TEMA 7: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA. 1.- Transformación de un sistema termodinámico

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 7: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA. 1.- Transformación de un sistema termodinámico"

Transcripción

1 TCNOLOGÍA INDUSTRIAL I. Deartamento de Tecnología. IS Nuestra Señora de la Almudena Mª Jesús Saiz TMA 7: TRMODINÁMICA. MÁUINA TÉRMICA Y MÁUINA FRIGORÍFICA La termodinámica es la arte de la física que se ocua de las relaciones existentes entre el calor y el trabajo. l calor es una forma de energía, y al suministrar calor a ciertos disositivos, estos lo transforman en trabajo mecánico, y en érdidas or calor. Una máquina térmica es un disositivo caaz de arovechar el calor que recibe ara roducir trabajo. l calor que recibe (que se uede obtener de una reacción química, combustión), lo absorbe un sistema, normalmente un fluido, que irá transformando arte de esa energía térmica en energía mecánica. l fluido realiza una serie de transformaciones termodinámicas, y en ellas se uede calcular el trabajo y también el rendimiento de la máquina. La termodinámica estudia los rocesos de transformación de trabajo en calor y viceversa. Trabajo Calor Cuando un cuero absorbe energía en forma de calor, se dilata aumentando de volumen (realiza un trabajo) y aumenta su energía interna que se manifiesta en aumento de temeratura. Cuando hay aumento de volumen, el trabajo se considera ositivo, y cuando disminuye el volumen, el trabajo es negativo..- Transformación de un sistema termodinámico n todo roceso, el trabajo realizado or un fluido, no deende sólo del trabajo inicial y final, sino que también deende del camino seguido Para estudiar los ciclos termodinámicos que describen los fluidos en el interior de una máquina térmica, se arte de las transformaciones básicas reresentadas en un diagrama resión volumen -. Como ejemlo odemos imaginar el gas encerrado en un cilindro (aire, CO, mezcla airecombustible, et.) l trabajo es el area encerrada entre nuestra curva termodinámica y el eje de abcisas Magnitudes básicas: - cuación de estado de un gas ideal. = n.r.t, T = cte - Trabajo realizado = F.d =.S.d= ( ) - Calor absorbido - Primer rinciio de la termodinámica:. Una máquina térmica transforma una arte del calor recibido en trabajo y el resto lo destina a modificar su energía interna. = + U donde U es la variación de energía interna, es el calor agregado al sistema y el trabajo realizado or el sistema. - Segundo rinciio de la termodinámica:. s imosible transferir calor desde un foco frio a un foco caliente sin un aorte externo de energía

2 TCNOLOGÍA INDUSTRIAL I. Deartamento de Tecnología. IS Nuestra Señora de la Almudena Mª Jesús Saiz Tios de transformaciones: Transformación isobára: = constante Transformación isocora: = constante P P T = T T = T =. ( - ) =. = 0 Transformación isoterma: T = constante P Transformación adiabática: = constante, no existe intercambio de calor con el exterior P P P. =.. ϫ = cte = Índice adiabático de un gas ideal.- Transformaciones cíclicas: n las máquinas térmicas los sistemas evolucionan de forma que artiendo de un estado inicial, vuelven a él, mediante transformaciones cerradas. l unto de inicio y fin, tiene las mismas condiciones de resión, volumen y temeratura. n un ciclo, la variación de energía interna es, ues, nula. n la transformación el trabajo es ositivo. n la transformación el trabajo es negativo. l trabajo en una máquina térmica es ositivo cuando el ciclo se realiza en el sentido de las agujas del reloj, el sistema recibe calor y realiza un trabajo de exansión (motor térmico). Y el trabajo es negativo cuando se realiza en sentido antihorario, el sistema cede calor al exterior y se realiza un trabajo de comresión (máquina frigorífica). l trabajo neto resultante de un ciclo comleto será: trabajo encerrado en la curva. TOTAL = +, que corresonde al

3 TCNOLOGÍA INDUSTRIAL I. Deartamento de Tecnología. IS Nuestra Señora de la Almudena Mª Jesús Saiz 3.- Máquina térmica: s un conjunto de elementos que ermite obtener un trabajo mecánico a artir de un desnivel térmico natural o artificial; o bien, que, a artir de un trabajo externo, ermite obtener un desnivel térmico entre dos focos. stas dos formas de trabajar nos clasifican las máquinas térmicas: Máquina térmica directa: Motores térmicos Realizan un trabajo al asar calor desde un foco caliente a otro frio. ste roceso tiene un rendimiento Máquina térmica inversa: Máquina frigorífica y bomba de calor Reciben trabajo ara asar calor desde un foco frio a otro caliente. ste roceso tiene un rendimiento o eficiencia T c = T T c = T MT MTI T f = T T f = T MTD: máquina térmica directa. j: motor térmico de combustión interna alternativo: se inyecta una mezcla de aire/combustible en el interior de los cilindros donde se roducirá la combustión. l calor se transforma en trabajo mecánico y en érdidas en forma de calor. MTI: máquina térmica inversa. j: máquina frigorífica: se extraen calorías del foco frio (medio a refrigerar) y lo transfieren al foco caliente, consumiendo un trabajo. Cálculo de la eficiencia o rendimiento: 3

4 TCNOLOGÍA INDUSTRIAL I. Deartamento de Tecnología. IS Nuestra Señora de la Almudena Mª Jesús Saiz T c = T T c = T T c = T ( ) Motor Térmic o ( ) Máquina Frigorífica Bomba de calor ( ) T f = T T f = T T f = T frigoría = caloría extraída n las máquinas térmicas inversas el rendimiento uede ser mayor del 00%, or eso hablamos de eficiencia y no de rendimiento. sto es osible debido a que el calor transmitido al foco caliente es la suma del calor extraído del foco frío más el trabajo o otencia aortado or el comresor, que se transmite al fluido. 4.- Ciclo de Carnot: Carnot, en 84, estableció el ciclo termodinámico ideal de una máquina térmica, de la que se odría obtener el máximo rendimiento teórico. ste ciclo se conoce con el nombre de Ciclo de Carnot y es un ciclo reversible formado or dos transformaciones isotérmicas y otras dos adiabáticas. s un ciclo teórico e ideal que no uede realizar ninguna máquina térmica. Un ciclo reversible es aquel que uede realizarse en sentido horario y antihorario, y además la inversión se uede realizar en cualquier unto. P T c =0 =0 4 T f 3 4

5 TCNOLOGÍA INDUSTRIAL I. Deartamento de Tecnología. IS Nuestra Señora de la Almudena Mª Jesús Saiz : exansión isotérmica. l fluido toma un calor desde el foco caliente (Tc) y realiza un trabajo, aumentando de volumen. Al no haber variación de temeratura, U = 0 3: exansión adiabática: l fluido realiza trabajo, aumentando de volumen, a exensas de su energía interna y disminuyendo su temeratura desde Tc hasta Tf. = 0 3 4: comresión isotérmica: l fluido cede un calor al foco frio (Tf) y recibe un trabajo, disminuyendo de volumen. Al no haber variación de temeratura, U = 0 4 : comresión adiabática: l fluido recibe trabajo, disminuyendo de volumen, or lo que aumenta su energía interna y su temeratura desde Tf. hasta Tc = 0 Cálculo de la eficiencia o rendimiento de una máquina con ciclo de Carnot: MT (motor térmico) T T T MF (máquina frigorífica) T T T BC (bomba de calor) T T T Para obtener un alto rendimiento, interesa que la temeratura del foco caliente sea lo mayor osible y que la temeratura del foco frio sea lo menor osible. l rendimiento máximo =, sería con T =0 K (imosible). Las temeraturas deben introducirse en las fórmulas en grados Kelvin ( ºK = 73ºC) 5.- jercicios: - jercicio : Un motor térmico de 0 C consume Kcal/h. Calcula el rendimiento del motor y el calor suministrado al foco frio. - jercicio : Una máquina térmica que sigue un ciclo de Carnot toma 00 Kcal del foco caliente a 380ºC y cede 500 Kcal al foco frio. Calcula: a) Rendimiento de la máquina b) Temeratura del foco frio - jercicio 3: Un motor térmico que describe el ciclo ideal de Carnot resenta un rendimiento del 45% cuando la temeratura ambiente es de 0ºC. Calcula: a) Temeratura del foco caliente b) n cuántos grados se tendría que aumentar la temeratura del foco caliente ara alcanzar un rendimiento del 60%? 5

6 TCNOLOGÍA INDUSTRIAL I. Deartamento de Tecnología. IS Nuestra Señora de la Almudena Mª Jesús Saiz - jercicio 4: Una máquina funciona según el ciclo reversible de Carnot entre dos focos a -3 ºC y ºC y recibe desde el exterior una energía de 7000 KJ. Calcula: a) ficiencia de la máquina cuando funciona como máquina frigorífica b) ficiencia de la máquina cuando funciona como bomba de calor c) nergía térmica entregada al foco caliente d) nergía térmica desde el foco frio - PAU Junio 009/00 De acuerdo al segundo rinciio de la termodinámica: a) xlique el fundamento del funcionamiento de los motores térmicos b) xlique el fundamento del funcionamiento de las máquinas frigoríficas - PAU Setiembre 009/00 Algunos roductos hortofrutícolas ueden conservarse a una temeratura comrendida entre 6 y C durante varios días hasta el momento de su consumo. Para conseguir que la temeratura de la cámara de un almacén sea constantemente 0 C se emlea una máquina térmica reversible que funciona de acuerdo al Ciclo de Carnot. Considerando que la temeratura media en el exterior es de 5 C en invierno, y 5 C en verano, calcule: a) La eficiencia de la máquina térmica en la éoca de invierno, y en la de verano b) l calor retirado de la cámara o aortado a la misma en cada estación, si la otencia calorífica utilizada es de 3 k - PAU Setiembre 009/00 Una máquina térmica funciona de acuerdo con un ciclo de Carnot erfecto entre las temeraturas T = 56ºC y T = 77ºC. Si el calor tomado del foco caliente es de 350 J, determine: a) Rendimiento de la máquina. b) Calor aortado al foco frío. c) Trabajo realizado. d) Temeratura del foco frío si se desea conseguir un rendimiento del ciclo del 56%. - PAU Setiembre 007/008 Una máquina frigorífica de,5 k de otencia mantiene una temeratura en su interior de C, funcionando de acuerdo al Ciclo de Carnot. Considerando que el valor de la temeratura en el exterior de la máquina se mantiene constante en 8 C, calcule: a) l rendimiento de la máquina b) l calor eliminado or unidad de tiemo del interior del frigorífico c) l calor aortado or unidad de tiemo al exterior del frigorífico 6

RESUMEN TEMA 8: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA. 1.- Transformación de un sistema termodinámico

RESUMEN TEMA 8: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA. 1.- Transformación de un sistema termodinámico Deartamento de Tecnología. IS Nuestra Señora de la Almudena Mª Jesús Saiz RSUMN TMA 8: TRMODINÁMICA. MÁUINA TÉRMICA Y MÁUINA FRIGORÍFICA La termodinámica es la arte de la física que se ocua de las relaciones

Más detalles

F. Aclarando conceptos sobre termodinámica

F. Aclarando conceptos sobre termodinámica IES Antonio Glez Glez Principios de máquinas Página 1 F. Aclarando conceptos sobre termodinámica Termodinámica La termodinámica es la parte de la física que analiza los fenómenos en los que interviene

Más detalles

TEMA 2 Principios de la Termodinámica

TEMA 2 Principios de la Termodinámica Bases Físicas y Químicas del Medio Ambiente EMA 2 Princiios de la ermodinámica Princiio cero de la termodinámica Si dos sistemas están en equilibrio térmico con un tercero, están en equilibrio térmico

Más detalles

Termodinámica y Máquinas Térmicas

Termodinámica y Máquinas Térmicas Termodinámica y Máquinas Térmicas Tema 04. Funciones de Estado Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica

Más detalles

Calor y Termodinámica

Calor y Termodinámica Calor y Termodinámica E S U E M A D E L A U N I D A D.. Historia y evolución del conceto ágina 4.. El equivalente entre trabajo mecánico y calor ágina 5.. Precisiones sobre calor y trabajo mecánico ágina

Más detalles

Guía Teórica Experiencia Motor Stirling

Guía Teórica Experiencia Motor Stirling Universidad de Chile Escuela de Verano 2009 Curso de Energía Renovable Guía Teórica Experiencia Motor Stirling Escrito por: Diego Huarapil Enero 2009 Introducción El Motor Stirling es un motor térmico,

Más detalles

PROCESOS DE MARKOV. Definiciones en los Procesos de Markov de Primer Orden:

PROCESOS DE MARKOV. Definiciones en los Procesos de Markov de Primer Orden: ROCESOS DE MARKOV rinciio de Markov: Cuando una robabilidad condicional deende únicamente del suceso inmediatamente anterior, cumle con el rinciio de Markov de rimer Orden, es decir. X ( t ) j X () K,

Más detalles

Termodinámica. L = F. Δx. Como se ve en la figura, la presión del gas provoca sobre la superficie del pistón una fuerza que lo hace desplazarse.

Termodinámica. L = F. Δx. Como se ve en la figura, la presión del gas provoca sobre la superficie del pistón una fuerza que lo hace desplazarse. Termodinámica Hemos visto cómo la energía mecánica se uede transformar en calor a través, or ejemlo, del trabajo de la fuerza de rozamiento ero, será osible el roceso inverso? La resuesta es si, y esto

Más detalles

TERMODINÁMICA FUNDAMENTAL. TEMA 4. Aplicaciones del primer principio

TERMODINÁMICA FUNDAMENTAL. TEMA 4. Aplicaciones del primer principio ERMODINÁMICA FUNDAMENAL EMA 4. Alicaciones del rimer rinciio 1. Ecuación energética de estado. Proiedades energéticas 1.1. Ecuación energética La energía interna, al ser función de estado, deende de, y.

Más detalles

Principio de la Termodinámica

Principio de la Termodinámica ema.- Primer P Princiio de la ermodinámica..- El rabajo en la Mecánica. rabajo realizado or una fuerza externa F, que actúa sobre los límites del sistema, cuando su unto de alicación exerimenta un deslazamiento

Más detalles

Por qué son diferentes estas dos capacidades caloríficas?

Por qué son diferentes estas dos capacidades caloríficas? Por qué son diferentes estas dos caacidades caloríficas? En un aumento de temeratura con volumen constante, el sistema no efectúa trabajo y el cambio de energía interna es igual al calor agregado Q. En

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

El Equilibrio Termodinámico. Tipos de Equilibrios.

El Equilibrio Termodinámico. Tipos de Equilibrios. TEMA 1.) CONCEPTOS BASICOS Sistema Termodinámico. Paredes. Tipos de Sistemas. Criterio de Signos. Estado Termodinámico. El Equilibrio Termodinámico. Tipos de Equilibrios. Variables Termodinámicas. Procesos

Más detalles

BLOQUE IV. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS

BLOQUE IV. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS Bloque I. Cilindros neumáticos y oleohidráulicos ág. 1 BLOQUE I. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS INTRODUCCIÓN La Neumática es la arte de la Tecnología que estudia los fenómenos y las alicaciones

Más detalles

Termotecnia y Mecánica de Fluidos (DMN) Mecánica de Fluidos y Termodinámica (ITN) TD. T6.- Ciclos de Refrigeración

Termotecnia y Mecánica de Fluidos (DMN) Mecánica de Fluidos y Termodinámica (ITN) TD. T6.- Ciclos de Refrigeración Termotecnia y Mecánica de Fluidos (DMN) Mecánica de Fluidos y Termodinámica (ITN) TD. T6.- Ciclos de Refrigeración Las trasparencias son el material de apoyo del profesor para impartir la clase. No son

Más detalles

1.- Conceptos básicos. Sistemas, variables y procesos. 2.- Energía, calor y trabajo. 1 er Principio de la Termodinámica. 3.- Entalpía. 4.

1.- Conceptos básicos. Sistemas, variables y procesos. 2.- Energía, calor y trabajo. 1 er Principio de la Termodinámica. 3.- Entalpía. 4. 1.- Conceptos básicos. Sistemas, variables y procesos. 2.- Energía, calor y trabajo. 1 er Principio de la Termodinámica. 3.- Entalpía. 4.- Calor de reacción. Ley de Hess. 5.- Entalpías estándar de formación.

Más detalles

MÁQUINAS TERMODINÁMICA

MÁQUINAS TERMODINÁMICA MÁQUINAS r r Trabajo: W F * d (N m Julios) (producto escalar de los dos vectores) Trabajo en rotación: W M * θ (momento o par por ángulo de rotación) Trabajo en fluidos: W p * S * d p * Energía: capacidad

Más detalles

FÍSICA CICLO 5 CAPACITACIÓN La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades.

FÍSICA CICLO 5 CAPACITACIÓN La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades. UNIDAD 5 TERMODINÁMICA - HIDRAULICA TERMODINÁMICA La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades. ENERGIA TERMICA: Todos los cuerpos se componen de pequeñas

Más detalles

du dv dp dt dh dp dv dt dp dt dv dt dt p 2 p José Agüera Soriano

du dv dp dt dh dp dv dt dp dt dv dt dt p 2 p José Agüera Soriano du d d d dh d d d c c d d d d h h ( ) c d d d d s s c ( ) d 0 d d d d d d d José Agüera Soriano 0 CÁLCULO DE LAS FUNCIONES DE ESADO GASES PERFECOS CON CAPACIDADES CALORÍFICAS VARIABLES VAPOR DE AGUA DIAGRAMA

Más detalles

CONCEPTOS Y EXPERIMENTOS EN DINÁMICA DE FLUIDOS

CONCEPTOS Y EXPERIMENTOS EN DINÁMICA DE FLUIDOS VIII Congreso Nacional de Ciencias Exloraciones fuera y dentro del aula 7 y 8 de agosto, 006 Universidad Earth, Guácimo, Limón, Costa Rica CONCEPTOS Y EXPERIMENTOS EN DINÁMICA DE FLUIDOS Ing. Carlos E.

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Unidad I: ropiedades y Leyes de la ermodinámica! Ciclos de potencia! Ciclo de refrigeración 8/7/0 Ctenido! Ciclos termodinámicos!! Ciclo Rankine! ariantes del Ciclo Rankine! Ciclos

Más detalles

Tema 9: Calor, Trabajo, y Primer Principio

Tema 9: Calor, Trabajo, y Primer Principio 1/34 Tema 9: Calor, Trabajo, y Primer Principio Fátima Masot Conde Ing. Industrial 2010/11 Tema 9: Calor, Trabajo, Primer Principio 2/34 Índice: 1. Introducción. 2. Capacidad calorífica. Calor específico.

Más detalles

T-22: COMPORTAMIENTO IDEAL DE SISTEMAS GASEOSOS

T-22: COMPORTAMIENTO IDEAL DE SISTEMAS GASEOSOS T-22: COMPORTAMIENTO IDEAL DE SISTEMAS GASEOSOS 1. Estados de equilibrio de un sistema. ariables de estado. Transformaciones 1 2. Ecuación de estado ara comortamiento ideal de un gas 2 3. olumen molar

Más detalles

Tema 3. Máquinas Térmicas II

Tema 3. Máquinas Térmicas II Asignatura: Tema 3. Máquinas Térmicas II 1. Motores Rotativos 2. Motores de Potencia (Turbina) de Gas: Ciclo Brayton 3. Motores de Potencia (Turbina) de Vapor: Ciclo Rankine Grado de Ingeniería de la Organización

Más detalles

MATERIAL DE APOYO DE USO ESCLUSIVO DEL CENTRO DE ESTUDIOS MATEMÁTICOS. C.E.M.

MATERIAL DE APOYO DE USO ESCLUSIVO DEL CENTRO DE ESTUDIOS MATEMÁTICOS. C.E.M. 1-. Una cubeta con hielo recibe constantemente calor de un B. mechero como se aprecia en la figura. C. D. De la gráfica de temperatura como función del tiempo, para la muestra, se concluye que entre A.

Más detalles

TEMA 3: PROPIEDADES DE UNA SUSTANCIA PURA, SIMPLE Y COMPRESIBLE

TEMA 3: PROPIEDADES DE UNA SUSTANCIA PURA, SIMPLE Y COMPRESIBLE Auntes 3 TEMA 3: PROPIEDADES DE UNA SUSTANCIA PURA, SIMPLE Y COMPRESIBLE 3.. El rinciio de estado El rinciio de estado informa de la cantidad de roiedades indeendientes necesarias ara esecificar el estado

Más detalles

TEMPERATURA DILATACIÓN. 9. En la escala Celsius una temperatura varía en 45 C. Cuánto variará en la escala Kelvin y

TEMPERATURA DILATACIÓN. 9. En la escala Celsius una temperatura varía en 45 C. Cuánto variará en la escala Kelvin y TEMPERATURA 1. A cuántos grados kelvin equivalen 50 grados centígrados? a) 303 b) 353 c) 453 d) 253 2. Si un cuerpo presenta una temperatura de 20 C Cuál será la lectura de esta en la escala Fahrenheit?

Más detalles

Motor de turbina a gas

Motor de turbina a gas Ciclos Termodinámicos. 1/2 Motor de turbina a gas ciclo abierto: combustible + aire roductos al ambiente modelo ideal: ciclo cerrado internamente reversible donde q H y q L se intercambian a resión constante

Más detalles

CAPITULO V TERMODINAMICA - 115 -

CAPITULO V TERMODINAMICA - 115 - CAPIULO V ERMODINAMICA - 5 - 5. EL GAS IDEAL Es el conjunto de un gran número de partículas diminutas o puntuales, de simetría esférica, del mismo tamaño y de igual volumen, todas del mismo material. Por

Más detalles

CICLOS DE POTENCIAS DE GAS AIRE CERRADOS

CICLOS DE POTENCIAS DE GAS AIRE CERRADOS UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA MECÁNICA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA CICLOS DE POTENCIAS DE

Más detalles

EQUILIBRIO QUÍMICO SOLUCIONES A LAS ACTIVIDADES DE FINAL DE UNIDAD. para cada una de las siguientes reacciones reversibles: O (g) FNO. p p.

EQUILIBRIO QUÍMICO SOLUCIONES A LAS ACTIVIDADES DE FINAL DE UNIDAD. para cada una de las siguientes reacciones reversibles: O (g) FNO. p p. 8 EQUILIBRIO QUÍMICO SOLUCIONES A LAS ACTIVIDADES DE FINAL DE UNIDAD Constante de equilibrio 1 Escribe la eresión de las constantes de equilibrio K y K c ara cada una de las siguientes reacciones reversibles:

Más detalles

INGENIERO. JOSMERY SÁNCHEZ

INGENIERO. JOSMERY SÁNCHEZ UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA MECÁNICA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA REALIZADO POR: INGENIERO.

Más detalles

Sistemas de refrigeración: compresión y absorción

Sistemas de refrigeración: compresión y absorción Sistemas de refrigeración: compresión y absorción La refrigeración es el proceso de producir frío, en realidad extraer calor. Para producir frío lo que se hace es transportar calor de un lugar a otro.

Más detalles

ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O

ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O Calor y temperatura 1ª) Qué es la energía térmica? La energía térmica es la energía que posee un cuerpo (o un sistema material) debido al movimiento

Más detalles

Capítulo 17. Temperatura. t(h) = 100 h h 0

Capítulo 17. Temperatura. t(h) = 100 h h 0 Capítulo 17 Temperatura t(h) = 100 h h 0 h 1 00 h 0 rincipio cero de la termodinámica. Temperatura empírica. La temperatura empírica de un sistema en equilibrio termodinámico se puede asignar mediante

Más detalles

Física II. 1 Fluidos. 2 Movimiento Armónico. 3 Ondas Mecánicas. 4 Superposición de Ondas. 5 Sonido. 6 Calor. 7 Propiedades Térmicas de la Materia

Física II. 1 Fluidos. 2 Movimiento Armónico. 3 Ondas Mecánicas. 4 Superposición de Ondas. 5 Sonido. 6 Calor. 7 Propiedades Térmicas de la Materia Fluidos Física II Moimiento Armónico 3 Ondas Mecánicas 4 Suerosición de Ondas 5 Sonido 6 Calor 7 Proiedades Térmicas de la Materia 8 Primera Ley de la Termodinámica Fluidos Presión Un fluido en reoso esta

Más detalles

9. Lección 9: Cambios de Fase

9. Lección 9: Cambios de Fase 9. Lección 9: Cambios de Fase Cuando un sistema consiste de más de una fase, cada fase uede ser considerada como un sistema searado del todo. Los arámetros termodinámicos del sistema entero ueden ser construidos

Más detalles

Uto-Fni Ingeniería Mecánica. Apuntes de Clase MEC 2250. Termodinámica de los compresores. Docente: Emilio Rivera Chávez

Uto-Fni Ingeniería Mecánica. Apuntes de Clase MEC 2250. Termodinámica de los compresores. Docente: Emilio Rivera Chávez Uto-Fni Ingeniería Mecánica Auntes de Clase MEC 50 ERMODINAMICA ECNICA II ermodinámica de los comresores Docente: Oruro, julio de 009 Auntes de Clase ermodinámica de los comresores de gas MEC50 0. Procesos

Más detalles

FUNDAMENTOS SISTEMAS TRITÉRMICOS EYECCION

FUNDAMENTOS SISTEMAS TRITÉRMICOS EYECCION SISTEMAS TRITÉRMICOS EYECCION LAS MÁQUINAS DE EYECCIÓN FUNDAMENTOS Como en el sistema de compresión, la máquina de eyección es un sistema basado en la vaporización de un líquido a baja presión. Las funciones

Más detalles

Bomba de calor y eficiencia energética. José Fernández Seara Área de Máquinas e Motores Térmicos Universidade de Vigo

Bomba de calor y eficiencia energética. José Fernández Seara Área de Máquinas e Motores Térmicos Universidade de Vigo d Bomba de calor y eficiencia energética José Fernández Seara Área de Máquinas e Motores Térmicos Universidade de Vigo BOMBA D CALOR Bomba de calor FOCO CALINT, T 2 FOCO CALINT, T 2 T 2 >T 1 CALOR CALOR

Más detalles

RENDIMIENTO de TRANSFORMADORES

RENDIMIENTO de TRANSFORMADORES ENDMENTO de TANSFOMADOES Norberto A. Lemozy NTODCCÓN El conocimiento del rendimiento de cualquier máquina, disositivo o sistema tiene una gran imortancia or el valor económico que ello reorta, tanto desde

Más detalles

III Tema Segunda ley de la termodinámica

III Tema Segunda ley de la termodinámica UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA PESQUERA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA III Tema Segunda ley de

Más detalles

Calor: energía transferida debida únicamente a diferencias de temperatura

Calor: energía transferida debida únicamente a diferencias de temperatura TERMODINÁMICA La termodinámica estudia la energía y sus transformaciones. Energía: capacidad para realizar trabajo. Formas de energía Energía radiante Energía térmica Energía química Energía potencial

Más detalles

AHORRO DE ENERGÍA EN CIRCUITOS FRIGORÍFICOS

AHORRO DE ENERGÍA EN CIRCUITOS FRIGORÍFICOS VI SEMINARIO CLIMATIZACÍÓN Y REFRIGERACIÓN AHORRO DE ENERGÍA EN CIRCUITOS FRIGORÍFICOS 22/09/2016 NIK INGENIEROS 1 VARIABLES QUE INTERVIENEN EN EL CONSUMO ENERGÉTICO EN CIRCUITOS FRIGORÍFICOS JOSE MARIA

Más detalles

CARACTERÍSTICAS DE LA DEMANDA AGREGADA DE ENERGÍA ELÉCTRICA

CARACTERÍSTICAS DE LA DEMANDA AGREGADA DE ENERGÍA ELÉCTRICA CARACTERÍSTICAS DE LA DEMANDA AGREGADA DE ENERGÍA ELÉCTRICA 65 GENERALIDADES SOBRE LA DEMANDA DE UN BIEN CUALQUIERA. 66 CANTIDAD DEMANDADA DE UN BIEN: Aquella que están dispuestas a adquirir los compradores

Más detalles

Energía solar y transmisión de calor

Energía solar y transmisión de calor Energía solar y transmisión de calor 1 Los contenidos del tema son 1.1 Conceptos elementales de astronomía en cuanto a la posición solar 1.2 Conversión de la energía solar. Energía incidente sobre una

Más detalles

MECANICA DE FLUIDOS I. Departamento de Metalurgia Universidad de Atacama

MECANICA DE FLUIDOS I. Departamento de Metalurgia Universidad de Atacama MECANICA DE FLUIDOS I Juan Chamorro González Deartamento de Metalurgia Universidad de Atacama PRESIÓN Y MANOMETRÍA La Presión El término resión se usa ara indicar la fuerza normal or unidad de área en

Más detalles

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO ASIGNATURA 9562 EQUIPOS E INSTALACIONES TÉRMICAS E HIDRAULICAS TOPICO II NIVEL 05 EXPERIENCIA E-952 TURBINA

Más detalles

TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones.

TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones. Esquema: TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones. TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones....1 1.- Introducción...1 2.- Máquina frigorífica...1

Más detalles

Unidad 5. Aplicaciones de las derivadas. Objetivos. Al terminar la unidad, el alumno:

Unidad 5. Aplicaciones de las derivadas. Objetivos. Al terminar la unidad, el alumno: Unidad 5 Alicaciones de las derivadas Objetivos Al terminar la unidad, el alumno: Resolverá roblemas de ingreso utilizando el ingreso marginal. Resolverá roblemas de costos utilizando el costo marginal

Más detalles

Laboratorio de Termotécnia E. T. S. E. I. B.

Laboratorio de Termotécnia E. T. S. E. I. B. Laboratorio de Termotécnia E. T. S. E. I. B. Universitat Politècnica de Catalunya Profesor José Mª Nacenta, Dr. Ingeniero Industrial Instalación típica: EcoTermIn Máquina de frío: Es una máquina de trasladar

Más detalles

TEMA 10 ANÁLISIS COSTE-VOLUMEN-BENEFICIO

TEMA 10 ANÁLISIS COSTE-VOLUMEN-BENEFICIO TEMA 10 ANÁLISIS COSTE-VOLUMEN-BENEFICIO 1 10.1. INTRODUCCIÓN Qué es el análisis C-V-B? Modelo que estudia la relación existente entre costes, recios, volúmenes de venta y beneficios, tomando ara el análisis

Más detalles

Capítulo 8. Termodinámica

Capítulo 8. Termodinámica Capítulo 8 Termodinámica 1 Temperatura La temperatura es la propiedad que poseen los cuerpos, tal que su valor para ellos es el mismo siempre que estén en equilibrio térmico. Principio cero de la termodinámica:

Más detalles

MAQUINAS HIDRAULICAS Y TERMICAS Motores de Combustión Interna Alternativos Introducción. Elementos Constructivos. Clasificación

MAQUINAS HIDRAULICAS Y TERMICAS Motores de Combustión Interna Alternativos Introducción. Elementos Constructivos. Clasificación INTRODUCCIÓN A LOS MOTORES DE COMBUSTIÓN INTERNA ALTERNATIVOS INTRODUCCIÓN A LOS MOTORES TÉRMICOS MOTOR DE COMBUSTIÓN INTERNA ALTERNATIVO CARACTERÍSTICAS PRINCIPALES ELEMENTOS CONSTRUCTIVOS DE LOS M.C.I.A.

Más detalles

El Sol es la principal fuente de energía de la Tierra, para qué sirve esta energía?:

El Sol es la principal fuente de energía de la Tierra, para qué sirve esta energía?: TEMA 7: EL SOL COMO FUENTE DE ENERGÍA El Sol es la principal fuente de energía de la Tierra, para qué sirve esta energía?: Mantiene la vida en la Tierra. Pone en movimiento la atmósfera y la hidrosfera.

Más detalles

BARCO A VAPOR TERMODINÁMICO. INTEGRANTES: Bibiana Rodríguez Laura Liliana Triana Carlos Alberto Chinome

BARCO A VAPOR TERMODINÁMICO. INTEGRANTES: Bibiana Rodríguez Laura Liliana Triana Carlos Alberto Chinome BARCO A VAPOR TERMODINÁMICO INTEGRANTES: Bibiana Rodríguez Laura Liliana Triana Carlos Alberto Chinome PLANTEAMIENTO DEL PROBLEMA Continuando con la promoción y desarrollo de la cátedra de termodinámica

Más detalles

Excedente del Consumidor

Excedente del Consumidor Excedente del Consumidor Microeconomía Douglas Ramírez Introducción Cuando el ambiente económico cambia esto uede afectar ositiva o negativamente al consumidor. Los economistas con frecuencia quieren medir

Más detalles

PRÁCTICA 3. , se pide:

PRÁCTICA 3. , se pide: 3 3.- Dada la función de utilidad U, se ide: a) Calcular la función de la familia de curvas de indiferencia corresondientes a dicha función de utilidad Para calcular la familia de curvas de indiferencia

Más detalles

ENERGÍA INTERNA PARA GASES NO IDEALES.

ENERGÍA INTERNA PARA GASES NO IDEALES. DEPARTAMENTO DE FISICA UNIERSIDAD DE SANTIAGO DE CHILE ENERGÍA INTERNA PARA GASES NO IDEALES. En el caso de los gases ideales o cualquier cuerpo en fase no gaseosa la energía interna es función de la temperatura

Más detalles

Recuperación de la energía de las aguas grises

Recuperación de la energía de las aguas grises Recuperación de la energía de las aguas grises Jesús SOTO Ing. especialista en climat. y EE Gerente de Alter Technica Ingenieros T. 921 46 25 26 / 610 40 11 62 jesus.soto@altertech.es S O S T E N I B I

Más detalles

Caso Práctico de Eficiencia TÉRMICA: PROYECTO EINSTEIN

Caso Práctico de Eficiencia TÉRMICA: PROYECTO EINSTEIN Caso Práctico de Eficiencia TÉRMICA: PROYECTO EINSTEIN ÍNDICE: 1. Datos necesarios para la realización del estudio 2. Tipología de empresas solicitantes del estudio EINSTEIN 3. Ahorros medios obtenidos

Más detalles

DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERÍA QUÍMICA PROGRAMA DE ASIGNATURA

DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERÍA QUÍMICA PROGRAMA DE ASIGNATURA CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERIAS DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERÍA QUÍMICA PROGRAMA DE ASIGNATURA NOMBRE DE MATERIA TERMODINÁMICA QUÍMICA CLAVE DE MATERIA DEPARTAMENTO

Más detalles

el calor cedido al medio disipante (generalmente el aire ambiente o agua) i W el trabajo necesario para que funcione el sistema.

el calor cedido al medio disipante (generalmente el aire ambiente o agua) i W el trabajo necesario para que funcione el sistema. Capítulo 1 Métodos frigoríficos 1. Introducción La refrigeración consiste en la extracción de calor de una sustancia que deseamos mantener a una temperatura inferior a la del medio ambiente. Para ello

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS Junio, Ejercicio 5, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 6, Opción B Reserva 3, Ejercicio

Más detalles

1. FLUIDOS (1 punto) Enuncie la ecuación de Bernoulli y describa cada uno de los términos.

1. FLUIDOS (1 punto) Enuncie la ecuación de Bernoulli y describa cada uno de los términos. Física Forestales. Examen A. 7-0-0 Instrucciones. La parte de teoría se contestará en primer lugar utilizando la hoja de color, sin consultar libros ni apuntes, durante el tiempo que el estudiante considere

Más detalles

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA Diagrama simplificado de los equipos componentes de una central termo-eléctrica a vapor Caldera (Acuotubular): Quemadores y cámara de combustión (hogar): según el tipo de combustible o fuente de energía

Más detalles

Módulo 2: Termodinámica. mica Temperatura y calor

Módulo 2: Termodinámica. mica Temperatura y calor Módulo 2: Termodinámica mica Temperatura y calor 1 Termodinámica y estado interno Para describir el estado externo de un objeto o sistema se utilizan en mecánica magnitudes físicas como la masa, la velocidad

Más detalles

UNIVERSIDAD DE MATANZAS

UNIVERSIDAD DE MATANZAS ASPECOS FUNDAMENALES DE LAS LEYES DE LA ERMODINAMICA. UNIERSIDAD DE MAANZAS CAMILO CIENFUEGOS DPO QUÍMICA E INGENIERÍA MECÁNICA ASPECOS FUNDAMENALES REFERENES A LOS PRINCIPIOS DE LA ERMODINÁMICA. Dr. Andres

Más detalles

Unidad 16: Temperatura y gases ideales

Unidad 16: Temperatura y gases ideales Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 16: Temperatura y gases ideales Universidad Politécnica de Madrid 14 de abril de 2010

Más detalles

TERMODINÁMICA Tema 10: El Gas Ideal

TERMODINÁMICA Tema 10: El Gas Ideal TERMODINÁMICA Tema 10: El Gas Ideal Fundamentos Físicos de la Ingeniería 1 er Curso Ingeniería Industrial Dpto. Física Aplicada III 1 Índice Introducción Ecuación de estado Experimento de Joule Capacidades

Más detalles

CREACIÓN MEDIANTE POWERPOINT DE ANIMACIONES DIDÁCTICAS DIRECTAMENTE CONTROLABLES

CREACIÓN MEDIANTE POWERPOINT DE ANIMACIONES DIDÁCTICAS DIRECTAMENTE CONTROLABLES CREACIÓN MEDIANTE POWERPOINT DE ANIMACIONES DIDÁCTICAS DIRECTAMENTE CONTROLABLES Arcadi Pejuan Escuela Universitaria Politécnica de Vilanova i la Geltrú arcadi.ejuan@uc.es 1. RESUMEN Entre los rofesionales

Más detalles

LAS MÁQUINAS DE ABSORCIÓN

LAS MÁQUINAS DE ABSORCIÓN INTRODUCCIÓN LAS MÁQUINAS DE ABSORCIÓN INTRODUCCION MODOS DE FUNCIONAMIENTO Las máquinas frigoríficas de absorción se integran dentro del mismo grupo de producción de frío que las convencionales de compresión,

Más detalles

10. GASES Y FLUIDOS REALES

10. GASES Y FLUIDOS REALES 10. GASES Y FLUIDOS REALES En caítulos anteriores estudiamos las consecuencias de la Primera y Segunda Ley y los métodos analíticos ara alicar la ermodinámica a sistemas físicos. De ahora en más usaremos

Más detalles

AUDENIA Auditoría de la energía y el ahorro _ c/ Mallorca 27, 2º-1º Barcelona _ t _ AUDITORIA

AUDENIA Auditoría de la energía y el ahorro _ c/ Mallorca 27, 2º-1º Barcelona _ t _ AUDITORIA 4 AUDITORÍA 1. INSTALACIONES Los sistemas técnicos eléctricos y térmicos son objeto del estudio energético Se realiza un inventario de las instalaciones y equipos principales La auditoría comprende el

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora 1 emas 5. Segunda ley de la ermodinámica. i. Máquinas térmicas y su eficiencia. ii. Segunda

Más detalles

Jorge De La Cruz. Universidad Tecnológica de Panamá Facultad de Ingeniería Mecánica. Maquinarias Marinas y Propulsores.

Jorge De La Cruz. Universidad Tecnológica de Panamá Facultad de Ingeniería Mecánica. Maquinarias Marinas y Propulsores. inyección Universidad Tecnológica de Panamá Facultad de Ingeniería Mecánica 29 de marzo de 2011 inyección 1 inyección de encendido inyección inyección inyección Sección transversal de un motor de 4 tiempos

Más detalles

UNIDAD 8: PROPIEDADES TERMODINÁMICAS DE LAS SUSTANCIAS PURAS Y LAS MAQUINAS DE VAPOR

UNIDAD 8: PROPIEDADES TERMODINÁMICAS DE LAS SUSTANCIAS PURAS Y LAS MAQUINAS DE VAPOR UNIDAD 8: PROPIEDADES TERMODINÁMICAS DE LAS SUSTANCIAS PURAS Y LAS MAQUINAS DE VAPOR GASES REALES. EXPERIENCIAS DE ANDREWS. ECUACIÓN DE VAN DER WAALS. FACTOR DE COMPRESIBILIDAD. SISTEMAS HETEROGENEOS.

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Cantidades fundamentales Cantidades básicas y unidaded Unidad I: ropiedades y Leyes de la ermodinámica Cantidades fundamentales ropiedades de estado Función de estado y ecuación de

Más detalles

INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA. La mecánica cuántica estudia la estructura atómica, los enlaces en moléculas y la espectroscopia.

INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA. La mecánica cuántica estudia la estructura atómica, los enlaces en moléculas y la espectroscopia. INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA 1. Qué es la Química Física? "La química física estudia los principios que gobiernan las propiedades el comportamiento de los sistemas químicos" El estudio de los

Más detalles

TEMA 13: Termodinámica

TEMA 13: Termodinámica QUÍMICA I TEMA 13: Termodinámica Tecnólogo Minero Temario ü Procesos espontáneos ü Entropía ü Segunda Ley de la Termodinámica ü Energía libre de Gibbs ü Energía libre y equilibrio químico Procesos espontáneos

Más detalles

TEMA IV: ENERGÍA DE LAS REACCIONES QUÍMICAS

TEMA IV: ENERGÍA DE LAS REACCIONES QUÍMICAS TEMA IV: ENERGÍA DE LAS REACCIONES QUÍMICAS 1.- INTRODUCCIÓN A LA TERMODINÁMICA 2.- PRIMER PRINCIPIO DE LA TERMODINÁMICA 3.- ENTALPIAS DE REACCIÓN Y DE FORMACIÓN 4.- ECUACIONES TERMOQUÍMICAS.REACCIONES

Más detalles

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA OBJETIVO GENERAL: Familiarizar al alumno con los sistemas de torres de refrigeración para evacuar el calor excedente del agua. OBJETIVOS ESPECÍFICOS: Investigar

Más detalles

Tema 4. Experimentos aleatorios. Cálculo de probabilidades.

Tema 4. Experimentos aleatorios. Cálculo de probabilidades. Tema 4. Exerimentos aleatorios. Cálculo de robabilidades. Indice 1. Tios de sucesos. Sucesos robabilísticos.... 2 2. Álgebra de oole... 2 2.1. efiniciones... 2 2.2. Oeraciones. Tios de sucesos... 3 2.3.

Más detalles

EJERCICIOS DE TERMOQUÍMICA

EJERCICIOS DE TERMOQUÍMICA EJERCICIOS DE TERMOQUÍMICA En los exámenes de Acceso a la Universidad se proponen una serie de cuestiones (más teóricas) y problemas (prácticos) para resolver. En estos apuntes vamos a resolver ambos tipos

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

Material CONDUCTOR: (metales) es un material que permite la interacción térmica.

Material CONDUCTOR: (metales) es un material que permite la interacción térmica. CALOR Y TEMPERATURA El conceto de temeratura se origina en las ideas cualitativas de caliente y frío basadas en el sentido del tacto. Un cuero que se siente caliente suele tener una temeratura más alta

Más detalles

Tema 2. Segundo Principio de la Termodinámica

Tema 2. Segundo Principio de la Termodinámica ema Segundo Principio de la ermodinámica EMA SEGUNDO PRINCIPIO DE LA ERMODINÁMICA. ESPONANEIDAD. SEGUNDO PRINCIPIO DE LA ERMODINÁMICA 3. ENROPÍA 4. ECUACIÓN FUNDAMENAL DE LA ERMODINÁMICA 5. DEERMINACIÓN

Más detalles

INGENIERÍA AERONÁUTICA TERMODINÁMICA SÍLABO

INGENIERÍA AERONÁUTICA TERMODINÁMICA SÍLABO I. DATOS GENERALES: INGENIERÍA AERONÁUTICA TERMODINÁMICA SÍLABO 1.1 ASIGNATURA : Termodinámica 1.2 CÓDIGO : 3301-33212 1.3 PRE-REQUISITO : 3301-33108 y 3301-33111 1.4 HORAS SEMANALES : 05 1.4.1 TEORÍA

Más detalles

Modelo para la ubicación de aerogeneradores y paneles fotovoltaicos en proyectos de electrificación rural con microrredes

Modelo para la ubicación de aerogeneradores y paneles fotovoltaicos en proyectos de electrificación rural con microrredes Modelo ara la ubicación de aerogeneradores y aneles fotovoltaicos en royectos de electrificación rural con microrredes Pág.1 Resumen Una tercera arte de la oblación mundial, casi en su totalidad en comunidades

Más detalles

UNIVERSIDAD NACIONAL DEL SUR 1

UNIVERSIDAD NACIONAL DEL SUR 1 UNIVERSIDAD NACIONAL DEL SUR 1 PROGRAMA DE: Termodinámica Química para Ingeniería CODIGO: 6479 H O R A S D E C L A S E P R O F E S O R R E S P O N S A B L E T E O R I C A S P R A C T I C A S Dra. Susana

Más detalles

Oferta y demanda. Oferta y demanda. Excedente del consumidor. Disposición a pagar. Tema 2

Oferta y demanda. Oferta y demanda. Excedente del consumidor. Disposición a pagar. Tema 2 Oferta y demanda Tema 2 Oferta y demanda La oferta y la demanda son los instrumentos más imortantes de la Teoría Económica Vamos a ver los asectos más básicos de la oferta y la demanda, así como el análisis

Más detalles

Cálculo del poder estadístico de un estudio

Cálculo del poder estadístico de un estudio Investigación: Cálculo del oder estadístico de un estudio /7 Cálculo del oder estadístico de un estudio Pértegas Día, S. sertega@canalejo.org, Pita Fernánde, S. sita@canalejo.org Unidad de Eidemiología

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS EAP DE MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cueros cuadráticos Caítulo

Más detalles

NOCIONES BASICAS ES LA MATERIA QUE INTEGRA UN CUERPO SÓLIDO, UN LIQUIDO O UN GAS.

NOCIONES BASICAS ES LA MATERIA QUE INTEGRA UN CUERPO SÓLIDO, UN LIQUIDO O UN GAS. SUSTANCIA: ES LA MATERIA QUE INTEGRA UN CUERPO SÓLIDO, UN LIQUIDO O UN GAS. SUSTANCIA DE TRABAJO: ES LA PORCIÓN DE MATERIA QUE ACTUANDO EN UN SISTEMA ES CAPAZ DE ABSORBER O CEDER ENERGÍA. EN ESE PROCESO

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 1 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS Junio, Ejercicio 4, Opción A Junio, Ejercicio 6, Opción B Reserva 1, Ejercicio 3, Opción B Reserva, Ejercicio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO Junio, Ejercicio 3, Opción A Reserva 1, Ejercicio 3, Opción A Reserva 1, Ejercicio 6, Opción B Reserva, Ejercicio 5, Opción

Más detalles

Determinar de forma cuantitativa el calor que se absorbe o desprende en una reacción de neutralización en medio acuoso -NaOH+HCl- que evoluciona a

Determinar de forma cuantitativa el calor que se absorbe o desprende en una reacción de neutralización en medio acuoso -NaOH+HCl- que evoluciona a Determinar de forma cuantitativa el calor que se absorbe o desprende en una reacción de neutralización en medio acuoso -NaOH+HCl- que evoluciona a presión constante, interpretando los resultados obtenidos

Más detalles

Energía y metabolismo

Energía y metabolismo Energía y metabolismo Sesión 17 Introducción a la Biología Prof. Nelson A. Lagos Los sistemas vivos son abiertos y requieren energía para mantenerse La energía es la capacidad de hacer trabajo. Cinético

Más detalles

PROBLEMAS. Segundo Principio. Problema 1

PROBLEMAS. Segundo Principio. Problema 1 PROBLEMAS Segundo Principio Problema 1 La figura muestra un sistema que capta radiación solar y la utiliza para producir electricidad mediante un ciclo de potencia. El colector solar recibe 0,315 kw de

Más detalles