EXERCICIS MATEMÀTIQUES 1r BATXILLERAT

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EXERCICIS MATEMÀTIQUES 1r BATXILLERAT"

Transcripción

1 Treball d estiu/r Batillerat CT EXERCICIS MATEMÀTIQUES r BATXILLERAT. Aquells alumnes que tinguin la matèria de matemàtiques pendent, hauran de presentar els eercicis el dia de la prova de recuperació. En el cas que no s'entreguin, no hi ha opció a eamen. S han de fer TOTS els eercicis. Els eercicis s'han de presentar a BOLÍGRAF i amb una presentació adient.. S'han de tornar a escriure els enunciats i, a continuació, la resolució de l'eercici. Codi: EC-FT-GEN-000-O0-40 Pàg / 0

2 Eercicis Matemàtiques r Batillerat CT. NOMBRES REALS. Treu fora del radical tots els factors que sigui possible: a) b) c) e) g) - 7 h) 7 4 f) 4 7 i) Obtén els productes i les divisions següents: a) 8 b) 4 c) 4 8 e) f) Simplifica les epressions següents: a) b) c) Racionalitza les fraccions següents: a) 8 b) c) Calcula: a) ( ) b) ( ) c) ( ) (4 - ). TRIGONOMETRIA.. Trobar les raons trigonomètriques de l'angle, si sabem que tag = - /4 i que es troba al quart quadrant... Des d'un punt determinat del terra es veu un arbre sota un angle de 4 o. Sota quin angle es veurà si ens col loquem a una distància doble de l'anterior?. I sota quin angle si la distància és el triple de la primera?... Si 90º< <80º i cos = - 0.8, calcula: sin, tg, cos (- ), sin (- ) i tg (- ). Pàg / 0

3 .4. El radar d un vaiell detecta un objecte en direcció est a 8 km de distància i un altre objecte en direcció nord-est a km. Quina distància separa els dos objectes?.. Dibuia el triangle ABC tal que a = cm, b = cm i A = 48º. Resol aquest triangle.. VECTORS EN EL PLA 4.. Determinar quins són els components del vector AB d'origen A(0,0) i final B(4, -) 4.. Troba l'origen del vector fi de components (, - 8) i de final C (-, - /). 4.. Donats els vectors v = (, - ) i w = ( -, ), calcula: a) v + w b) v - w c) v + w v - w 4.4. Donats els vectors v = (, ) i w = (, a), calcula el valor de a que fa que v i w siguin linealment dependents. 4.. Donats els vectors v = (-, ), w = (, 4) i z = (-,), calcula: a) ( v + w ) z b) ( v + w ) ( v - z ) 4.6. Calcula l'angle que formen els següents parells de vectors: a) v = ( a, a) i w = ( a, - a) b) v = (, 4) i w = (- /, ) 4.7. Calcula el valor de sabent que a = ( 7, - /) i b = (, ) són ortogonals Els punts A (, ), B (, - ) i C ( -, p) estan alineats. Calcula p. 4. RECTES EN EL PLA.. Donada l'equació de la recta + (4/) y + 7 = 0, troba el seu pendent i l'angle que l'ei d abscisses forma amb la recta... Escriu l'equació contínua de la recta que passa pel punt A ( -, ) i té per vector director v = (, )... Determina totes les equacions de la recta que passa pels punts A (, ) i B ( - 7, ). Pàg / 0

4 Eercicis Matemàtiques r Batillerat CT.4. Calcula l'equació de la recta paral lela a la recta r: y = + que passa pel punt ( 0, 4)... Calcula el valor de K perquè les rectes d'equacions + y - = 0 i + K y - = 0 es tallin formant un angle de 4 o..6. Un triangle té els costats continguts en les rectes: r: y + 9 = 0 s: - - y + 6 = 0 i t: 4 - y + = 0 Calcula l'equació de la recta que conté l'altura del triangle si prenem com a base el costat contingut en la recta r..7. Determina el valor de k de l'equació de la recta k + y - = 0 sabent que: a) passa pel punt (, - ) b) un vector director és (, 7)..8. Donades les rectes r i s d'equacions: r: a + (a - ) y - (a + ) = 0 i s: a - ( a + ) y - a - 4 = 0 troba el valor de a que fa que: a) Siguin paral leles b) Siguin perpendiculars..9. Troba dos punts que estiguin a una distància del punt ( 4, 9)..0. Calcula l'àrea del triangle ABC amb A (, ), B (, ) i C ( 7, -)... Donat el punt A (, ), troba un punt B de la recta + y - = 0 sabent que la distància entre A i B és de. 4.. Calcula la distància entre les rectes - y + = 0 i y -. POLINOMIS 6.. A partir dels polinomis següents: p () = - q () = obtén: p(0), p(), p(- ), q( ), q(0), q( 6.. Calcula les arrels dels polinomis següents: ) 4 - a) p () = 9 b) q () = c) r () = s () = Comprova si és arrel del polinomi p () = Pàg 4 / 0

5 6.4. Donat el polinomi p() = 4 -, calcula: a) p ( ) b) Les arrels de p() 6.. Donats els polinomis p () = +, q () =, r () = i s () =, calcula: a) r () + q () s () b) p () + s () r () : q () 6.6. Efectua les operacions amb fraccions de polinomis que s indiquen a continuació: a) b) c) e) f) g) 7 7 h) FUNCIONS 7.. Obtén el domini de les funcions següents: a) f () = b) g () = c) h () = 4 k () = e) y = - 4 f) f () = - g) g () = ( -) ( 4 - ) ( - ) h) t () = 4 - si si 7.. Obtén el recorregut de les funcions: a) f () = - - b) g () = - 7 Pàg / 0

6 Eercicis Matemàtiques r Batillerat CT 7.. A partir dels següents gràfics, determina el domini i recorregut: a) b) - c) 7.4. A partir de les funcions f () = + i g () = -, troba: a) (f + g)() b) (f - g)() c) (f g)() (g o f)() e) f - () f) g - () g) f () h) g () 7. LÍMITS I CONTINUÏTAT DE FUNCIONS 8.. Calcula: a) - - lim b) lim 4-6 c) e) - - lim - 4 lim f) lim - lim Pàg 6 / 0

7 - 9-0 g) lim h) lim 6 i) lim - k) 4 lim l) j) lim lim : Estudia la continuïtat de les funcions: a) f () = b) f () = 4 - c) f() = - si 0 g () = si Donada la gràfica de la funció f, descriu-ne les discontinuïtats indicant els límits dels punts indicats. f() A la funció: f () = p si si a) Troba el valor de p perquè sigui contínua en el punt = b) Hi ha algun altre punt on la funció és discontínua?. Justifica la resposta. Pàg 7 / 0

8 Eercicis Matemàtiques r Batillerat CT 8. FUNCIONS EXPONENCIALS I LOGARÍTMIQUES 9.. Representa gràficament, d'una manera aproimada, les següents funcions: a) y = - b) f () = e 9.. Determina el domini i el recorregut de les funcions anteriors. 9.. Resoldre les següents equacions eponencials: a) 4 - = b) = 0 c) = 0 c) = 7 - e) Resoldre les següents equacions logarítmiques: a) log ( - ) + log ( + ) = log b) log + log = + log c) log ( + 4) - log ( + 4) = log log ( - ) - 0 log ( - ) 9.. Calcula en les epressions següents: a) log 7 7 b) log 4 0, c) log 4 6 log DERIVADES 0.. Deriva i simplifica: Pàg 8 / 0

9 0.. Deriva i simplifica: - e - e. y =. f() = y = Ln ( 4 ). y = cos f() = arc sen (cos ) 8. f () = arc sen - 4 g() = - f() = sen 9. g() = sen(e + ) f(). 0. = arc tag ( - ) y =. f() = Ln(arc tag ) 0.. Calculeu els màims i els mínims de la funció f () = Calculeu els màims i mínims de la funció següent: f () = Tenim la funció: f() = Calculeu els intervals de creiement i decreiement Calculeu els etrems (siguin màims o mínims) de la funció f() = Demostreu que la funció f() = és decreient en tot el seu domini Demostreu que la funció f() = és creient en tot el seu domini Calculeu les asímptotes horitzontals i verticals de la corba f() = Calculeu les asímptotes horitzontals i verticals de la corba f() =. - 8 Calculeu també els seus punts d'intersecció amb els eios. 0.. Donada la funció f() = Pàg 9 / 0

10 Eercicis Matemàtiques r Batillerat CT a) Indiqueu el seu domini i asímptotes. b) Calculeu els intervals on la funció és creient i indiqueu-ne els màims i mínims Calculeu les asímptotes horitzontals de la funció f() = Donada la funció f() =, indiqueu-ne el domini i calculeu les asímptotes - 8 horitzontals i verticals Considerem la funció f() =. Calculeu les asímptotes i indiqueu els intervals - de creiement i decreiement de la funció. Pàg 0 / 0

A A A A A A A A A A A A A A A A A A A A A A Realitzeu l'operació següent i doneu el resultat el màxim simplificat que pugueu:

A A A A A A A A A A A A A A A A A A A A A A Realitzeu l'operació següent i doneu el resultat el màxim simplificat que pugueu: TOT 1r 15-16 -1/10 PRIMERA MODEL A Codi B1A1C115-16 A1- a) Enuncieu i raoneu breument el teorema del residu b) Aplicant el teorema del residu, trobeu els valors de k pels quals el residu de la divisió

Más detalles

GEOMETRIA ANALÍTICA DEL PLA. MATEMÀTIQUES-1

GEOMETRIA ANALÍTICA DEL PLA. MATEMÀTIQUES-1 GEOMETRIA ANALÍTICA DEL PLA. 1. Vectors en el pla.. Equacions de la recta. 3. Posició relativa de dues rectes. 4. Paral lelisme de rectes. 5. Producte escalar de dos vectors. 6. Perpendicularitat de rectes.

Más detalles

1. RECTA TANGENT I NORMAL 2. DETERMINACIÓ DE PARÀMETRES 3. CREIXEMENT I DECREIXEMENT 4. VELOCITAT I ACELERACIÓ - PUNTS SINGULARS

1. RECTA TANGENT I NORMAL 2. DETERMINACIÓ DE PARÀMETRES 3. CREIXEMENT I DECREIXEMENT 4. VELOCITAT I ACELERACIÓ - PUNTS SINGULARS APLICACIONS DE LA DERIVADA 1. RECTA TANGENT I NORMAL. DETERMINACIÓ DE PARÀMETRES 3. CREIXEMENT I DECREIXEMENT 4. VELOCITAT I ACELERACIÓ - PUNTS SINGULARS 1. RECTA TANGENT I NORMAL 1.1 Trobeu l equació

Más detalles

Unitat didàctica 2. Polinomis i fraccions algebraiques

Unitat didàctica 2. Polinomis i fraccions algebraiques Unitat didàctica. Polinomis i fraccions algebraiques Refleiona L Andrea té una bona col lecció d espelmes que decoren la seva habitació. Totes les espelmes cilíndriques tenen la mateia alçària: cm. Epressa,

Más detalles

10 Àlgebra vectorial. on 3, -2 i 4 són les projeccions en els eixos x, y, y z respectivament.

10 Àlgebra vectorial. on 3, -2 i 4 són les projeccions en els eixos x, y, y z respectivament. 10 Àlgebra vectorial ÀLGEBR VECTORIL Índe P.1. P.. P.3. P.4. P.5. P.6. Vectors Suma i resta vectorial Producte d un escalar per un vector Vector unitari Producte escalar Producte vectorial P.1. Vectors

Más detalles

Prova d accés a Cicles formatius de grau superior de formació professional, Ensenyaments d esports i Ensenyaments d arts plàstiques i disseny 2010

Prova d accés a Cicles formatius de grau superior de formació professional, Ensenyaments d esports i Ensenyaments d arts plàstiques i disseny 2010 Prova d accés a Cicles formatius de grau superior de formació professional, Ensenyaments d esports i Ensenyaments d arts plàstiques i disseny 2010 Matemàtiques Sèrie 1 Dades de la persona aspirant Qualificació

Más detalles

TOT 1r /13 INDEX PRÈVIA. PRIMERA Global 1a Recuperació 1a. SEGONA Global 2a Recuperació 2a. TERCERA Global 3a FINAL 1 ÍNDEX

TOT 1r /13 INDEX PRÈVIA. PRIMERA Global 1a Recuperació 1a. SEGONA Global 2a Recuperació 2a. TERCERA Global 3a FINAL 1 ÍNDEX TOT 1r 08-09 -1/13 INDEX PRÈVIA PRIMERA Global 1a Recuperació 1a SEGONA Global a Recuperació a TERCERA Global 3a FINAL 1 TOT 1r 08-09 -/13 PRÈVIA MODEL A Codi B1 A0 08-09 1- Resol les següents operacions

Más detalles

ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne:

ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne: INS JÚLIA MINGUELL 2n Batxillerat Matemàtiques Tasca Continuada 4 «Matrius i Sistemes d equacions lineals» Alumne: dv, 18 de març 2016 LLIURAMENT: dm, 5 d abril 2016 NOTA: cal justificar matemàticament

Más detalles

Deduce razonadamente en que casos los planos π 1 y π 2 son o no paralelos:

Deduce razonadamente en que casos los planos π 1 y π 2 son o no paralelos: GEOMETRÍA Junio 98 Deduce razonadamente en que casos los planos y son o no paralelos: a) : x + y + z = y : x + y z = 4 b) : x y + z = 4 y : x y + z = Obtén la distancia entre los planos y cuando sean paralelos.

Más detalles

DOSSIER D'ESTIU MATEMÀTIQUES. PREPARACIÓ BATXILLERAT.

DOSSIER D'ESTIU MATEMÀTIQUES. PREPARACIÓ BATXILLERAT. INS ERNEST LLUCH I MARTI Departament de Matemàtiques DOSSIER D'ESTIU MATEMÀTIQUES. PREPARACIÓ BATXILLERAT. TREBALL D ESTIU El treball d estiu que proposa el departament de Matemàtiques està pensat per

Más detalles

FUNCIONS I FÓRMULES TRIGONOMÈTRIQUES

FUNCIONS I FÓRMULES TRIGONOMÈTRIQUES FUNCIONS I FÓRMULES TRIGONOMÈTRIQUES Pàgina 8. Encara que el mètode per a resoldre les preguntes següents se sistematitza a la pàgina següent, pots resoldre-les ara: a) Quants radiants corresponen als

Más detalles

8 Geometria analítica

8 Geometria analítica Geometria analítica INTRODUCCIÓ Els vectors s utilitzen en diverses branques de la física que fan servir magnituds vectorials, per això és important que els alumnes en coneguin els elements i les operacions.

Más detalles

APLICACIONS DE LA DERIVADA

APLICACIONS DE LA DERIVADA 0 APLICACIONS DE LA DERIVADA Pàgina 7 Relació del creiement amb el signe de la primera derivada Analitza de la mateia manera la corba següent: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f'

Más detalles

I. SISTEMA DIÈDRIC 3. DISTÀNCIES I ANGLES DIBUIX TÈCNIC

I. SISTEMA DIÈDRIC 3. DISTÀNCIES I ANGLES DIBUIX TÈCNIC DIBUIX TÈCNIC I. SISTEMA DIÈDRIC 3. DISTÀNCIES I ANGLES 1. Dist. d un punt a una recta - Abatiment del pla format per la recta i el punt 2. Dist. d un punt a un pla - Canvi de pla posant el pla de perfil

Más detalles

4.- Expressa en forma de potència única indicant el signe resultant.

4.- Expressa en forma de potència única indicant el signe resultant. Pàgina 1 de 8 EXERCICIS PER LA RECUPARACIÓ 1A Avaluació 1.- Calcula de dues maneres (TP i RP): a) 25 + (-1+7) (18 9 + 15)= TP= RP= 9 (-12 + 5 8 = TP= RP= 2.- Treu factor comú i calcula: a) 5.(-3) + (-7).

Más detalles

LLOCS GEOMÈTRICS. CÒNIQUES

LLOCS GEOMÈTRICS. CÒNIQUES LLOCS GEOMÈTRICS. CÒNIQUES Pàgina REFLEXIONA I RESOL Còniques obertes: paràboles i hipèrboles Completa la taula següent, en què a és l angle que formen les generatrius amb l eix, e, de la cònica i b l

Más detalles

Trigonometria Resolució de triangles.

Trigonometria Resolució de triangles. Trigonometria Resolució de triangles. Raons trigonomètriques d un angle agut. Considerarem el triangle rectangle ABC on A = 90º Recordem que en qualsevol triangle rectangle Es complia el teorema de Pitàgores:

Más detalles

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE 30 SOLUCIONS DE LES ACTIVITATS D APRENENTATGE Activitat 1 Completa la taula següent: Graus Minuts Segons 30º 30 x 60 = 1.800 1.800 x 60 = 108.000 45º 2.700 162.000 120º 7.200 432.000 270º 16.200 972.000

Más detalles

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera:

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: ax + by = k a x + b y = k Coeficients de les incògnites: a, a, b, b. Termes independents:

Más detalles

EXERCICIS POLINOMIS I FRACCIONS ALGEBRAIQUES

EXERCICIS POLINOMIS I FRACCIONS ALGEBRAIQUES EXERCICIS POLINOMIS I FRACCIONS ALGEBRAIQUES Suma de monomis. 1. Realitza les següents operacions: + 8 4 9 9 6 + 4 5 5 1 + 4 4 4 11 7 f) 6 7 1 8. Realitza les següents operacions: 1 + 5 5 + 1 y + y + y

Más detalles

10 Calcula la distancia que separa entre dos puntos inaccesibles A y B.

10 Calcula la distancia que separa entre dos puntos inaccesibles A y B. 1 De un triángulo sabemos que: a = 6 m, B = 45 y C = 105. Calcula los restantes elementos. 2 De un triángulo sabemos que: a = 10 m, b = 7 m y C = 30. Calcula los restantes elementos. 3 Resuelve el triángulo

Más detalles

TEMA 3: Polinomis 3.1 DEFINICIONS:

TEMA 3: Polinomis 3.1 DEFINICIONS: TEMA 3: Polinomis 3.1 DEFINICIONS: Anomenarem monomi qualsevol expressió algèbrica formada per la multiplicació d un nombre real i d una variable elevada a un exponent natural. El nombre es diu coeficient

Más detalles

Curs de preparació per a la prova d accés a cicles formatius de grau superior. Matemàtiques BLOC 3: FUNCIONS I GRÀFICS. AUTORA: Alícia Espuig Bermell

Curs de preparació per a la prova d accés a cicles formatius de grau superior. Matemàtiques BLOC 3: FUNCIONS I GRÀFICS. AUTORA: Alícia Espuig Bermell Curs de preparació per a la prova d accés a cicles formatius de grau superior Matemàtiques BLOC : FUNCIONS I GRÀFICS AUTORA: Alícia Espuig Bermell Bloc : Funcions i gràfics Tema 7: Funcions... Tema 8:

Más detalles

8. Reflexiona: Si a<-3, pot se a<0?

8. Reflexiona: Si a<-3, pot se a<0? ACTIVITATS 1. Expressa amb nombres enters: a) L avió vola a una altura de tres mil metres b) El termòmetre marca tres graus sota zero c) Dec cinc euros al meu germà 2. Troba el valor absolut de: -4, +5,

Más detalles

1.4 Derivades: Unitat de síntesi (i repàs)

1.4 Derivades: Unitat de síntesi (i repàs) 1.4 Derivades: Unitat de síntesi (i repàs) 11. Problemes de: optimització, extrems ( ), punts d inflexió ( ), rectes tangents (T) i interpretació de gràfiques (G): A.- Considereu tots els prismes rectes

Más detalles

POLINOMIS i FRACCIONS ALGEBRAIQUES

POLINOMIS i FRACCIONS ALGEBRAIQUES POLINOMIS i FRACCIONS ALGEBRAIQUES. Polinomis: introducció.. Definició de polinomi.. Termes d un polinomi.. Grau d un polinomi.. Polinomi reduït..5 Polinomi ordenat..6 Polinomi complet..7 Polinomi oposat..8

Más detalles

Hi ha successions en que a partir del primer terme tots els altres es troben sumant una quantitat fixa al terme anterior, aquí hi ha alguns exemples:

Hi ha successions en que a partir del primer terme tots els altres es troben sumant una quantitat fixa al terme anterior, aquí hi ha alguns exemples: 2 PROGRESSIONS 9.1 Progressions aritmètiques Hi ha successions en que a partir del primer terme tots els altres es troben sumant una quantitat fixa al terme anterior, aquí hi ha alguns exemples: La successió

Más detalles

Les Arcades. Molló del terme. Ermita la Xara. Esglèsia Sant Pere

Les Arcades. Molló del terme. Ermita la Xara. Esglèsia Sant Pere Les Arcades Molló del terme Ermita la Xara Esglèsia Sant Pere Pàg. 2 Monomi Un monomi (mono=uno) és una expressió algebraica de la forma: *+,-=/, 1 on R N., rep el nom d indeterminada o variable del monomi,

Más detalles

UNITAT 3: SISTEMES D EQUACIONS

UNITAT 3: SISTEMES D EQUACIONS UNITAT 3: SISTEMES D EQUACIONS 1. EQUACIONS DE PRIMER GRAU AMB DUES INCÒGNITES L equació x + y = 3 és una equació de primer grau amb dues incògnites : x i y. Per calcular les solucions escollim un valor

Más detalles

Feu el problema P1 i responeu a les qüestions Q1 i Q2.

Feu el problema P1 i responeu a les qüestions Q1 i Q2. Generalitat de Catalunya Consell Interuniversitari de Catalunya Organització de Proves d Accés a la Universitat PAU. Curs 2005-2006 Feu el problema P1 i responeu a les qüestions Q1 i Q2. Física sèrie 4

Más detalles

( ) El límit del producte de dues funcions en un punt és igual al producte de límits d aquestes funcions en el punt en qüestió, és a dir:

( ) El límit del producte de dues funcions en un punt és igual al producte de límits d aquestes funcions en el punt en qüestió, és a dir: Límits de funcions Límits de funcions Definició de it d una funció en un punt El it funcional és un concepte relacionat amb la variació dels valors d una funció a mesura que varien els valors de la variable

Más detalles

POLINOMIS. Divisió. Regla de Ruffini.

POLINOMIS. Divisió. Regla de Ruffini. POLINOMIS. Divisió. Regla de Ruffini. Recordeu: n Un monomi en x és una expressió algebraica de la forma a x on a és un nombre real i n és un nombre natural. A s anomena coeficient i n s anomena grau del

Más detalles

TEMARIO 1º ESO (Recopilación de diferentes editoriales: Barcanova Edebé, etc)

TEMARIO 1º ESO (Recopilación de diferentes editoriales: Barcanova Edebé, etc) Ofimega acadèmies - Temarios matemáticas - 1- TEMARIO 1º ESO (Recopilación de diferentes editoriales: Barcanova Edebé, etc) 1. ELS NOMBRES NATURALS 1. Els nombres grans: milions, miliards, bilions 2. Operacions

Más detalles

SOLUCIONARI Unitat 1

SOLUCIONARI Unitat 1 SOLUCIONARI Unitat Comencem En un problema de física es demana el temps que triga una pilota a assolir una certa altura. Un estudiant, que ha resolt el problema correctament, arriba a la solució t s. La

Más detalles

GEOMETRIA PLANA 1. ELS ANGLES 1.1. DEFINICIÓ 1.2. CLASSIFICACIÓ

GEOMETRIA PLANA 1. ELS ANGLES 1.1. DEFINICIÓ 1.2. CLASSIFICACIÓ GEOMETRIA PLANA 1. ELS ANGLES 1.1. DEFINICIÓ Representem un punt A en un pla i tracem dues semirectes amb origen en aquest punt. El punt A serà el vèrtex de l angle i cada semirecta serà el costat. 1..

Más detalles

Semblança. Teorema de Tales

Semblança. Teorema de Tales Semblança. Teorema de Tales Dos polígons són semblants si el angles corresponents són iguals i els costats corresponents són proporcionals. ABCDE A'B'C'D'E' si: Â = Â',Bˆ = Bˆ', Ĉ = Ĉ', Dˆ = Dˆ', Ê = Ê'

Más detalles

FUNCIONS I DERIVADES. a/ Dibuixeu la funció en l'interval [1,2'5]. Feu una taula de valors amb els següents valors a la x: 2'5,

FUNCIONS I DERIVADES. a/ Dibuixeu la funció en l'interval [1,2'5]. Feu una taula de valors amb els següents valors a la x: 2'5, FUNCIONS I DERIVADES 1 Donada la funció y = + 3: a/ Dibuieu la funció en l'interval [1,'5]. Feu una taula de valors amb els següents valors a la : '5,, 1'5, 1'3, 1'1, 1'01, 1'001. b/ Calculeu les taes

Más detalles

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera:

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: Dossier de sistemes d'equacions lineals. / Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: k b a k b a Coeficients de les incògnites:

Más detalles

Gràfiques del moviment rectilini uniforme (MRU)

Gràfiques del moviment rectilini uniforme (MRU) x = x 0 + v (t-t 0 ) si t 0 = 0 s x = x 0 + vt D4 Gràfiques del moviment rectilini uniforme (MRU) Gràfica posició-temps Indica la posició del cos respecte el sistema de referència a mesura que passa el

Más detalles

Matemàtiques 1r d'eso Professora: Lucía Clar Tur DOSSIER DE REPÀS

Matemàtiques 1r d'eso Professora: Lucía Clar Tur DOSSIER DE REPÀS DOSSIER DE REPÀS 1. Ordena els nombres de més petit a més gran: 01 0 01 101 0 001 0 001 0 1. Converteix els nombres fraccionaris en nombres decimals i representa ls en la recta: /4 1/ 8/ 11/10. Efectua

Más detalles

420 MATEMÀTIQUES 1r ESO MATERIAL FOTOCOPIABLE GRUP PROMOTOR / SANTILLANA EDUCACIÓN, S. L. AVALUACIÓ INICIAL

420 MATEMÀTIQUES 1r ESO MATERIAL FOTOCOPIABLE GRUP PROMOTOR / SANTILLANA EDUCACIÓN, S. L. AVALUACIÓ INICIAL NOMBRES NATURALS Escriu en xifres i lletres. a) Un nombre que sigui deu mil unitats més gran que.08.7. b) Un nombre que sigui un milió d unitats més petit que 0.0.. Troba el valor posicional de la xifra.

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA GEOMETRÍA ANALÍTICA PLANA Un vector fijo es un segmento orientado que va del punto A (origen) al punto B (extremo). Módulo del vector : Es la longitud del segmento AB, se representa por. Dirección del

Más detalles

COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD PROVES D ACCÉS A LA UNIVERSITAT PRUEBAS DE ACCESO A LA UNIVERSIDAD CONVOCATÒRIA: SETEMBRE

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2012

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2012 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 1 SÈRIE 3 1.- Digueu per a quin valor del paràmetre m els plans π 1 : x y +mz = 1, π 2 : x y +z = m, π 3 : my +2z = 3, tenen com a

Más detalles

Institut d Educació Secundària. x b) A partir de la gràfica d aquesta funció, indica quin és el domini i el recorregut.

Institut d Educació Secundària. x b) A partir de la gràfica d aquesta funció, indica quin és el domini i el recorregut. Generalitat de Catalunya Departament d Educació Institut d Educació Secundària Jaume Balmes Departament de Matemàtiques MS Àlgebra i uncions I Nom: Grup: ) Resol les següents equacions: a) 7+ 3+ c) 3 +

Más detalles

Bloc I. ARIMÈTICA. Tema 6: POTÈNCIES I ARREL QUADRADA TEORIA

Bloc I. ARIMÈTICA. Tema 6: POTÈNCIES I ARREL QUADRADA TEORIA 1. INTRODUCCIÓ. IES L ASSUMPCIÒ d El http://ww w.ieslaasuncion.org Observa l arbre genealògic de Lluïsa: Rebesavis Besavis Iaios Pares Lluïsa Hi ha ocasions en les que per a resoldre un problema es necessari

Más detalles

Problemes de dinàmica:

Problemes de dinàmica: Problemes de dinàmica: 1- Sobre una massa M = 5 kg, que es troba en repòs a la base del pla inclinat de la figura, s'aplica una força horitzontal F de mòdul 50 N. En arribar a l'extrem superior E, situat

Más detalles

COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD PROVES D ACCÉS A LA UNIVERSITAT PRUEBAS DE ACCESO A LA UNIVERSIDAD CONVOCATÒRIA: SETEMBRE

Más detalles

TEMA 4: Equacions de primer grau

TEMA 4: Equacions de primer grau TEMA 4: Equacions de primer grau Full de preparació Aquest full s ha de lliurar el dia de la prova Nom:... Curs:... 1. Expressa algèbricament les operacions següents: a) Nombre de rodes necessàries per

Más detalles

Dossier de recuperació

Dossier de recuperació Dossier de recuperació Tecnologia 3r ESO A 2n trimestre Departament de Tecnologia Curs 2013-2014 Tema 3: Màquines simples 1. Què és una màquina? 2. Què és una màquina eina? 3. Quines parts es distingeixen

Más detalles

6. Calcula l obertura de l angle que falta. Digues de quin tipus d angles es tracta. 6

6. Calcula l obertura de l angle que falta. Digues de quin tipus d angles es tracta. 6 Geometria dossier estiu 2012 2C 1. Dibuixa dues rectes, m i n, que siguin: a) Paral leles horitzontalment. c) Paral leles verticalment. b) Secants. d) Perpendiculars. 6 2. Dibuixa una recta qualsevol m

Más detalles

MAGNITUDS. UNITATS. ÀLGEBRA VECTORIAL

MAGNITUDS. UNITATS. ÀLGEBRA VECTORIAL 1 Física bàsica per a la universitat // J. Fort, J. Saurina, J. J. Suñol, E. Úbeda // ISBN 84-8458-18-3 TEM 1 MGNITUDS. UNITTS. ÀLGEBR VECTORIL Objectius Conèier la distinció entre magnitud física escalar

Más detalles

FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. MATEMÀTIQUES-1

FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. MATEMÀTIQUES-1 FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. 1. Funcions exponencials. 2. Equacions exponencials. 3. Definició de logaritme. Propietats. 4. Funcions logarítmiques. 5. Equacions logarítmiques. 1. Funcions exponencials.

Más detalles

Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS

Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS M1 Operacions numèriques Unitat Les fraccions UNITAT LES FRACCIONS 1 M1 Operacions numèriques Unitat Les fraccions 1. Concepte de fracció La fracció es representa per dos nombres enters que s anomenen

Más detalles

Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos

Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos DE S L U S RE S I V I C LES Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos aquells exercicis que requereixen

Más detalles

DOSSIER MATEMÀTIQUES. 4t ESO

DOSSIER MATEMÀTIQUES. 4t ESO DOSSIER MATEMÀTIQUES t ESO ÍNDEX Unitat 0 REPÀS DE TERCER D ESO Unitat POTÈNCIES I ARRELS 8 Unitat ÀREES I VOLUMS Unitat TRIGONOMETRIA Unitat RECTES EN EL PLA Unitat POLINOMIS Unitat 6 EQUACIONS I SISTEMES

Más detalles

avaluació diagnòstica educació secundària obligatòria

avaluació diagnòstica educació secundària obligatòria curs 2011-2012 avaluació diagnòstica educació secundària obligatòria competència matemàtica Nom i cognoms Grup INSTRUCCIONS Llegeix atentament cada pregunta abans de contestar-la. Si t equivoques, ratlla

Más detalles

Límits i continuïtat de funcions

Límits i continuïtat de funcions Límits i continuïtat de funcions Números reales LITERATURA I MATEMÀTIQUES El nombre de Déu És magnífica, pare, no hi ha cap catedral igual en tot el món [ ] Sí, és un edifici etraordinari, però ja fa alguns

Más detalles

4 EXPRESSIONS ALGEBRAIQUES

4 EXPRESSIONS ALGEBRAIQUES 4 EXPRESSIONS ALGEBRAIQUES EXERCICIS PROPOSATS 4.1 4. 4.3 4.4 4.5 4.6 Indiquem amb la lletra c el costat d un heàgon regular. a) Com epressaries el seu perímetre? b) Quin és el valor del perímetre si el

Más detalles

A) Se planteará una prueba que corresponda a los contenidos de Geometría y/o de Arte y Dibujo Técnico.

A) Se planteará una prueba que corresponda a los contenidos de Geometría y/o de Arte y Dibujo Técnico. 8.- Assignatura: Dibuix Tècnic II. 8.1.- Característiques de l examen. Se ofrecerán al alumno dos ejercicios de los que deberá elegir y realizar uno. Cada uno de ellos estará compuesto de las siguientes

Más detalles

VECTORS EN EL PLA. EQUACIÓ VECTORIAL DE LA RECTA ESQUEMA 1. VECTORS EN EL PLA 2. OPERACIONS AMB VECTORS 3. EQUACIONS PARAMÈTRIQUES DE LA RECTA

VECTORS EN EL PLA. EQUACIÓ VECTORIAL DE LA RECTA ESQUEMA 1. VECTORS EN EL PLA 2. OPERACIONS AMB VECTORS 3. EQUACIONS PARAMÈTRIQUES DE LA RECTA VECTORS EN EL PL. EQUCIÓ VECTORIL DE L RECT ESQUEM 1. VECTORS EN EL PL 2. OPERCIONS M VECTORS 3. EQUCIONS PRMÈTRIQUES DE L RECT 1. VECTORS EN EL PL En un sistema d eixos cartesians, cada punt es descriu

Más detalles

1. SISTEMA D EQUACIONS LINEALS

1. SISTEMA D EQUACIONS LINEALS 1. SISTEMA D EQUACIONS LINEALS 1.1 Equacions lineals Una equació lineal està composta de coeficients (nombres reals) acompanyats d incògnites (x, y, z,t..o ) s igualen a un terme independent, i les solucions

Más detalles

GEOMETRIA ANALÍTICA. PROBLEMES AFINS I MÈTRICS

GEOMETRIA ANALÍTICA. PROBLEMES AFINS I MÈTRICS GEOMETRIA ANALÍTICA. PROBLEMES AFINS I MÈTRICS Pàgina 7 REFLEXIONA I RESOL Punt mitjà d un segment Pren els punts P(, ), Q(0, ) i representa ls en el pla: P (, ) Q (0, ) Localitza gràficament el punt mitjà,

Más detalles

operacions inverses índex base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari:

operacions inverses índex base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari: Potències i arrels Potències i arrels Potència operacions inverses Arrel exponent índex 7 = 7 7 7 = 4 4 = 7 base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari: base

Más detalles

2. Operacions amb polinomis: la suma, la resta i el producte de polinomis.

2. Operacions amb polinomis: la suma, la resta i el producte de polinomis. POLINOMIS I FUNCIONS POLINÒMIQUES. 1. Els polinomis.. Operacions amb polinomis: La suma, la resta i el producte de polinomis. 3. Identitats notables. El binomi de Newton. 4. Divisió de polinomis. Regla

Más detalles

Polinomis. Objectius. Abans de començar. 1.Expressions algebraiques pàg. 64 Dels enunciats a les expressions Valor numèric Expressió en coeficients

Polinomis. Objectius. Abans de començar. 1.Expressions algebraiques pàg. 64 Dels enunciats a les expressions Valor numèric Expressió en coeficients 4 Polinomis Objectius En aquesta quinzena aprendràs: A treballar amb expressions literals per obtenir valors concrets en fórmules i equacions en diferents contextos. La regla de Ruffini. El teorema del

Más detalles

CONTINUÏTAT DE LES FUNCIONS DERIVABLES. f derivable f contínua f:(a,b) R x (a,b) f derivable en x 0 0 f contínua en x 0.

CONTINUÏTAT DE LES FUNCIONS DERIVABLES. f derivable f contínua f:(a,b) R x (a,b) f derivable en x 0 0 f contínua en x 0. derivabilitat-1/12 DERIVADA D'UNA FUNCIÓ EN UN PUNT. Donada la funció f:(a,b) R i x 0 (a,b), diem que: x y=f(x) f(x) - f(x 0 ) f és derivable en x 0 existeix lím. x x 0 x - x 0 d'aquest límit, en diem

Más detalles

DIVISIBILITAT. Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 5 35

DIVISIBILITAT. Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 5 35 ESO Divisibilitat 1 ESO Divisibilitat 2 A. El significat de les paraules. DIVISIBILITAT Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 = 7 5 35 = 5 7 35 7 0 5 35

Más detalles

CAMP GRAVITATORI. EXERCICIS DE SELECTIVITAT. Curs fins Curs

CAMP GRAVITATORI. EXERCICIS DE SELECTIVITAT. Curs fins Curs CAMP GRAVITATORI. EXERCICIS DE SELECTIVITAT. Curs 1998-1999 fins Curs 2000-2001 1. (Q1 Sèrie 2 PAAU.LOGSE Curs 1998 1999). A quina altura sobre la superfície de la Terra l acceleració de la gravetat es

Más detalles

FISICA I QUIMICA 4t ESO ACTIVITATS CINEMÀTICA

FISICA I QUIMICA 4t ESO ACTIVITATS CINEMÀTICA FISICA I QUIMICA 4t ESO ACTIVITATS CINEMÀTICA 1. Fes els següents canvis d'unitats amb factors de conversió (a) 40 km a m (b) 2500 cm a hm (c) 7,85 dam a cm (d) 8,5 h a segons (e) 7900 s a h (f) 35 min

Más detalles

FIB Enunciats de Problemes de Física DFEN. Camp magnètic

FIB Enunciats de Problemes de Física DFEN. Camp magnètic Camp magnètic 1. Calculeu la força de Lorentz que actua sobre una càrrega q = -2 10-9 C que es mou amb una velocitat v = -(3 10-6 m/s) i, si el camp magnètic és a) B = 6000 G j b) B = 6000 G i + 6000 G

Más detalles

ELS NOMBRES REALS. MATEMÀTIQUES-1

ELS NOMBRES REALS. MATEMÀTIQUES-1 ELS NOMBRES REALS. MATEMÀTIQUES- ELS NOMBRES REALS.. Els nombres reals.. Intervals de la recta real.. Valor absolut d un nombre real. 4. Notació científica.. Aproximacions i errors. 6. Potències i radicals.

Más detalles

1 ( 7 ( 6)) 2 ( 2) b) c) 3. Classifica els següents nombres segons que pertanyin als conjunts següents

1 ( 7 ( 6)) 2 ( 2) b) c) 3. Classifica els següents nombres segons que pertanyin als conjunts següents IMPORTANT: les activitats s han de fer en un dossier a banda, on s ha d indicar el número d exercici i escriure-hi cada pas que fas. El dossier es lliurarà el dia de l examen extraordinari de setembre.

Más detalles

Les funcions que apliquen a tots els elements del domini la mateixa imatge es diu funció constant, evidentment han d ésser del tipus f(x) = k (k R)

Les funcions que apliquen a tots els elements del domini la mateixa imatge es diu funció constant, evidentment han d ésser del tipus f(x) = k (k R) 1 1 3 FUNCIONS LINEALS I QUADRÀTIQUES 3.1- Funcions constants Les funcions que apliquen a tots els elements del domini la mateixa imatge es diu funció constant, evidentment han d ésser del tipus f(x) k

Más detalles

BATXILLERAT TASQUES D ESTIU

BATXILLERAT TASQUES D ESTIU BATXILLERAT TASQUES D ESTIU - Lengua Española - Anglès - Filosofia - Matemàtiques apl. Soc. - Llatí - Història del món contemporani - Matemàtiques - Física i química - Biologia i Geologia - Economia -

Más detalles

4.7. Lleis de Newton (relacionen la força i el moviment)

4.7. Lleis de Newton (relacionen la força i el moviment) D21 4.7. Lleis de ewton (relacionen la força i el moviment) - Primera Llei de ewton o Llei d inèrcia QUÈ ÉS LA IÈRCIA? La inèrcia és la tendència que tenen el cossos a mantenirse en repòs o en MRU. Dit

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 16 PAU cx by + 2z = b. 2a+b c = a+c 2b 1 b = a b c

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 16 PAU cx by + 2z = b. 2a+b c = a+c 2b 1 b = a b c Oficina d Organització de Proves d Accés a la Universitat Pàgina de 6 PAU 0 SÈRIE 4.- Sabem que el vector (,, ) és solució del sistema ax + by + cz = a+c bx y + bz = a b c. cx by + z = b Calculeu el valor

Más detalles

Oficina d Accés a la Universitat Pàgina 1 de 6 PAU z y 2

Oficina d Accés a la Universitat Pàgina 1 de 6 PAU z y 2 Oficina d Accés a la Universitat Pàgina 1 de 6 PAU 014 SÈRIE 3 1. En Pol, la Júlia i la Maria han comprat un regal. La Júlia ha gastat la meitat que la Maria, i en Pol n ha gastat el triple que la Júlia.

Más detalles

OLIMPÍADA DE FÍSICA CATALUNYA 2014

OLIMPÍADA DE FÍSICA CATALUNYA 2014 La prova consta de quatre parts (A, B, C i D). Cadascuna es puntuarà sobre 20 punts. Les respostes a cada part s han d entregar per separat i cal entregar al menys un full de respostes per cadascuna (encara

Más detalles

1. Funcions polinòmiques, racionals i irracionals

1. Funcions polinòmiques, racionals i irracionals 1. Funcions polinòmiques, racionals i irracionals Matemàtiques I 1r Batillerat 1. Construcció de gràfiques. Funcions, equacions i sistemes de primer grau. Funcions, equacions i sistemes de segon grau.

Más detalles

3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1

3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1 1. Calcula la derivada de las funciones: y = Ln3 4 3 ) 5 y = Ln [ 1) )]. Calcula la derivada de las funciones: y = sen y = sen 3 y = sen 3 y = sen 3 3 y = sen 3 ) y = sen 4 3 4 5) 3 3. Calcula la derivada

Más detalles

UNITAT 3 OPERACIONS AMB FRACCIONS

UNITAT 3 OPERACIONS AMB FRACCIONS M Operacions numèriques Unitat Operacions amb fraccions UNITAT OPERACIONS AMB FRACCIONS M Operacions numèriques Unitat Operacions amb fraccions Què treballaràs? En acabar la unitat has de ser capaç de

Más detalles

Competència matemàtica Sèrie 2

Competència matemàtica Sèrie 2 Proves d accés a cicles formatius de grau mitjà de formació professional inicial, d ensenyaments d arts plàstiques i disseny, i d ensenyaments esportius 2013 Competència matemàtica Sèrie 2 SOLUCIONS, CRITERIS

Más detalles

z 2 4z + 5 = 0, z = x + iy, i 1,

z 2 4z + 5 = 0, z = x + iy, i 1, Àlgebra i Geometria I Tema I NOMBRES COMPLEXOS 1- Necessitat dels nombres complexos i definició (a) Les solucions de les equacions polinòmiques El nombre imaginari i 1 Els enters Z, els racionals Q i els

Más detalles

CONTENIDOS 1º PRIMARIA MATEMÁTICAS CONTENIDOS 2º PRIMARIA

CONTENIDOS 1º PRIMARIA MATEMÁTICAS CONTENIDOS 2º PRIMARIA CONTENIDOS 1º PRIMARIA MATEMÁTICAS - NÚMEROS 0-79. - UNIDADES Y DECENAS. - MAYOR, MENOR E IGUAL. - ANTERIOR Y POSTERIIOR. - SUMAS Y RESTAS DOS CIFRAS EN HORIZONTAL Y EN VERTICAL SIN LLEVAR. - PROBLEMAS

Más detalles

MATEMÀTIQUES ÀREES I VOLUMS

MATEMÀTIQUES ÀREES I VOLUMS materials del curs de: MATEMÀTIQUES ÀREES I VOLUMS EXERCICIS RECULL D APUNTS I EXERCICIS D INTERNET FET PER: Xavier Vilardell Bascompte xevi.vb@gmail.com ÚLTIMA REVISIÓ: 08 de febrer de 2010 Aquests materials

Más detalles

28 Sèries del Quinzet. Proves d avaluació

28 Sèries del Quinzet. Proves d avaluació Sèries del Quinzet. Proves d avaluació INSTRUCCIONS Les proves d avaluació de l aprenentatge del Quinzet estan dissenyades per fer l avaluació interna del centre. Aquestes proves, seguint les directrius

Más detalles

EQUACIONS. 4. Problemes d equacions.

EQUACIONS. 4. Problemes d equacions. EQUACIONS 1. Conceptes bàsics. 1.1. Definició d igualtat algebraica. 1.. Propietats de les igualtats algebraiques. 1.. Definició d identitat. 1.4. Definició d equació. 1.5. Membres i termes d una equació.

Más detalles

6Solucions a les activitats de cada epígraf

6Solucions a les activitats de cada epígraf PÀGINA 4 Pàg. Les equacions són igualtats algebraiques (amb nombres i lletres) que permeten establir relacions entre valors coneguts (dades) i valors desconeguts (incògnites). Aprenent a manejar-les, disposaràs

Más detalles

IES MANUEL DE PEDROLO. Equilibri Elasticitat

IES MANUEL DE PEDROLO. Equilibri Elasticitat Exercici 1 (PAAU 04) La barra prismàtica de la figura, de massa m = 8 kg, s aguanta verticalment sense caure per l acció dels topalls. El topall A és fix i el topall B es prem contra la barra per mitjà

Más detalles

Matemàtiques 1, Editorial Castellnou

Matemàtiques 1, Editorial Castellnou MATEMÀTIQUES 1r BATXILLERAT Llibre utilitzat: Matemàtiques 1, Editorial Castellnou Observacions: La unitat 3 s estudia abans qua la unitat 2, per què l alumnat hagi revisat la Trigonometria abans de necessitar-la

Más detalles

GENÈTICA MOLECULAR GENÉTICA MOLECULAR

GENÈTICA MOLECULAR GENÉTICA MOLECULAR GENÈTICA MOLECULAR GENÉTICA MOLECULAR JUNIO 2002 Este esquema representa les diferents étapes d'un procés cellular. Observeu~lo i responeu: Este esquema representa las diferentes etapas de un proceso celular.

Más detalles

Derivada d una funció

Derivada d una funció Derivada d una funció Derivada d una funció La derivada d una funció, f, en un punt, 0, i que s indica f ( 0 ) es definei com el límit: f '( ) = lim 0 f 0 f 0 0 ( ) ( ) Si aquest límit no eistei, es diu

Más detalles

Polinomis i fraccions. algèbriques BLOC 1. ARITMÈTICA I ÀLGEBRA. 1. Polinomis 1.1. Valor numèric d un polinomi 1.2. Arrels d un polinomi

Polinomis i fraccions. algèbriques BLOC 1. ARITMÈTICA I ÀLGEBRA. 1. Polinomis 1.1. Valor numèric d un polinomi 1.2. Arrels d un polinomi # BLOC. ARITMÈTICA I ÀLGEBRA Polinomis i fraccions algèbriques q. Polinomis.. Valor numèric d un polinomi.. Arrels d un polinomi q. Operacions amb polinomis.. Suma.. Resta.3. Multiplicació.. Divisió.5.

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2005

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2005 Oficina d Organització de Proves d Accés a la Universitat Pàgina de 0 PAU 005 SÈRIE Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals. Ara bé, dins de cada pregunta podeu utilitzar

Más detalles

UNITAT 8. FIGURES PLANES

UNITAT 8. FIGURES PLANES 1. Fes servir aquests punts per traçar dues línies poligonals més de cada tipus, apart de les dels exemples: Línia poligonal oberta Línia poligonal oberta creuada Línia poligonal tancada Línia poligonal

Más detalles

MATEMÀTIQUES 3r d ESO DEURES D ESTIU CURS 2013-14 NOM DE L ALUMNE/A:. CURS I GRUP:

MATEMÀTIQUES 3r d ESO DEURES D ESTIU CURS 2013-14 NOM DE L ALUMNE/A:. CURS I GRUP: MATEMÀTIQUES r d ESO DEURES D ESTIU CURS 0- NOM DE L ALUMNE/A:. CURS I GRUP: Aquests eercicis que us presentem és la feina que ens ha semblat adient per poder repassar els principals conceptes treballats

Más detalles

EQUACIONS DE PRIMER GRAU

EQUACIONS DE PRIMER GRAU 1.- Resol les equacions següents: a) x 6x + 10 b) 6x + 1 + 4x c) 5x + -10 d) 6(x 1) 4(x ) e) 1-4x + 6x f) 5(x ) + 4 (5x 1) + 1 g) 8( 10 x ) -6 h) 11 (x + 7) x (5x 6) i) 6( 7 x ) 8( 6 x ) j) ( 1) + 5x 1

Más detalles

Funcions polinomiques

Funcions polinomiques H. Itkur funcions-ii -1/13 Funcions polinomiques Definició Un polinomi amb coeficients reals és una expressió de la forma p(x) = a 0 + a 1 x + a 2 x 2 +... + a n x n on a 0, a 1,..., a n són nombres reals

Más detalles

44 Dinàmica. Càlcul de la resultant de forces aplicades sobre un cos. Tercera llei de Newton. Forces d acció i reacció

44 Dinàmica. Càlcul de la resultant de forces aplicades sobre un cos. Tercera llei de Newton. Forces d acció i reacció 44 Dinàmica DINÀMICA P.. P.2. P.3. P.4. P.5. P.6. Càlcul de la resultant de forces aplicades sobre un cos Descomposició de forces en un pla Primera llei de Newton. Aplicacions Segona llei de Newton. Aplicacions

Más detalles