PRÁCTICAS Nº 10 Y 11

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRÁCTICAS Nº 10 Y 11"

Transcripción

1 PRÁCTICA Nº 10 Y 11 CONTRATE DE HIPOTEI E INTERVALO DE CONFIANZA ETADÍTICA E INTRODUCCIÓN A LA ECONOMETRÍA º LADE CURO Profesorado: Prof. Dra. Mª Dolores Gozález Galá Prof. M ª Mar Roero Mirada Prof. Mª Teresa Álvarez Bravo Prof. Atoio Herádez Moreo Prof. Miguel Ágel Rivas Carrasco

2 Para el desarrollo de esta práctica seguireos la ayuda del prograa P y utilizareos coo ejeplos los datos de los ejercicios 5.1 y 5.18 del libro de Casas áchez, J.M. (1998):Probleas de estadística. Descriptiva, probabilidad e iferecia, Edit. Piráide. 1. PRUEBA DE HIPÓTEI E INTERVALO DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL. Aalizar/ Coparar Medias/ Prueba T para ua uestra El procediieto Prueba T para ua uestra cotrasta si la edia de ua sola variable difiere de ua costate especificada. Nos perite realizar dicho cotraste así coo obteer u itervalo de cofiaza para la diferecia proedio. Ejercicio 5.1: Los iveles de audiecia (e iles de persoas) de u prograa de televisió, edidos e 10 eisioes elegidas aleatoriaete, ha sido los siguietes: 68, 553, 555, 666, 657, 649, 5, 568, 700, 55. upoiedo que los iveles de audiecia sigue ua distribució oral, e podría afirar, co u 95% de cofiaza, que la audiecia edia del prograa es de espectadores por prograa? Tal coo se ha estudiado e teoría, el cotraste sobre la edia (µ) de ua població oral co variaza descoocida se basa e la distribució t de tudet tal coo se idica a cotiuació:

3 abeos tabié que el itervalo de cofiaza al 100(1-α)% para la edia (µ) de ua població oral viee dado por la epresió: t ; t 1, α / 1, α / Procediieto e P: Creaos uestro fichero titulado Ejercicio Audiecia Prograa Televisió que cotiee los datos de los iveles de audiecia, e ua variable que llaareos Audiecia. Tras esto haceos:

4 Pichado sobre el botó Opcioes, se os despliega la siguiete vetaa:

5 Resultado: Estadísticos para ua uestra Error típ. de la N Media Desviació típ. edia Niveles de audiecia (e iles de persoas) de u prograa de televisió ,40 66,076 0,895 Dode el error típico de la edia es = Prueba para ua uestra Valor de prueba = % Itervalo de cofiaza para la Diferecia de diferecia t gl ig. (bilateral) edias Iferior uperior Niveles de audiecia (e iles de persoas) de u prograa de televisió,498 9,631 10,400-36,87 57,67 (1): CONTRATE (): INTERVALO DE CONFIANZA (1): CONTRATE: Resuelve el siguiete cotraste de hipótesis: Ho: Nº edio de espectadores del prograa = 600 H1: Nº edio de espectadores del prograa 600 Es decir: Ho: µ espectadores = 600 Ho: µ espectadores 600 = 0 H1: µ espectadores 600 H1: µ espectadores 600 0

6 El estadístico de prueba es: µ 0 610,4 600 t = = = 0,4977 / 66,076 / 10 La distribució t de tudet e este caso tiee 9 grados de libertad y es: ( 0,4978) 0, p = P t = t 0,05 =,6 Coo el valor del ivel crítico del cotraste es: p= que es ayor que α=0.05 el estadístico de prueba o se ecuetra e la regió crítica y, por tato, o habría suficiete evidecia estadística coo para rechazar Ho, es decir, aceptaos la hipótesis ula, de odo que, co u 95% de cofiaza, podeos decir que la audiecia edia del prograa es de espectadores. E P, os fijaos e la sigificació (bilateral, e este caso) o p-valor, que es 0,631 el cual coparaos co α, que e este caso heos toado α = 0,05. Coo p > α, ya que, 0,631 > 0,05 cocluiríaos, que o podeos rechazar la hipótesis ula, por lo que se podría aceptar que el úero edio de espectadores del prograa de televisió es de

7 (): INTERVALO DE CONFIANZA Podeos tabié costruir u Itervalo de Cofiaza para la edia sabiedo que: t µ = ~ t 1 I.C. (µ, 1-α) = t 1,1 α /, 1,1 α / t E uestro caso, el P os da u Itervalo de Cofiaza para la diferecia, es decir, para (µ-600), el cual viee dado por (-36,87; 57,67). Para costruir el itervalo de cofiaza para la edia, tedreos que hacer (-36,87 600; 57,67 600) = (563,13; 657,67). Otra fora de resolver el cotraste plateado sobre la edia sería viedo si el valor 600 se ecuetra o o detro del itervalo de cofiaza costruido. Coo si se ecuetra, podríaos afirar que co u 95% de cofiaza, la audiecia edia del prograa es de espectadores.

8 . PRUEBA DE HIPÓTEI E INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIA EN POBLACIONE NORMALE. Aalizar/ Coparar Medias/ Prueba T para uestras idepedietes (Estudiareos sólo el caso e que las uestras sea idepedietes) El procediieto Prueba T para uestras idepedietes copara las edias de dos grupos de casos. Para esta prueba, lo ideal es que los sujetos se asige aleatoriaete a dos grupos, de fora que cualquier diferecia e la respuesta sea debida al trataieto (o falta de trataieto) y o a otros factores. Este caso o ocurre si se copara los igresos edios para hobres y ujeres. El seo de ua persoa o se asiga aleatoriaete. E estas situacioes, debe asegurarse que las diferecias e otros factores o eascare o resalte ua diferecia sigificativa etre las edias. Las diferecias de igresos edios puede estar soetidas a la ifluecia de factores coo los estudios y o solaete al seo. El prograa calcula la t para variazas iguales y distitas y realiza el cotraste para las variazas. Para el cotraste sobre las variaza el P o usa la prueba F, sio la de Levee que o asue oralidad y se puede usar para coparar varias variazas. Nos perite obteer adeás de la prueba, u itervalo de cofiaza para la diferecia de edias, para lo cual debeos distiguir los casos e que: a) se asue variazas iguales:

9 b) o se asue variazas iguales: I.C. al 100(1-α)% para µ - µ y ( ) ( ) Z y Z y y y / / ; α α 1) ( 1) ( = s y 0 1-α α/ α/ /, α t /, t α iedo: s t y s t y 1 1 ) ( ; 1 1 ) ( /, /, α α I.C. al 100(1-α)% para µ - µ y

10 Ejercicio 5.18: e seleccioa dos uestras aleatorias e idepedietes del úero de puestos de trabajo creados e el últio es por diferetes epresas de dos sectores ecoóicos. La iforació suiistrada por las uestras es la siguiete: ector A: º de epleos: 13, 14, 1, 19, 15, 15 ector B: º de epleos: 18, 19, 0,, 31, 6. Co el fi de coocer el ipacto de las uevas odalidades de cotratació e abos sectores y supoiedo que el úero de epleos creados siguiera e abos sectores distribucioes orales co variazas iguales: Podríaos afirar co u 99% de cofiaza, que abos sectores so siilares e cuato al úero edio de epleos creados e el últio es? Lo priero que hareos será crear uestro fichero titulado Ejercicio Epleos por ectores que cotiee los datos ateriores, e ua variable que llaareos Epleos. Tras esto haceos:

11 Procediieto:

12 Resultados: Estadísticos de grupo ector N Media Desviació típ. Error típ. de la edia Nº de epleos creados e el últio es e el correspodiete ector ector A 6 16,17 3,15 1,76 ector B 6,67 4,967,08 Prueba de uestras idepedietes Prueba de Levee para la igualdad de variazas Prueba T para la igualdad de edias 99% Itervalo de ig. Diferecia Error típ. de la cofiaza para la diferecia F ig. t gl (bilateral) de edias diferecia Iferior uperior Nº de epleos creados e el últio es e el correspodiete ector e ha asuido variazas iguales No se ha asuido variazas iguales 1,63,87 -,713 10,0-6,500,396-14,09 1,09 -,713 8,43,05-6,500,396-14,4 1,4 (1): Cot. Igualdad var. (): Cot. Igualdad edias (3): It. Cofza. (1): CONTRATE OBRE IGUALDAD DE VARIANZA e platea el cotraste sobre la igualdad de variazas: Ho: Variaza del º edio de epleos creados e el últio es e el ector A = Variaza del º edio de epleos creados e el últio es e el ector B H1: Variaza del º edio de epleos creados e el últio es e el ector A Variaza del º edio de epleos creados e el últio es e el ector B

13 Es decir: Ho: σ EpleoscreadosectorA = σ EpleoscreadosectorB H1: σ EpleoscreadosectorA σ EpleoscreadosectorB O equivaleteete: Ho: σ EpleoscreadosectorA - σ EpleoscreadosectorB = 0 H1: σ EpleoscreadosectorA - σ EpleoscreadosectorB 0 Para dicho cotraste, el P os da ua sigificació de (p=) 0,87 > 0,01 (=α), por lo que o habría suficiete evidecia estadística coo para rechazar la hipótesis ula, es decir, que asuiríaos etoces igualdad de variazas. Al asuir igualdad de variazas, os fijaríaos pues sólo e la fila e ha asuido variazas iguales ( ) eguidaete, pasaríaos a resolver el cotraste sobre igualdad de edias. (): CONTRATE OBRE IGUALDAD DE MEDIA: e platea e este caso el cotraste: Ho: Nº edio epleos creados e últio es e ector A = Nº edio epleos creados e últio es e ector B H1: Nº edio epleos creados e últio es e ector A Nº edio epleos creados e últio es e ector B Es decir: Ho: µ EpleoscreadosectorA = µ EpleoscreadosectorB H1: µ EpleoscreadosectorA µ EpleoscreadosectorB O equivaleteete:

14 Ho: µ EpleoscreadosectorA - µ EpleoscreadosectorB = 0 H1: µ EpleoscreadosectorA - µ EpleoscreadosectorB 0 El estadístico e este caso resulta ser: t = (5)3,15 (16,16,66) (5)4, =,713 Y la distribució ua t-tudet co 10 grados de libertad: 0,99 t α / =-3,169 0 =3,169 t α / cuyo ivel crítico del cotraste es : (,713) 0, 0 p = P t = Coo este ivel crítico p=0,0 es ayor que α=0.01, el estadístico de prueba o perteece a la regió crítica y, por tato, se acepta la hipótesis ula de igualdad de edias. E P, asuiedo pues variazas iguales, os fijaríaos e que la sigificació que teeos para la igualdad de edias es 0,0 que o es iferior a 0,01, por lo que cocluiríaos que co u ivel de cofiaza del 99 %, o hay suficiete evidecia estadística coo para rechazar la igualdad de edias, es decir, podeos supoer que el úero edio de epleos creados e el últio es e los sectores A y B so siilares.

15 (3): INTERVALO DE CONFIANZA: Podeos, tal coo heos visto, costruir u Itervalo de Cofiaza para la diferecia de edias, el cual os lo proporcioa igualete el P. E uestro ejeplo el itervalo de cofiaza para la diferecia de edias a u ivel de cofiaza del 99 % sería (-14,09, 1,09). Por últio, coetar que para resolver el cotraste sobre la igualdad de edias e el caso de uestras idepedietes, tabié podeos hacerlo fijádoos e el itervalo de cofiaza que os proporcioa el P, para lo cual tedríaos que ver si dicho itervalo cotiee el valor 0 o o: si o cotiee al 0, habría diferecia de edias. E caso de coteerlo, se asue que las edias so iguales. E uestro caso, coo el valor 0 se ecuetra detro del itervalo de cofiaza costruido, co u 99% de cofiaza, puede aditirse la siilaridad e la creació de puestos de trabajo e estos dos sectores.

16 EJERCICIO EJERCICIO 1: Fichero de P Eployee data a) e podría afirar co ua cofiaza del 95 % que el salario iicial edio es igual a 0.000? Hallar u itervalo de cofiaza para la edia. b) Resolver usado el P y co u ivel de cofiaza del 99 % el siguiete cotraste sobre la edia, e idicar así iso u itervalo de cofiaza para la edia: Ho: µ alarioactual = H1: µ alarioactual EJERCICIO : Fichero Terreo.sav a) e podría afirar que el cosuo edio a 10 k/h es igual para los vehículos de 4 y 6 cilidros, co u ivel de cofiaza del 95 %? Y co u 99 %? Dar u itervalo de cofiaza e abos casos y copararlos. b) e podría afirar que el cosuo urbao edio es igual para los vehículos de 4 y 6 cilidros, co u ivel de cofiaza del 95 %? Qué tipo de vehículo tiee u cosuo edio urbao ayor, los de 4 o los de 6 cilidros? Dar u itervalo de cofiaza.

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Principio de multiplicación. Supongamos que un procedimiento designado como 1, puede hacerse de n 1

Principio de multiplicación. Supongamos que un procedimiento designado como 1, puede hacerse de n 1 MÉTODOS DE ENUMERACIÓN Y CONTEO. Pricipio de ultiplicació. Supogaos que u procediieto desigado coo puede hacerse de aeras. Supogaos que u segudo procediieto desigado coo se puede hacer de aeras. Tabié

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A IES Fco Ayala de Graada Modelo del 015 (Solucioes) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO DEL 015 OPCIÓN A EJERCICIO 1 (A) 1-1 Sea las matrices A = 0 1-1, B = 1 1, C = ( 1),

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

INTERVALOS DE CONFIANZA

INTERVALOS DE CONFIANZA Gestió Aeroáutica: Estadística Teórica Facultad Ciecias Ecoómicas y Empresariales Departameto de Ecoomía Aplicada Profesor: Satiago de la Fuete Ferádez NTERVALOS DE CONFANZA Gestió Aeroáutica: Estadística

Más detalles

Intervalos de Confianza para la diferencia de medias

Intervalos de Confianza para la diferencia de medias Itervalo de Cofiaza para la diferecia de media INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS Sea,,..., ua muetra aleatoria de obervacioe tomada de ua primera població co valor eperado μ, y variaza

Más detalles

PRUEBAS DE HIPOTESIS

PRUEBAS DE HIPOTESIS PRUEBAS DE HIPOTESIS Es posible estimar u parámetro a partir de datos muestrales, bie sea ua estimació putual o u itervalo de cofiaza. Pero: Si mi objetivo o es estimar u parámetro, sio determiar el cumplimieto

Más detalles

Intervalo de confianza para µ

Intervalo de confianza para µ Itervalo de cofiaza para p y ˆp1 ˆp ˆp1 ˆp ˆp z 1 α/ ; ˆp + z 1 α/, 7.6 ˆp + z 1 α/ ± z 1 α/ 1 + z 1 α/ ˆp1 ˆp + z 1 α/ 4 7.7 siedo ˆp = x/ y z 1 α/ el cuatil 1 α/ de la distribució ormal estádar. El itervalo

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera La Capitalizació co ua Tasa de Iterés Siple El Iterés Siple La característica ás resaltate de la capitalizació co tasa de iterés siple es que el valor futuro de u capital aueta de aera lieal. Sea u pricipal

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 26 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 1. Los siguietes valores so medicioes del peso (e miles de toeladas) de grades taques de petróleo. 229, 232, 239, 232, 259, 361, 220, 260,

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribucioes de probabilidad 1. Variable aleatoria real: Ejemplo: Ua variable aleatoria X es ua fució que asocia a cada elemeto del espacio muestral E u úmero X: E ú Cosideremos el experimeto aleatorio

Más detalles

UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferencia de proporciones

UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferencia de proporciones UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferecia proporcioes E alguos diseños ivestigació, el pla muestral requiere seleccioar dos muestras ipedietes, calcular las proporcioes muestrales y usar

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció B Reserva, Ejercicio 4,

Más detalles

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 008 (Modelo 6) Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 008 (MODELO 6) OPIÓN A EJERIIO 1_A (3 putos) Ua empresa produce botellas de leche etera

Más detalles

8. INTERVALOS DE CONFIANZA

8. INTERVALOS DE CONFIANZA 8. INTERVALOS DE CONFIANZA Al estimar el valor de u parámetro de la distribució teórica, o se provee iformació sobre la icertidumbre e el resultado. Esa icertidumbre es producida por la dispersió de la

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

MODELOS DE PROBABILIDAD

MODELOS DE PROBABILIDAD 3 MODELOS DE PROBABILIDAD.- VARIABLES ALEATORIAS DISCRETAS E ocasioes, alguas variables aleatorias sigue distribucioes de probabilidad uy cocretas, coo por ejeplo el estudio a u colectivo ueroso de idividuos

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

11 I N F E R E N C I A E S T A D Í S T I C A I (INTERVALOS DE CONFIANZA)

11 I N F E R E N C I A E S T A D Í S T I C A I (INTERVALOS DE CONFIANZA) I N F R N C I A S T A D Í S T I C A I (INTRVALOS D CONFIANZA) Sea Ω ua població y sobre ella ua variable aleatoria X que sigue ua ley ormal N(µ; ), co media µ descoocida y desviació típica coocida. Co

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

OPCIÓN A EJERCICIO 1_A 1 0 2

OPCIÓN A EJERCICIO 1_A 1 0 2 IES Fco Ayala de Graada Sobrates de 007 (Modelo 6) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 0 - Sea las matrices A, B - 1 0 5 (1 5 putos) Calcule B.B t - A.A t (1 5 putos) Halle la matriz

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

TEMA 6. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA

TEMA 6. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA TEMA 6. INTRODUCCIÓN A LA INFERENCIA ETADÍTICA 6.. Itroducció 6.. Coceptos básicos 6.3. Muestreo aleatorio simple 6.4. Distribucioes asociadas al muestreo 6.4.. Distribució Chi-Cuadrado 6.4.. Distribució

Más detalles

COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509

COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509 COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509 MATEMATICAS SEGUNDO GRADO SECCIÓN SECUNDARIA ACTIVIDADES PARA DESARROLLAR EN CLASE CURSO 2015-2016

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

Permutaciones y combinaciones

Permutaciones y combinaciones Perutacioes y cobiacioes Cotaos posibilidades Coezaos co u secillo ejeplo E España los coches tiee ua atrícula que costa de cuatro dígitos deciales seguidos de tres letras sacadas de u alfabeto de 26 Cuátas

Más detalles

Muestreo e Intervalos de Confianza

Muestreo e Intervalos de Confianza Muestreo e Itervalos de Cofiaza PROBLEMAS DE SELECTIVIDAD RESUELTOS MUESTREO E INTERVALOS DE CONFIANZA 1) E ua població ormal co variaza coocida se ha tomado ua muestra de tamaño 49 y se ha calculado su

Más detalles

Estimación puntual y por Intervalos de Confianza

Estimación puntual y por Intervalos de Confianza Capítulo 7 Estimació putual y por Itervalos de Cofiaza 7.1. Itroducció Cosideremos ua v.a X co distribució F θ co θ descoocido. E este tema vemos cómo dar ua estimació putual para el parámetro θ y cómo

Más detalles

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS 1. El peso medio de ua muestra aleatoria de 100 arajas de ua determiada variedad es de 272 g. Se sabe que la desviació típica poblacioal es de 20 g. A u ivel

Más detalles

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20 Modelo 04. Problema 5A.- (Calificació máxima: putos) El coteido e alquitrá de ua determiada marca de cigarrillos se puede aproximar por ua variable aleatoria co distribució ormal de media µ descoocida

Más detalles

ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA

ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA UNP-Facultad de Igeiería Carreras: Ig. Electróica y Electricista CAPÍTUO 6 ESTIMACIÓN DE VARIANZAS PROPORCIONES POBACIONAES MEDIANTE INTERVAOS DE CONFIANZA 6.1 Itervalo de cofiaza ara la variaza de ua

Más detalles

SOLUCIÓN EXAMEN I PARTE II

SOLUCIÓN EXAMEN I PARTE II Nombre: Apellido: C.I.: Fecha: Firma: MÉTODOS ESTADÍSTICOS I EXAMEN I Prof. Gudberto Leó PARTE I: (Cada respuesta correcta tiee u valor de 1 puto) E los siguietes gráficos se represeta distitas distribucioes

Más detalles

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007)

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007) IS Fco Ayala de Graada Solucioes Germá-Jesús Rubio Lua INTRVALOS D CONFIANZA PARA PROPORCIONS (007) jercicio 1- Tomada, al azar, ua muestra de 10 estudiates de ua Uiversidad, se ecotró que 54 de ellos

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Teorema del límite central

Teorema del límite central Teorema del límite cetral Carles Rovira Escofet P03/75057/01008 FUOC P03/75057/01008 Teorema del límite cetral Ídice Sesió 1 La distribució de la media muestral... 5 1. Distribució de la media muestral

Más detalles

Licenciatura en Matemáticas Febrero 2011. x(1 x) θ 1 I [0,1] (x). (1)

Licenciatura en Matemáticas Febrero 2011. x(1 x) θ 1 I [0,1] (x). (1) Estadística I Exame Liceciatura e Matemáticas Febrero 2011 1. Sea X 1,..., X ua muestra aleatoria de ua variable X co distribució Beta de parámetros 2 y θ > 0. Esto último sigifica que la fució de desidad

Más detalles

Intervalos de confianza para la media

Intervalos de confianza para la media Itervalos de cofiaza para la media Ejercicio º 1.- Las vetas diarias, e euros, e u determiado comercio sigue ua distribució N(950, 200). Calcula la probabilidad de que las vetas diarias e ese comercio:

Más detalles

Estimación puntual y por intervalos

Estimación puntual y por intervalos 0/1/011 Aálisis de datos gestió veteriaria Estimació putual por itervalos Departameto de Producció Aimal Facultad de Veteriaria Uiversidad de Córdoba Córdoba, 30 de Noviembre de 011 Estimació putual por

Más detalles

Modelación conceptual

Modelación conceptual TEMA 2 Modelació coceptual OBJETIVOS ESPECÍFICOS Defiir y aplicar los coceptos fudaetales relacioados co la represetació de la iforació. Describir las características de la odelació coceptual y su relació

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIERAS LECCIÓN 2: Leyes fiacieras clásicas.- Itroducció. El úero de expresioes ateáticas que podría ser leyes fiacieras, por cuplir las propiedades expuestas ateriorete, es uy ueroso.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 3, Parte II, Opció A Juio, Ejercicio 3, Parte II, Opció B Reserva

Más detalles

DIFERENCIAL DE UNA FUNCIÓN REAL DE DOS VARIABLES REALES

DIFERENCIAL DE UNA FUNCIÓN REAL DE DOS VARIABLES REALES Cálculo III- Dierecial-TVMCD-Geeralizació Diereciabilidad DIFERENCIL DE UN FUNCIÓN REL DE DOS VRILES RELES a R : R b R R z : E las codicioes ateriores si llaaos a la ució : R R observaos que es ua trasoració

Más detalles

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados TEMA 7. ETIMACIÓN 7.1. Itroducció y defiicioes 7.. Estimació putual. Propiedades deseables de los estimadores 7..1. Itroducció y defiicioes 7... Estimadores Isegados 7.3. Estimació por itervalos de cofiaza

Más detalles

EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto

EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto EJERCICIOS DISOLUCIONES (ejercicios fáciles para iiciarse) Solució: Priero debeos poer la fórula co la que se calcula el %asa: asa % asa asadisolució El (copoete ioritario) es la glucosa y el disolvete

Más detalles

INSTITUTO NACIONAL DE SALUD PÚBLICA DISEÑO MUESTRAL

INSTITUTO NACIONAL DE SALUD PÚBLICA DISEÑO MUESTRAL INSTITUTO NACIONAL E SALU PÚBLICA ISEÑO MUESTRAL Noviebre 2008 1. Objetivo de la ecuesta Obteer iforació estadística sobre las características de la població de tipo deográfico, social, de salud, de ocupació

Más detalles

Regla de Tres. Prof. Maria Peiró

Regla de Tres. Prof. Maria Peiró Regla de Tres Prof. Maria Peiró .- Regla de Tres: Es ua fora de resolver probleas que utiliza ua proporció etre tres o ás valores coocidos y u valor descoocido. La Regla de Tres puede ser siple ó copuesta.

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICA Y GEOGRAFÍA. Encuesta Nacional de la Dinámica Demográfica 2009. Diseño muestral

INSTITUTO NACIONAL DE ESTADÍSTICA Y GEOGRAFÍA. Encuesta Nacional de la Dinámica Demográfica 2009. Diseño muestral INSTITUTO NACIONAL E ESTAÍSTICA Y GEOGRAFÍA Ecuesta Nacioal de la iáica eográfica 2009 iseño uestral Ídice Págia. Objetivo de la ecuesta 2. Població objetivo 3. Cobertura geográfica 4. iseño de la uestra

Más detalles

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2 Cojutos coveos Ejeplos de cojutos coveos e R CONVEXIDAD Cojutos coveos Coveidad de fucioes DEFINICION: U cojuto A es coveo cuado, y A y λ [0,] se cuple λ + ( λ) y A R λ + ( λ) y λ = / y λ = 0 Cojuto coveo:

Más detalles

10. Estimadores 7 11. Estimación de las precisiones 8

10. Estimadores 7 11. Estimación de las precisiones 8 Ídice Págia 1. Objetivo de la ecuesta 1. Població objetivo 1 3. Cobertura geográfica 1 4. iseño de la uestra 1 4.1 Marco de la ecuesta 1 4. Foració de las uidades priarias de uestreo (UPM) 1 a) E urbao

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.001-.00 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles

Tema 5: Organización de la memoria: memoria principal.

Tema 5: Organización de la memoria: memoria principal. Objetivos: Tea 5: Orgaizació de la eoria: eoria pricipal Coocer las características geerales de los diferetes tipos de eoria que aparece e u coputador digital y aalizar la ecesidad de su orgaizació jerárquica

Más detalles

Resolución de ecuaciones no lineales

Resolución de ecuaciones no lineales Resolució de ecuacioes o lieales Solucioa ecuacioes o lieales tipo f()= Normalmete cada método tiee sus requisitos Métodos so iterativos Métodos iterativos para resolver f()= E geeral métodos iterativos

Más detalles

Capítulo II Estimación de parámetros

Capítulo II Estimación de parámetros Capítulo II Estimació de parámetros Estimació putual de parámetros Explicaremos el tópico de la estimació putual de parámetros, usado el siguiete ejemplo. La Tabla Nº. cotiee iformació de los salarios

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 2) Solución Germán-Jesús Rubio Luna OPCIÓN A 0 2-4 (A I 2 ) B = A A A = -

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 2) Solución Germán-Jesús Rubio Luna OPCIÓN A 0 2-4 (A I 2 ) B = A A A = - IES Fco Ayala de Graada Sobrates de 004 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A - 0 0 - - - Sea las matrices A=, B= y C= - 0 0 - ( puto) Calcule (A I ) B, siedo I la matriz idetidad

Más detalles

OPCIÓN A EJERCICIO 1_A x 1 0 1

OPCIÓN A EJERCICIO 1_A x 1 0 1 IES Fco Ayala de Graada Sobrates de 006 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A x 1 0 1 Sea las matrices A = y B =. 1 x+1 (1 puto) Ecuetre el valor o valores de x de forma

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 001 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Se quiere orgaizar u puete aéreo etre dos ciudades, co plazas suficietes de pasaje y carga,

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 2015 MODELO 3 OPCIÓN A EJERCICIO 1 (A) 8-4 1 2 Sea las matrices A = -1 2, B = 1 2 2-1 -1 2, C = 12 8. -8 4 (0 5 putos) Calcule A 2. (1 7 putos) Resuelva

Más detalles

Hacia la universidad Probabilidad y estadística

Hacia la universidad Probabilidad y estadística Hacia la uiversidad Probabilidad y estadística OPCIÓN. Se laza u dado cargado cuyas caras co úmeros múltiplos de tres tiee triple probabilidad de salir que cada ua de las otras. Halla la probabilidad de

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departameto Admiistrativo acioal de Estadística Direcció de Regulació, Plaeació, Estadarizació y ormalizació -DIRPE- Especificacioes de Coeficiete y Variaza Ecuesta de Cosumo Cultural Julio 008 ESPECIFICACIOES

Más detalles

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse.

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse. Núeros coplejos 1. Cuerpos U cuerpo coutativo es u cojuto de úeros que puede suarse, restarse, ultiplicarse y dividirse. Los úeros racioales, esto es, los úeros que puede escribirse e fora de fracció,

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 6 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (2 putos) Sea las matrices A= y B = (1 1). -5-4 Eplique qué dimesió debe teer la matriz X para

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

FEH02-15 FÓRMULAS Y EJEMPLOS. Incluye al producto: - Hipotecario 1. GLOSARIO DE TÉRMINOS

FEH02-15 FÓRMULAS Y EJEMPLOS. Incluye al producto: - Hipotecario 1. GLOSARIO DE TÉRMINOS FÓRMULAS Y EJEMPLOS Icluye al producto: - Hipotecario. GLOSARIO DE TÉRMINOS a. Préstao: Sua de diero etregada al prestatario o usuario del préstao por u plazo deteriado, coproetiédose a pagar ua sua adicioal

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir IES Fco Ayala de Graada Sobrates de 008 (Modelo Juio) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 008 (MODELO ) OPCIÓN A EJERCICIO _A 0 a b Sea las matrices A= y B= 0 6 a) ( 5 putos)

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

OPERACIONES CON POLINOMIOS.

OPERACIONES CON POLINOMIOS. OPERACIONES CON POLINOMIOS. EXPRESIONES ALGEBRAICAS. Ua epresió ateática que usa úeros o variables o abos para idicar productos o cocietes es u tério. Los térios,, (ab), so todos epresioes algebraicas.

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A IES Fco Ayala de Graada Sobrates de 2012 (Modelo 1 ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A EJERCICIO 1_A -1-6 -1 1 2 a 0 1 Sea las matrices A

Más detalles

5.- Teoremas de Cauchy y del Residuo

5.- Teoremas de Cauchy y del Residuo 5.- Teoreas de auchy y del esiduo a) Itroducció. b) Putos sigulares aislados. c) esiduo. d) Teorea de auchy. e) esiduos y polos. f) eros de fucioes aalíticas. g) Aplicació de los residuos. a).- Itroducció.

Más detalles

Muestreo Estratificado.

Muestreo Estratificado. Muestreo Estratificado. 1.- Itroducció: Para aplicar este diseño, se precisa que la població esté dividida e subpoblacioes, estratos, que o se solape. Se seleccioa ua muestra probabilística e cada estrato

Más detalles

a. Tetraedro: Tiene 4 caras (triángulos equiláteros), 4 vértices, 6 aristas.

a. Tetraedro: Tiene 4 caras (triángulos equiláteros), 4 vértices, 6 aristas. POLIEDROS Y VOLUMEN POLIEDRO: Cuerpo liitado por cuatro o ás polígoos dode cada polígoo se deoia cara, sus lados so aristas y la itersecció de las aristas se llaa vértices. PRISM: Poliedro liitado por

Más detalles

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal.

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal. Departameto de Estadística Uiversidad Carlos III de Madrid BIOESTADISTICA (55-10536) Estudios de prevalecia (trasversales) CONCEPTOS CLAVE 1) Características del diseño e u estudio de prevalecia, o trasversal

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS E vez de estimar el valor de u parámetro, a veces se debe decidir si ua afirmació relativa a u parámetro es verdadera o falsa. Vale decir, probar ua hipótesis relativa a u parámetro.

Más detalles

Tema 9. Combinatoria

Tema 9. Combinatoria Tea 9. Cobiatoria. Defiició de cobiatoria. Estrategias de resolució.. Estrategia del producto y la sua.. Diagraa de árbol. Variacioes y perutacioes.. Variacioes siples u ordiarias.. Perutacioes.. Variacioes

Más detalles

Muestreo. Tipos de muestreo. Inferencia Introducción

Muestreo. Tipos de muestreo. Inferencia Introducción Germá Jesús Rubio Lua Catedrático de Matemáticas del IES Fracisco Ayala Muestreo. Tipos de muestreo. Iferecia Itroducció Nota.- Puede decirse que la Estadística es la ciecia que se preocupa de la recogida

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA.

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. Població: El cojuto de todos los elemetos o idividuos que posee ua determiada característica o cualidad de iterés. Existe situacioes e las que o es posible aalizar

Más detalles

TEST DE HIPÓTESIS. 5.1. Introducción. 5.2. Hipótesis estadísticas

TEST DE HIPÓTESIS. 5.1. Introducción. 5.2. Hipótesis estadísticas Capítulo 5 TEST DE HIPÓTESIS 5.1. Itroducció E este tema trataremos el importate aspecto de la toma de decisioes, referida a decidir si u valor obteido a partir de la muestra es probable que perteezca

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL INTRODUCCIÓN Durate años la estadística se ha dedicado fudametalmete al desarrollo de la Estadística Descriptiva, cuya pricipal labor como hemos visto es recopilar datos, ordearlos,

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 2012 (COMÚN MODELO 3) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 2012 (COMÚN MODELO 3) OPCIÓN A IES Fco Ayala de Graada Sobrates de 01 (Septiembre Modelo ) Solució Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 01 (COMÚN MODELO 3) OPCIÓN A EJERCICIO 1_A ( 5 putos) U empresario

Más detalles

OPCIÓN A EJERCICIO 1 (A) -5 0

OPCIÓN A EJERCICIO 1 (A) -5 0 IES Fco Ayala de Graada Sobrates 014 (Modelo 1 ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 014 MODELO 1 OPCIÓN A EJERCICIO 1 (A) -5 0-1 -8-1 Sea las matrices B =

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.-.3 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Ejercicios Tema 4 Inferencia estadística

Ejercicios Tema 4 Inferencia estadística Ejercicios Tema 4 Iferecia estadística 1. Sea X el icremeto de los igresos salariales mesuales producidos e el sector de la idustria agroalimetaria e Navarra. Si X ~ N( 100, 5) Cuál es la probabilidad

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles