 7 6 Círulo

Más detalles

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales.

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales. LEY DE SENOS Ya hemos visto omo resolver triángulos retángulos ahora veremos todas las ténias para resolver triángulos generales a γ α Este es un triángulo el ángulo α se esrie en el vértie de, el ángulo

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9

( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9 1 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 < x + 4 c) x + 51 > 15x + 9 x < x > -1 c) x < 4 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 > x + 4 c) 5x + 10 < 1x - 4 x > x < -

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones. Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.

Más detalles

Resuelve. Unidad 4. Resolución de triángulos. BACHILLERATO Matemáticas I. Localización de una emisora clandestina. Página 105

Resuelve. Unidad 4. Resolución de triángulos. BACHILLERATO Matemáticas I. Localización de una emisora clandestina. Página 105 Uidd 4. Resoluió de triágulos HILLERTO Mtemátis I Resuelve Pági 10 Lolizió de u emisor ldesti Vmos plir l téi de l trigulió pr resolver el siguiete prolem: U emisor de rdio ldesti E se sitoiz desde dos

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro

UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro CARRERA: Ingenierí en Sistems de Computión PLAN DE ESTUDIOS: 00 ASIGNATURA: AÑO ACADÉMICO: DOCENTE: MATEMATICA BASICA I Año Ing. Enmnuel de Jesús Fonse Alfro UNIDAD I: ALGEBRA Al finlir est unidd el estudinte

Más detalles

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS u r s o : Mtemátic Mteril N 13 UÍ TÓRIO PRÁTI Nº 11 UNI: OMTRÍ POLÍONOS URILÁTROS POLÍONOS INIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus puntos

Más detalles

Son Co Razones Seno y Coseno Tangente y Cotangente Secante y Cosecante RAZONES TRIGONOMETRICAS DE UN ÁNGULO AGUDO. 3. Triángulos Notables

Son Co Razones Seno y Coseno Tangente y Cotangente Secante y Cosecante RAZONES TRIGONOMETRICAS DE UN ÁNGULO AGUDO. 3. Triángulos Notables Elusivo Universidd grri Elusivo Universidd grri on o zones eno oseno Tngente otngente ente osente ZONE TIGONOMETI DE UN ÁNGUO GUDO opuesto en hipotenus s hipotenus opuesto dente os hipotenus e hipotenus

Más detalles

UNIDAD 12.- Productos vectorial y mixto. Aplicaciones. (tema 7 del libro)

UNIDAD 12.- Productos vectorial y mixto. Aplicaciones. (tema 7 del libro) UNIDAD.- Produto etoril mixto. Apliione. (tem 7 del liro). PRODUCTO VECTORIAL DE DOS VECTORES LIBRES Definiión: El produto etoril de do etore lire - Si 0 ó 0 ó on proporionle, entone - En o ontrrio, etore

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola Moisés Villen Muñoz Cónis. Cirunfereni. Prábol. Elipse. Hiperbol Objetivos. Se persigue que el estudinte: Identifique, grfique determine los elementos de un óni onoiendo su euión generl. Ddo elementos

Más detalles

Los polígonos y la circunferencia

Los polígonos y la circunferencia l: ldo 12 Los polígonos y l circunferenci 1. Polígonos lcul cuánto mide el ángulo centrl mrcdo en los siguientes polígonos: P I E N S Y L U L R l: ldo R R? R? R R? R R? R E l: ldo l: ldo F E 360 : 3 =

Más detalles

Tema 6: Semejanza en el Plano.

Tema 6: Semejanza en el Plano. Tema 6: Semejanza en el Plano. 6.1 Semejanza de Polígonos. Definiión 6..1.- Cuatro segmentos a, b, y d son proporionales si se umple la siguiente igualdad: a =. A ese oiente omún se le llama razón de proporionalidad.

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2? ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni

Más detalles

UNIDAD 2 Geometría 2.2 Triángulos 10

UNIDAD 2 Geometría 2.2 Triángulos 10 UNI Geometrí. Triánguos 10. Triánguos OJETIVOS ur e áre e perímetro de triánguos. Otener os dos ánguos de triánguos utiizndo s reiones entre otros ánguos en figurs geométris. ur os dos de un triánguo usndo

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles