La calificación final y de las tres evaluaciones se pondrá teniendo en cuenta los criterios de evaluación y el grado de consecución de ellos.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La calificación final y de las tres evaluaciones se pondrá teniendo en cuenta los criterios de evaluación y el grado de consecución de ellos."

Transcripción

1 DEPARTAMENTO DE MATEMÁTICAS Evaluación: SISTEMAS Y Y RECUPERACIÓN La evaluación de los resultados del proceso debe concebirse como parte del proceso educativo, integrada en él y debidamente planificada; debe abarcar y tomar en consideración todos los elementos que intervienen en el proceso educativo y a todas las personas; debe servirse de variados y múltiples instrumentos y procedimientos; debe reflejar las deficiencias del proceso y servir de base a su corrección y debe apoyarse en la determinación de los objetivos y servir para determinar el progreso del alumno de acuerdo con sus intereses, aptitudes y propósitos. Se deberá evaluar en el alumno los conocimientos y el nivel de adquisición de los mismos; la habilidad para aplicar esos conocimientos a la vida escolar y social; los hábitos, destrezas, aptitudes, actitudes, y capacidad de expresión, valoración y creación; los métodos y medios y los hábitos de estudio y de trabajo. Para hacer posible esta evaluación se seguirán las siguientes técnicas: la observación; el análisis de tareas; las pruebas objetivas; el planteamiento de situaciones nuevas y pruebas de comprensión y expresión, y sobre todo en secundaria control del cuaderno del alumno y del trabajo diario. La evaluación va encaminada a valorar el resultado final del proceso educativo, y a evaluar el propio proceso, para poder corregir las deficiencias que se vayan detectando y que sirvan para mejorar el aprendizaje, por eso se realizará mediante: La observación por parte del profesor, que tomará nota de las actitudes y nivel de participación del alumnado. Las respuestas de los alumnos y las alumnas a las preguntas orales que se les haga, bien el profesor o los propios compañeros. Las preguntas que realice el alumnado. La elaboración y la presentación de los trabajos tanto individuales como en grupo La limpieza, el orden y la estructuración del cuaderno de clase. Las respuestas a los ejercicios escritos. De todas las notas obtenidas en cada uno de estos aspectos se calculará la media ponderada para obtener la nota correspondiente a la evaluación. La conducta y actitud se calificará positiva o negativamente. La calificación final y de las tres evaluaciones se pondrá teniendo en cuenta los criterios de evaluación y el grado de consecución de ellos. La evaluación a lo largo del trimestre es continua, es decir en cada examen entran también los temas anteriores, por eso al aumentar materia aumenta la dificultad pero siempre de forma progresiva. El cuaderno, el trabajo en clase y el comportamiento contarán para la nota final de la evaluación tanto positivamente como de forma negativa un 10% de la nota. En toda la ESO se tendrá en cuenta el trabajo diario con el siguiente criterio: cada día que no se realicen los ejercicios supondrá un negativo y la acumulación de cuatro negativos en una misma evaluación representa un punto a restar de la nota de evaluación. En 1º y 2º de E.S.O. se hacen unos cinco exámenes por evaluación. El día de cada examen se recogerá el cuaderno (hojas de archivador) para valorar el trabajo realizado durante los días dedicados al tema correspondiente. Al devolver el cuaderno corregido, junto con las observaciones sobre el trabajo realizado, figurará escrita la nota que han tenido en el examen, los padres o tutores deberán firmar al lado de esa nota para saber que su hijo se la ha enseñado. Para la nota el valor de cada examen es el siguiente:

2 Temas Valor Obtención de la nota de exámenes Examen 1 1 5% Nota por 0,05 Examen 2 1 y 2 10% Nota por 0,1 Examen 3 1, 2 y 3 20% Nota por 0,2 Examen 4 1, 2, 3 y 4 30% Nota por 0,3 Examen 5 1, 2, 3, 4 y 5 35% Nota por 0,35 Los alumnos dispondrán de exámenes de recuperación después de cada evaluación. También se propondrán actividades de profundización y repaso para aquellos que no vayan superando los objetivos establecidos en su nivel correspondiente dándoles hojas de apoyo. Para los grupos de apoyo se decide que en ningún caso se supriman contenidos de forma global. Quizá con algún alumno concreto de esos grupos haya que hacer alguna adaptación curricular significativa. En ese caso se seguirán los criterios del departamento de Orientación. Salvo esta posible excepcionalidad, no se harán adaptaciones curriculares. Sí se seguirá otra dinámica de trabajo, más individualizada, mas cercana y más dirigida pero asegurando que se imparten los contenidos mínimos de la asignatura. En estos grupos se ponderará más el trabajo en clase y en casa, el comportamiento y actitud y el cuaderno para determinar la nota de la evaluación. También se podrá realizar a los alumnos de secundaria un examen final con la idea de que tengan una visión general de la asignatura. Dicho examen servirá para matizar la nota final ponderándolo un 30% siendo el 70% restante las notas de las evaluaciones En Bachillerato se tendrá en cuenta: Los parciales de Primero de Bachillerato tendrán un peso del 40% el primero y 60% el segundo. Para la nota final las tres evaluaciones tendrán el mismo peso, 1/3 cada una de ellas. En segundo de Bachillerato distinguimos dos modelos de calificación: o Modelo A: Si las notas de las evaluaciones de 2º de Bachillerato están dadas por bloques temáticos estos tendrán el siguiente peso para el cómputo de la nota final: Ciencias y Tecnología Humanidades y Ciencias Sociales Álgebra 30% Álgebra 30% Geometría 30% Análisis 45% Análisis 40% Estadística 25% o Nota de los exámenes Suma de todas las cifras de arriba Modelo B: Si las notas de las evaluaciones de 2º de Bachillerato no están dadas por bloques sino por la materia impartida en el periodo de tiempo que ha durado esa evaluación, en la nota final las tres evaluaciones tendrán el mismo peso 1/3 cada una de ellas. En este modelo los dos parciales de cada evaluación tendrán un peso del 40% el primero y 60% el segundo. La decisión de un modelo u otro la toma la profesora que ese curso imparte la asignatura y debe darla a conocer a los alumnos a principio de curso. Este curso las dos profesoras que imparten las Matemáticas de 2º de Bachillerato deciden seguir el Modelo B. En Tecnologías de la Información y de la Comunicación el trabajo en el aula de informática, en las horas lectivas de la asignatura, es primordial pues representa el fundamento del aprendizaje de los alumnos y de valoración de las actividades de enseñanza-aprendizaje. Por eso la asistencia a clase representará el 10% de la nota y el buen comportamiento en el aula, acudir con el material necesario y el trabajo diario representa el 50% de la nota. El 40% restante se determinará en razón de los exámenes y las pruebas escritas

3 1º de ESO 1. Utilizar estrategias y técnicas simples de resolución de problemas, tales como el análisis del enunciado o la resolución de un problema más sencillo y comprobar la solución obtenida. 2. Expresar, utilizando el lenguaje matemático adecuado a su nivel, el procedimiento que se ha seguido en la resolución de un problema. 3. Utilizar los números naturales, los enteros, las fracciones y los decimales, sus operaciones y propiedades para recibir y producir información en actividades relacionadas con la vida cotidiana. 4. Elegir, al resolver un determinado problema, el tipo de cálculo más adecuado (mental o manual) y dar significado a las operaciones y resultados obtenidos, de acuerdo con el enunciado. 5. Calcular el valor de expresiones numéricas sencillas de números enteros, decimales y fraccionarios (basadas en las cuatro operaciones elementales, las potencias de exponente natural y las raíces cuadradas exactas, que contengan, como máximo, dos operaciones encadenadas y un paréntesis), aplicando correctamente las reglas de prioridad y haciendo un uso adecuado de signos y paréntesis. 6. Utilizar las unidades del sistema métrico decimal para efectuar medidas en actividades relacionadas con la vida cotidiana o en la resolución de problemas. 7. Utilizar las unidades monetarias para las conversiones de monedas. 8. Utilizar los procedimientos básicos de la proporcionalidad numérica (como la regla de tres o el cálculo de porcentajes) para obtener cantidades proporcionales a otras en la resolución de problemas relacionados con la vida cotidiana. 9. Identificar y describir regularidades, pautas y relaciones en conjuntos de números, utilizar letras para simbolizar distintas cantidades y obtener expresiones algebraicas como síntesis en secuencias numéricas, así como el valor numérico de fórmulas sencillas. 10. Reconocer y describir los elementos y propiedades característicos de las figuras planas y sus configuraciones geométricas por medio de ilustraciones, de ejemplos tomados de la vida real, o en la resolución de problemas geométricos. 11. Emplear las fórmulas adecuadas para obtener longitudes, áreas y ángulos de las figuras planas, en la resolución de problemas geométricos. 12. Organizar e interpretar informaciones diversas mediante tablas y gráficas, e identificar relaciones de dependencia en situaciones cotidianas. 13. Hacer predicciones sobre la posibilidad de que un suceso ocurra a partir de información previamente obtenida de forma empírica. CRITERIOS DE PROMOCIÓN: MÍNIMOS EXIGIBLES Para la promoción al segundo curso de E. S. O. en la asignatura de Matemáticas se tendrán en cuenta la superación de los siguientes objetivos mínimos: - Saber leer y escribir los números naturales, fraccionarios y enteros y utilizarlos y descubrirlos en la vida cotidiana. - Saber resolver problemas en los que se apliquen las cuatro operaciones elementales, respetando la jerarquía, y en el caso de los naturales, potencias y raíces cuadradas. - Conocer con seguridad el sistema métrico decimal y las unidades monetarias - Saber manejar fracciones y porcentajes. - Saber representar puntos en el plano. - Manejar las proporcionalidades directa e inversa. - Resolver ecuaciones sencillas de primer grado y plantear problemas de la vida cotidiana por medio de ecuaciones. - Conocer las figuras geométricas y saber estimar sus áreas y volúmenes en los casos más sencillos. - Interpretar informaciones estadísticas sencillas.

4 2º de ESO 1. Utilizar estrategias y técnicas de resolución de problemas, tales como el análisis del enunciado, el ensayo y error sistemático, la división del problema en partes, así como la comprobación de la coherencia de la solución obtenida. 2. Expresar, utilizando el lenguaje matemático adecuado a su nivel, el procedimiento que se ha seguido en la resolución de un problema. 3. Operar con números naturales, enteros, fraccionarios y decimales, y utilizarlos para resolver actividades relacionadas con la vida cotidiana. 4. Resolver problemas, eligiendo el tipo de cálculo más adecuado (mental, manual) y dar significado a las operaciones, métodos y resultados obtenidos, de acuerdo con el enunciado. 5. Calcular el valor de expresiones numéricas sencillas de números enteros, decimales y fraccionarios (basadas en las cuatro operaciones elementales y las potencias de exponente natural, que contengan, como máximo, dos operaciones encadenadas y un paréntesis), aplicando correctamente las reglas de prioridad y haciendo un uso adecuado de signos y paréntesis. 6. Utilizar las unidades angulares y temporales para efectuar medidas, directas e indirectas, en actividades relacionadas con la vida cotidiana o en la resolución de problemas. 7. Utilizar los procedimientos básicos de la proporcionalidad numérica (como la regla de tres o el cálculo de porcentajes) para obtener cantidades proporcionales a otras en la resolución de problemas relacionados con la vida cotidiana. 8. Utilizar el lenguaje algebraico para simbolizar, generalizar e incorporar el planteamiento y resolución de ecuaciones de primer grado como una herramienta más con la que abordar y resolver problemas. 9. Reconocer, describir y dibujar las figuras y cuerpos elementales. 10. Emplear el Teorema de Pitágoras y las fórmulas adecuadas para obtener longitudes, áreas y volúmenes de las figuras planas y los cuerpos elementales, en la resolución de problemas geométricos. 11. Utilizar la semejanza para construir polígonos semejantes a otros a partir de una razón dada. 12. Elegir la escala adecuada para representar figuras de dimensiones reales en el plano. 13. Intercambiar información entre tablas de valores y gráficas y obtener información práctica de gráficas cartesianas sencillas referidas a fenómenos naturales, a la vida cotidiana y al mundo de la información. 14. Formular las preguntas adecuadas para conocer las características de una población y recoger, organizar y presentar datos relevantes para responderlas, utilizando los métodos estadísticos apropiados y las herramientas informáticas adecuadas. 15. Obtener e interpretar la tabla de frecuencias y el diagrama de barras o de sectores, así como la moda y la media aritmética, de una distribución discreta sencilla, con pocos datos, utilizando, si es preciso, una calculadora de operaciones básicas. CRITERIOS DE PROMOCIÓN: MÍNIMOS EXIGIBLES - Para la promoción al tercer curso de E. S. O. en la asignatura de Matemáticas se tendrán en cuenta la superación de los siguientes objetivos mínimos: - Saber leer y escribir los números naturales, fraccionarios y enteros y utilizarlos y descubrirlos en la vida cotidiana. - Saber utilizar las unidades angulares y temporales en situaciones de la vida cotidiana - Saber resolver problemas en los que se apliquen las cuatro operaciones elementales, y en el caso de los naturales potencias y raíces cuadradas. - Conocer con seguridad el sistema métrico decimal. - Saber manejar fracciones y porcentajes. - Saber representar puntos en el plano. - Manejar las proporcionalidades directa e inversa. - Resolver ecuaciones sencillas de primer grado tanto teóricas, como aplicadas a la vida cotidiana.

5 - Reconocer los cuerpos geométricos elementales : cubo, ortoedro, prisma, cilindro, pirámide y cono - Conocer y aplicar el teorema de Pitágoras - Saber interpretar planos y escalas - Saber estimar las áreas y volúmenes de los cuerpos geométricos en los casos más sencillos. - Interpretar y leer gráficas relacionadas con aspectos de la vida cotidiana. - Interpretar informaciones estadísticas sencillas. - Construir tablas de frecuencias, diagramas de barras y de sectores con datos de la vida cotidiana 3º de ESO 1. Planificar y utilizar estrategias y técnicas de resolución de problemas, tales como el recuento exhaustivo, la inducción o la búsqueda de problemas afines y comprobar el ajuste de la solución a la situación planteada. 2. Expresar verbalmente, con precisión, razonamientos, relaciones cuantitativas e informaciones que incorporen elementos matemáticos, valorando la utilidad y simplicidad del lenguaje matemático. 3. Calcular expresiones numéricas sencillas de números racionales (basadas en las cuatro operaciones elementales y las potencias de exponente entero, que contengan, como máximo, dos operaciones encadenadas y un paréntesis), aplicar correctamente las reglas de prioridad y hacer uso adecuado de signos y paréntesis. 4. Utilizar convenientemente las aproximaciones decimales, las unidades de medida usuales y las relaciones de proporcionalidad numérica (factor de conversión, regla de tres simple, porcentajes, repartos proporcionales, intereses, etc.) Para resolver problemas relacionados con la vida cotidiana o enmarcados en el contexto de otros campos de conocimiento. 5. Expresar mediante el lenguaje algebraico una propiedad o relación dada mediante un enunciado. 6. Observar regularidades en secuencias numéricas obtenidas de situaciones reales mediante la obtención de la ley de formación y la fórmula correspondiente en casos sencillos. 7. Resolver problemas de la vida cotidiana en los que se precise el planteamiento y resolución de ecuaciones de primer y segundo grado o de sistemas de ecuaciones lineales con dos incógnitas. 8. Reconocer y describir los elementos y propiedades características de las figuras planas, los cuerpos elementales y sus configuraciones geométricas. 9. Calcular las dimensiones reales de figuras representadas en mapas o planos, y dibujar croquis a escalas adecuadas. 10. Utilizar los teoremas de Tales, de Pitágoras y las fórmulas usuales para realizar medidas indirectas de elementos inaccesibles y para obtener las medidas de longitudes, áreas y volúmenes de los cuerpos elementales por medio de ilustraciones, de ejemplos tomados de la vida real o en la resolución de problemas geométricos. 11. Aplicar traslaciones, giros y simetrías a figuras planas sencillas utilizando los instrumentos de dibujo habituales, reconocer el tipo de movimiento que liga dos figuras iguales del plano que ocupan posiciones diferentes y determinar los elementos invariantes y los centros y ejes de simetría en formas y configuraciones geométricas sencillas. 12. Reconocer las transformaciones que llevan de una figura geométrica a otra mediante los movimientos en el plano y utilizar dichos movimientos para crear sus propias composiciones y analizar, desde un punto de vista geométrico, diseños cotidianos, obras de arte y configuraciones presentes en la naturaleza. 13. Reconocer las características básicas de las funciones constantes, lineales y afines en su forma gráfica o algebraica y representarlas gráficamente cuando vengan expresadas por un enunciado, una tabla o una expresión algebraica.

6 14. Obtener información práctica a partir de una gráfica referida a fenómenos naturales, a la vida cotidiana o en el contexto de otras áreas de conocimiento. 15. Elaborar e interpretar tablas y gráficos estadísticos (diagramas de barras o de sectores, histogramas, etc.), así como los parámetros estadísticos más usuales (media, moda, mediana y desviación típica), correspondientes a distribuciones sencillas y utilizar, si es necesario, una calculadora científica. 16. Hacer predicciones cualitativas y cuantitativas sobre la posibilidad de que un suceso ocurra a partir de información previamente obtenida de forma empírica o como resultado del recuento de posibilidades, en casos sencillos. 17. Determinar e interpretar el espacio muestral y los sucesos asociados a un experimento aleatorio sencillo y asignar probabilidades en situaciones experimentales equiprobables, utilizando adecuadamente la Ley de Laplace y los diagramas de árbol. CRITERIOS DE PROMOCIÓN MÍNIMOS EXIGIBLES Para la promoción al 4º curso de E.S.O. en el área de matemáticas se tendrán en cuenta la superación de los siguientes objetivos mínimos: - Saber leer y escribir los números naturales, enteros, fraccionarios y reales, y utilizarlos en la vida cotidiana. - Saber resolver problemas en los que se apliquen las cuatro operaciones, potencias ( de exponente natural y exponente entero ) y raíces. - Dominar el manejo de las fracciones y de los porcentajes. - Manejar con soltura las magnitudes directamente e inversamente proporcionales, así como los repartos proporcionales - Aplicar las ecuaciones de primer grado en problemas de la vida diaria. - Saber resolver ecuaciones de segundo grado sencillas - Utilizar los sistemas de dos ecuaciones con dos incógnitas para resolver problemas de la vida cotidiana - Conocer con seguridad el Sistema métrico decimal. - Saber usar los instrumentos de medida ordinarios. - Conocer las figuras geométricas y saber estimar sus áreas y volúmenes - Interpretar las gráficas cartesianas: recta lineal, afín, hipérbola, y parábola; relacionar las correspondientes con la proporcionalidad directa e inversa. - Elaborar gráficas continuas y discontinuas a partir de un enunciado o tabla de valores o expresión algebraica sencilla - Saber interpretar informaciones estadísticas dadas por gráficas o por tablas. - Saber construir tablas de frecuencias, y gráficos estadísticos, partiendo de datos de la vida real - Comprender la probabilidad en juegos de azar sencillos y saber aplicar la regla de Laplace. - La calificación final y de las tres evaluaciones preceptivas, con nota, se pondrá teniendo en cuenta los criterios de evaluación y el grado de consecución de ellos. 4º ESO OPCIÓN b 1. Planificar y utilizar procesos de razonamiento y estrategias de resolución de problemas, tales como la emisión y justificación de hipótesis o la generalización. 2. Expresar verbalmente, con precisión y rigor, razonamientos, relaciones cuantitativas e informaciones que incorporen elementos matemáticos, valorando la utilidad y simplicidad del lenguaje matemático. 3. Utilizar los distintos tipos de números y operaciones, junto con sus propiedades, para recoger, transformar e intercambiar información y resolver problemas relacionados con la vida diaria y otras materias del ámbito académico. 4. Calcular el valor de expresiones numéricas de números racionales (basadas en las cuatro operaciones elementales y las potencias de exponente entero que contengan, como máximo,

7 tres operaciones encadenadas y un paréntesis), aplicar correctamente las reglas de prioridad y hacer un uso adecuado de signos y paréntesis. 5. Simplificar expresiones numéricas irracionales sencillas (que contengan una o dos raíces cuadradas) y utilizar convenientemente la calculadora científica en las operaciones con números reales, expresados en forma decimal o en notación científica y aplicar las reglas y las técnicas de aproximación adecuadas a cada caso, valorando los errores cometidos. 6. Dividir polinomios y utilizar la regla de Ruffini y las identidades notables en la factorización de polinomios. 7. Resolver inecuaciones y sistemas de inecuaciones de primer grado con una incógnita e interpretar gráficamente los resultados. 8. Resolver problemas de la vida cotidiana en los que se precise el planteamiento y resolución de ecuaciones de primer y segundo grado o de sistemas de ecuaciones lineales con dos incógnitas. 9. Utilizar instrumentos, fórmulas y técnicas apropiadas para obtener medidas directas, y para las indirectas en situaciones reales. 10. Utilizar las unidades angulares del sistema métrico sexagesimal, y las relaciones y razones de la trigonometría elemental para resolver problemas trigonométricos de contexto real, con la ayuda, si es preciso, de la calculadora científica. 11. Conocer y utilizar los conceptos y procedimientos básicos de la geometría analítica plana para representar, describir y analizar formas y configuraciones geométricas sencillas. 12. Identificar relaciones cuantitativas en una situación, determinar el tipo de función que puede representarlas y aproximar e interpretar la tasa de variación a partir de una gráfica, de datos numéricos o mediante el estudio de los coeficientes de la expresión algebraica. 13. Representar gráficamente e interpretar las funciones constantes, lineales, afines o cuadráticas por medio de sus elementos característicos (pendiente de la recta, puntos de corte con los ejes, vértice y eje de simetría de la parábola) y las funciones exponenciales y de proporcionalidad inversa sencillas por medio de tablas de valores significativas, con la ayuda, si es preciso, de la calculadora científica. 14. Elaborar e interpretar tablas y gráficos estadísticos, así como los parámetros estadísticos más usuales en distribuciones unidimensionales y valorar cualitativamente la representatividad de las muestras utilizadas. 15. Determinar e interpretar el espacio muestral y los sucesos asociados a un experimento aleatorio, simple o compuesto, y utilizar la Ley de Laplace, los diagramas de árbol, las tablas de contingencia u otras técnicas combinatorias para calcular probabilidades simples o compuestas. 16. Aplicar los conceptos y técnicas de cálculo de probabilidades para resolver diferentes situaciones y problemas de la vida cotidiana. 4º eso APCIÓN a 1. Planificar y utilizar procesos de razonamiento y estrategias diversas y útiles para la resolución de problemas 2. Expresar verbalmente, con precisión, razonamientos, relaciones cuantitativas e informaciones que incorporen elementos matemáticos, valorando la utilidad y simplicidad del lenguaje matemático. 3. Utilizar los distintos tipos de números y operaciones, junto con sus propiedades, para recoger, transformar e intercambiar información y resolver problemas relacionados con la vida diaria. 4. Calcular el valor de expresiones numéricas sencillas de números racionales (basadas en las cuatro operaciones elementales y las potencias de exponente entero que contengan, como máximo, tres operaciones encadenadas y un paréntesis), aplicar correctamente las reglas de prioridad y hacer un uso adecuado de signos y paréntesis. 5. Simplificar expresiones numéricas irracionales sencillas (que contengan una o dos raíces cuadradas) y utilizar convenientemente la calculadora científica en las operaciones con números expresados en forma decimal o en notación científica.

8 6. Aplicar porcentajes y tasas a la resolución de problemas cotidianos y financieros. 7. Resolver problemas de la vida cotidiana en los que se precise el planteamiento y resolución de ecuaciones de primer y segundo grado o de sistemas de ecuaciones lineales con dos incógnitas. 8. Utilizar instrumentos, fórmulas y técnicas apropiadas para obtener medidas indirectas en situaciones reales. 9. Conocer y utilizar los conceptos y procedimientos básicos de la geometría analítica plana para representar, describir y analizar formas y configuraciones geométricas sencillas. 10. Identificar relaciones cuantitativas en una situación y determinar el tipo de función que puede representarlas. 11. Analizar tablas y gráficas que representen relaciones funcionales asociadas a situaciones reales para obtener información sobre ellas. 12. Representar gráficamente e interpretar las funciones constantes, lineales, afines o cuadráticas por medio de sus elementos característicos (pendiente de la recta, puntos de corte con los ejes, vértice y eje de simetría de la parábola). 13. Determinar e interpretar las características básicas (puntos de corte con los ejes, intervalos de crecimiento y decrecimiento, máximos y mínimos, continuidad, simetrías y periodicidad) que permitan evaluar el comportamiento de una gráfica sencilla. 14. Elaborar e interpretar tablas y gráficos estadísticos, así como los parámetros estadísticos más usuales, correspondientes a distribuciones discretas y continuas, y valorar cualitativamente la representatividad de las muestras utilizadas. 15. Aplicar los conceptos y técnicas de cálculo de probabilidades para resolver diferentes situaciones y problemas de la vida cotidiana. CRITERIOS DE PROMOCIÓN: MÍNIMOS EXIGIBLES. Para la promoción al Bachillerato o a Grados Medios en el área de matemáticas se tendrán en cuenta la superación de los siguientes objetivos mínimos: - Saber leer y escribir toda clase de números, y utilizarlos en la vida cotidiana. - Saber resolver problemas en los que se apliquen las cuatro operaciones, potencias y raíces. - Conocer con seguridad el Sistema métrico decimal. - Dominar el manejo de las fracciones y de los porcentajes. - Saber usar con seguridad el paréntesis y la jerarquía de las operaciones. - Interpretar las gráficas cartesianas: recta lineal, afín, hipérbola, y parábola; relacionar las correspondientes con la proporcionalidad directa e inversa. - Aplicar las ecuaciones de primer grado en problemas de la vida diaria. - Aplicar las ecuaciones de segundo grado en la resolución de problemas. - Saber resolver inecuaciones sencillas. - Conocer y manejar con seguridad las razones trigonométricas.(opción B) - Resolver triángulos cualesquiera aplicando los teoremas del seno y del coseno.( Opción B) - Conocer la proporcionalidad y manejarla con propiedad. - Conocer las cónicas y definirlas como lugares geométricos, sabiendo obtener sus ecuaciones reducidas. (Opción B) - Saber qué es una función y manejar funciones polinómicas y racionales sencillas. - Conocer la función logarítmicas y la exponencial. - Saber qué es una función periódica. - Conocer las figuras geométricas y saber estimar sus áreas y volúmenes en los casos más sencillos. - Comprender la probabilidad en juegos de azar sencillos y saber aplicar la regla de Laplace. - Saber interpretar informaciones estadísticas dadas por gráficas o por tablas.

9 1º BACHILLERATO CIENCIAS Y TECNOLOGÍA. MATEMÁTICAS I 1) Utilizar correctamente los números reales y los números complejos, sus notaciones, operaciones y procedimientos asociados, para presentar e intercambiar información y resolver problemas, valorando los resultados obtenidos de acuerdo con el enunciado; estimar los efectos de las operaciones sobre los números reales y sus representaciones gráfica y algebraica y resolver problemas extraídos de la realidad social y de la naturaleza que impliquen la utilización de ecuaciones e inecuaciones, así como interpretar los resultados obtenidos. Se pretende comprobar con este criterio la adquisición de las destrezas necesarias para la utilización de los números reales, incluyendo la elección de la notación, las aproximaciones y las cotas de error acordes con la situación. Asimismo, se pretende evaluar la comprensión de las propiedades de los números, del efecto de las operaciones y del valor absoluto y su posible aplicación. También se debe valorar la capacidad para traducir algebraicamente una situación y llegar a su resolución, haciendo una interpretación de los resultados obtenidos. 2) Transcribir problemas reales a un lenguaje algebraico, utilizar las técnicas matemáticas apropiadas en cada caso para resolverlos y dar una interpretación, ajustada al contexto, de las soluciones obtenidas. 3) Transferir una situación real problemática a una esquematización geométrica y aplicar las diferentes técnicas de medida de ángulos y longitudes y de resolución de triángulos para encontrar las posibles soluciones y enunciar conclusiones, valorándolas e interpretándolas en su contexto real. Identificar las formas correspondientes a algunos lugares geométricos del plano para analizar sus propiedades métricas y construirlos a partir de ellas, así como obtener e interpretar las ecuaciones reducidas de las cónicas, a partir de sus elementos básicos característicos. Se pretende evaluar la capacidad para representar geométricamente una situación planteada, eligiendo y aplicando adecuadamente las definiciones y transformaciones geométricas que permitan interpretar las soluciones encontradas; en especial, la capacidad para incorporar al esquema geométrico las representaciones simbólicas o gráficas auxiliares como paso previo al cálculo. Asimismo, se pretende comprobar la adquisición de las capacidades necesarias en la utilización de técnicas propias de la geometría analítica para aplicarlas al estudio de las ecuaciones reducidas de las cónicas y de otros lugares geométricos sencillos. 4) Transcribir situaciones de la geometría a un lenguaje vectorial en dos dimensiones y utilizar las operaciones con vectores para resolver los problemas extraídos de ellas, dando una interpretación de las soluciones. La finalidad de este criterio es evaluar la capacidad para utilizar el lenguaje vectorial y las técnicas apropiadas en cada caso, como instrumento para la interpretación de fenómenos diversos. Se pretende valorar especialmente la capacidad para realizar transformaciones sucesivas con objetos geométricos en el plano. 5) Obtener e interpretar las ecuaciones de rectas y utilizarlas, junto con el concepto de producto escalar de vectores dados en bases ortonormales, para resolver problemas de incidencia y cálculo de distancias. 6) Identificar las funciones habituales (lineales, afines, cuadráticas, exponenciales, logarítmicas, trigonométricas y racionales sencillas) dadas a través de enunciados, tablas o expresiones algebraicas, obtener sus gráficas para analizar y aplicar sus características al estudio de fenómenos económicos, sociales, naturales, científicos y tecnológicos que se ajusten a ellas, valorando la importancia de la selección de los ejes, unidades, dominio y escalas. Este criterio pretende evaluar la capacidad para interpretar y aplicar a situaciones del mundo natural, geométrico y tecnológico, la información suministrada por el estudio de las funciones. Particularmente, se pretende comprobar la capacidad de traducir los resultados del análisis al contexto del fenómeno, estático o dinámico, y extraer conclusiones sobre su comportamiento local o global.

10 7) Utilizar los conceptos, propiedades y procedimientos adecuados para encontrar e interpretar características destacadas de funciones expresadas analítica y gráficamente. Se pretende comprobar con este criterio la capacidad de utilizar adecuadamente la terminología y los conceptos básicos del análisis para estudiar las características generales de las funciones y aplicarlas a la construcción de la gráfica de una función concreta. En especial, la capacidad para identificar regularidades, tendencias y tasas de variación, locales y globales, en el comportamiento de la función, reconocer las características propias de la familia y las particulares de la función, y estimar los cambios gráficos que se producen al modificar una constante en la expresión algebraica. 8) Interpretar el grado de correlación existente entre las variables de una distribución estadística bidimensional sencilla y obtener las rectas de regresión para hacer predicciones estadísticas. 9) Utilizar las técnicas de recuento y las fórmulas adecuadas para asignar probabilidades a sucesos correspondientes a fenómenos aleatorios simples y compuestos. Utilizar técnicas estadísticas elementales para tomar decisiones ante situaciones que se ajusten a una distribución de probabilidad binomial o normal. En este criterio se pretende medir la capacidad para determinar la probabilidad de un suceso, utilizando diferentes técnicas, analizar una situación y decidir la opción más conveniente. También se pretende comprobar la capacidad para estimar y asociar los parámetros relacionados con la correlación y la regresión con las situaciones y relaciones que miden. 10) Realizar investigaciones en las que haya que organizar y codificar informaciones, seleccionar, comparar y valorar estrategias para enfrentarse a situaciones nuevas con eficacia, eligiendo y utilizando las herramientas matemáticas y tecnológicas adecuadas en cada caso. Se pretende evaluar la madurez del alumnado para enfrentarse con situaciones nuevas procediendo a su observación, modelado, reflexión y argumentación adecuada, usando las destrezas matemáticas adquiridas. Tales situaciones no tienen por qué estar directamente relacionadas con contenidos concretos; de hecho, se pretende evaluar la capacidad para combinar diferentes herramientas y estrategias, independientemente del contexto en que se hayan adquirido. 11) Expresarse de forma correcta, verbalmente o por escrito, en situaciones susceptibles de ser tratadas matemáticamente, empleando los términos, notaciones y representaciones matemáticas adecuadas a cada caso. CRITERIOS DE PROMOCIÓN Para la promoción al segundo curso de Bachillerato habrán de superarse los siguientes objetivos mínimos: - Distinguir perfectamente las distintas clases de números y operar con ellos. - Plantear y resolver sistemas de ecuaciones. - Resolver triángulos aplicando teoremas diversos: altura, cateto, Pitágoras, coseno, seno. - Relaciones entre las razones trigonométricas de ángulos de distintos cuadrantes. - Ecuaciones de la recta y posiciones relativas entre dos rectas. - Concepto de función. - Límites de funciones. - Continuidad. - Representación de gráficas de derivación sencilla. - Derivadas. Concepto y cálculo. - Logaritmo de un número. - Cálculo de primitivas de funciones elementales. - Correlación y recta de regresión de distribuciones bidimensionales. - Probabilidad, probabilidad condicionada y Teorema de Bayes.

11 SEGUNDO DE BACHILLERATO. MATEMÁTICAS II 1. Utilizar el lenguaje matricial y las operaciones con matrices y determinantes como instrumento para representar e interpretar datos y relaciones y, en general, para resolver situaciones diversas. Este criterio pretende comprobar la destreza para utilizar el lenguaje matricial como herramienta algebraica, útil para expresar y resolver problemas relacionados con la organización de datos; especialmente, si son capaces de distinguir y aplicar, de forma adecuada al contexto, operaciones elemento a elemento, operaciones con filas y columnas, operaciones con submatrices y operaciones con la matriz como objeto algebraico con identidad propia. 2. Transcribir situaciones de la geometría a un lenguaje vectorial en tres dimensiones y utilizar las operaciones con vectores para resolver los problemas extraídos de ellas, dando una interpretación de las soluciones. La finalidad de este criterio es evaluar la capacidad para utilizar el lenguaje vectorial y las técnicas apropiadas en cada caso, como instrumento para la interpretación de fenómenos diversos. Se pretende valorar especialmente la capacidad para realizar transformaciones sucesivas con objetos geométricos en el espacio de tres dimensiones. 3. Identificar, calcular e interpretar las distintas ecuaciones de la recta y el plano en el espacio para resolver problemas de incidencia, paralelismo y perpendicularidad entre rectas y planos y utilizarlas, junto con los distintos productos entre vectores dados en bases ortonormales, para calcular ángulos, distancias, áreas y volúmenes. 4. Transcribir problemas reales a un lenguaje gráfico o algebraico, utilizar conceptos, propiedades y técnicas matemáticas específicas en cada caso para resolverlos y dar una interpretación de las soluciones obtenidas ajustada al contexto. Este criterio pretende evaluar la capacidad de representar un problema en lenguaje algebraico o gráfico y resolverlo aplicando procedimientos adecuados e interpretar críticamente la solución obtenida. Se trata de evaluar la capacidad para elegir y emplear las herramientas adquiridas en álgebra, geometría y análisis, y combinarlas adecuadamente. 5. Utilizar los conceptos, propiedades y procedimientos adecuados, que incluyen la utilización de límites y derivadas, para encontrar, analizar e interpretar características destacadas (dominio, recorrido, continuidad, simetrías, periodicidad, puntos de corte, asíntotas, extremos, intervalos de crecimiento) de funciones expresadas algebraicamente en forma explícita, con objeto de representarlas gráficamente y extraer información práctica en una situación de resolución de problemas relacionados con fenómenos naturales. Se pretende comprobar con este criterio que los alumnos son capaces de utilizar los conceptos básicos del análisis y que han adquirido el conocimiento de la terminología adecuada y los aplican adecuadamente al estudio de una función concreta. 6. Aplicar el concepto y el cálculo de límites y derivadas al estudio de fenómenos naturales y tecnológicos y a la resolución de problemas de optimización. Este criterio pretende evaluar la capacidad para interpretar y aplicar a situaciones del mundo natural, geométrico y tecnológico, la información suministrada por el estudio de las funciones. En concreto, se pretende comprobar la capacidad de extraer conclusiones detalladas y precisas sobre su comportamiento local o global, traducir los resultados del análisis al contexto del fenómeno, estático o dinámico, y encontrar valores que optimicen algún criterio establecido. 7. Aplicar el cálculo de integrales en la medida de áreas de regiones planas limitadas por rectas y curvas sencillas que sean fácilmente representables. Este criterio pretende evaluar la capacidad para medir el área de una región plana mediante el cálculo integral, utilizando técnicas de integración inmediata, integración por partes y cambios de variables sencillos.

12 8. Utilizar los distintos recursos tecnológicos a su disposición de forma conveniente en la realización de cálculos, estimación y comprobación de soluciones y en la resolución de problemas en un contexto adecuado. 9. Realizar investigaciones en las que haya que organizar y codificar informaciones, seleccionar, comparar y valorar estrategias para enfrentarse a situaciones nuevas con eficacia, eligiendo las herramientas matemáticas y tecnológicas adecuadas en cada caso. Se pretende evaluar la madurez del alumnado para enfrentarse a situaciones nuevas procediendo a su observación, modelado, reflexión y argumentación adecuada, usando las destrezas matemáticas adquiridas. Tales situaciones no tienen que estar directamente relacionadas con contenidos concretos; de hecho, se pretende evaluar la capacidad para combinar diferentes herramientas y estrategias, independientemente del contexto en el que se hayan adquirido. 10. Expresarse de forma correcta, verbalmente o por escrito, en situaciones susceptibles de ser tratadas matemáticamente, empleando los términos, notaciones y representaciones matemáticas adecuadas a cada caso. 11. Emplear razonamientos rigurosos al aplicar conceptos y procedimientos en la resolución de problemas, realizando correctamente los cálculos necesarios y utilizando la notación apropiada para obtener el resultado expresado en la unidad adecuada. BACHILLERATO DE HUMANIDADES Y CIENCIAS SOCIALES. 1) Utilizar los números reales para presentar e intercambiar información, controlando y ajustando el margen de error exigible en cada situación, en un contexto de resolución de problemas. Se pretende evaluar la capacidad para utilizar medidas exactas y aproximadas de una situación, controlando y ajustando el margen de error en función del contexto en el que se produzcan. 2) Transcribir a lenguaje algebraico o gráfico una situación relativa a las ciencias sociales y utilizar técnicas matemáticas apropiadas para resolver problemas reales, dando una interpretación de las soluciones obtenidas. Este criterio pretende evaluar la capacidad para traducir algebraica o gráficamente una situación y llegar a su resolución haciendo una interpretación contextualizada de los resultados obtenidos, más allá de la resolución mecánica de ejercicios que sólo necesiten la aplicación inmediata de una fórmula, un algoritmo o un procedimiento determinado. 3) Utilizar los porcentajes y las fórmulas de interés simple y compuesto para resolver problemas financieros e interpretar determinados parámetros económicos y sociales. Este criterio pretende comprobar si se aplican los conocimientos básicos de matemática financiera a supuestos prácticos, utilizando, si es preciso, medios tecnológicos al alcance del alumnado para obtener y evaluar los resultados. 4) Relacionar las gráficas de las familias de funciones con situaciones que se ajusten a ellas; reconocer en los fenómenos económicos y sociales las funciones más frecuentes e interpretar situaciones presentadas mediante relaciones funcionales expresadas en forma de tablas numéricas, gráficas o expresiones algebraicas. Se trata de evaluar la destreza para realizar estudios del comportamiento global de las funciones a las que se refiere el criterio: polinómicas; exponenciales y logarítmicas; valor absoluto; parte entera y racionales sencillas, sin necesidad de profundizar en el estudio de propiedades locales desde un punto de vista analítico. La interpretación, cualitativa y cuantitativa, a la que se refiere el enunciado exige apreciar la importancia de la selección de ejes, unidades, dominio y escalas. 5) Utilizar las tablas y gráficas como instrumento para el estudio de situaciones empíricas relacionadas con fenómenos sociales y analizar funciones que no se ajusten a ninguna fórmula algebraica, propiciando la utilización de métodos numéricos para la obtención de valores no conocidos.

13 Este criterio está relacionado con el manejo de datos numéricos y en general de relaciones no expresadas en forma algebraica. Se dirige a comprobar la capacidad para ajustar a una función conocida los datos extraídos de experimentos concretos y obtener información suplementaria mediante técnicas numéricas. 6) Estudiar las características globales de una función sencilla (intervalos de crecimiento y decrecimiento, continuidad, puntos extremos y tendencias), sin utilizar un aparato analítico complicado que precise del cálculo sistemático de límites y derivadas. 7) Distinguir si la relación entre los elementos de un conjunto de datos de una distribución bidimensional es de carácter funcional o aleatorio e interpretar la posible relación entre variables utilizando el coeficiente de correlación y la recta de regresión. Se pretende comprobar la capacidad de apreciar el grado y tipo de relación existente entre dos variables, a partir de la información gráfica aportada por una nube de puntos; así como la competencia para extraer conclusiones apropiadas, asociando los parámetros relacionados con la correlación y la regresión con las situaciones y relaciones que miden. En este sentido, más importante que su mero cálculo es la interpretación del coeficiente de correlación y la recta de regresión en un contexto determinado. 8) Utilizar técnicas estadísticas elementales para tomar decisiones ante situaciones que se ajusten a una distribución de probabilidad binomial o normal. Se pretende evaluar si, mediante el uso de las tablas de las distribuciones normal y binomial, los alumnos son capaces de determinar la probabilidad de un suceso, analizar una situación y decidir la opción más adecuada. 9) Abordar problemas de la vida real, organizando y codificando informaciones, elaborando hipótesis, seleccionando estrategias y utilizando tanto las herramientas como los modos de argumentación propios de las matemáticas para enfrentarse a situaciones nuevas con eficacia. Se pretende evaluar la capacidad para combinar diferentes herramientas y estrategias, independientemente del contexto en el que se hayan adquirido y de los contenidos concretos de la materia, así como la determinación para enfrentarse a situaciones nuevas haciendo uso de la modelización, la reflexión lógico-deductiva y los modos de argumentación y otras destrezas matemáticas adquiridas, para resolver problemas y realizar investigaciones. 10) Expresarse de forma correcta, verbalmente o por escrito, en situaciones susceptibles de ser tratadas matemáticamente, empleando los términos, notaciones y representaciones matemáticas adecuadas a cada caso. CRITERIOS DE PROMOCIÓN - Saber distinguir los distintos números y saber operar con ellos. - Saber ordenar los números en la recta real. - Saber plantear y resolver ecuaciones de primer y segundo grado. - Saber resolver ecuaciones irracionales - Saber resolver inecuaciones polinómicas y racionales. - Saber plantear y resolver sistemas de ecuaciones (dos y tres incógnitas) por el método de Gauss. - Entender el concepto de función. - Comprender el concepto de logaritmo y saber operar con él. - Saber resolver ecuaciones exponenciales y logarítmicas. - Conocer las funciones trigonométricas sen x y cos x y aquellas cuya representación se pueda hacer a partir de ellas. - Entender el concepto de límite y saber calcular límites de funciones. - Comprender el concepto de derivada. - Saber las derivadas de las funciones elementales. - Saber aplicar las reglas de derivación. - Saber estudiar la monotonía de una función. - Cálculo de máximos y mínimos.

14 - Saber calcular las asíntotas de una función. - Saber representar funciones - Entender el concepto de correlación y la importancia de esta. - Manejar la distribución binomial. - Manejar la distribución normal, entendiendo la importancia de ésta en el estudio de ramas como la Biología, Climatología, Enseñanza, Psicología, Sociología... SEGUNDO DE BACHILLERATO: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 1) Utilizar el lenguaje matricial y aplicar las operaciones con matrices como instrumento para el tratamiento de situaciones que manejen datos estructurados en forma de tablas o grafos. Este criterio pretende evaluar la destreza a la hora de utilizar las matrices tanto para organizar la información como para transformarla a través de determinadas operaciones entre ellas. Transcribir problemas expresados en lenguaje usual al lenguaje algebraico y resolverlos utilizando técnicas algebraicas determinadas: matrices, ecuaciones y programación lineal bidimensional, interpretando críticamente el significado de las soluciones obtenidas. Este criterio está dirigido a comprobar la capacidad de utilizar con eficacia el lenguaje algebraico tanto para plantear un problema como para resolverlo, aplicando las técnicas adecuadas. No se trata de valorar la destreza a la hora de resolver de forma mecánica ejercicios de aplicación inmediata, sino de medir la competencia para seleccionar las estrategias y herramientas algebraicas; así como la capacidad de interpretar críticamente el significado de las soluciones obtenidas. 2) Emplear el método de Gauss para obtener matrices inversas de órdenes dos o tres y para discutir y resolver un sistema de ecuaciones lineales con dos o tres incógnitas. 3) Analizar, cualitativa y cuantitativamente, las propiedades globales y locales (dominio, continuidad, simetrías, puntos de corte, asíntotas, intervalos de crecimiento, extremos relativos) de una función que describa una situación real, extraída de fenómenos habituales en las ciencias sociales, para representarla gráficamente. 4) Analizar e interpretar fenómenos habituales en las ciencias sociales susceptibles de ser descritos mediante una función, a partir del estudio cualitativo y cuantitativo de sus propiedades más características. Este criterio pretende evaluar la capacidad para traducir al lenguaje de las funciones determinados aspectos de las ciencias sociales y para extraer, de esta interpretación matemática, información que permita analizar con criterios de objetividad el fenómeno estudiado y posibilitar un análisis crítico a partir del estudio de las propiedades globales y locales de la función. 5) Utilizar el cálculo de derivadas como herramienta para obtener conclusiones acerca del comportamiento de una función y resolver problemas de optimización extraídos de situaciones reales de carácter económico o social. Este criterio no pretende medir la habilidad de los alumnos en complejos cálculos de funciones derivadas, sino valorar su capacidad para utilizar la información que proporciona su cálculo y su destreza a la hora de emplear los recursos a su alcance para determinar relaciones y restricciones en forma algebraica, detectar valores extremos, resolver problemas de optimización y extraer conclusiones de fenómenos relacionados con las ciencias sociales. 6) Interpretar y calcular integrales definidas sencillas, asociándolas con el problema del área bajo una curva o entre dos curvas. 7) Asignar probabilidades a sucesos aleatorios simples y compuestos, dependientes o independientes, utilizando técnicas personales de recuento, diagramas de árbol o tablas de contingencia. Se trata de valorar tanto la competencia para estimar y calcular probabilidades asociadas a diferentes tipos de sucesos como la riqueza de procedimientos a la hora de asignar probabilidades a priori y a posteriori, compuestas o condicionadas. Este criterio evalúa también la capacidad, en el ámbito de las ciencias sociales, para tomar decisiones de tipo probabilístico que no requieran la utilización de cálculos complicados.

CRITERIOS DE EVALUACIÓN DEPARTAMENTO DE MATEMÁTICAS

CRITERIOS DE EVALUACIÓN DEPARTAMENTO DE MATEMÁTICAS 1º ESO CRITERIOS DE EVALUACIÓN DEPARTAMENTO DE MATEMÁTICAS 1. Utilizar numeros naturales, enteros, fracciones y decimales sencillos, sus operaciones y propiedades, para recoger, transformar e intercambiar

Más detalles

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma

Más detalles

Criterios de Evaluación MÍNIMOS

Criterios de Evaluación MÍNIMOS s 2º ESO / 2ºPAB Concreción : CE.1 Utilizar números enteros, fracciones, decimales y porcentajes sencillos, sus operaciones y propiedades, para recoger, transformar e intercambiar información y resolver

Más detalles

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM UNIDAD I: NÚMEROS (6 Horas) 1.- Repasar el cálculo con números racionales y potencias de exponente entero. 2.- Resolver problemas de la vida cotidiana en los que intervengan los números racionales. 1.-

Más detalles

Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra.

Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra. Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Resolver expresiones con números naturales con paréntesis y operaciones combinadas. 2. Reducir expresiones aritméticas y algebraicas

Más detalles

CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS

CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS CONTENIDOS Y CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 1º DE ESO. Bloque 1: Contenidos Comunes Este bloque de contenidos será desarrollado junto con los otros bloques a lo largo de todas y cada una de las

Más detalles

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso. PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto

Más detalles

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS MATEMÁTICAS 1º ESO U.D. 1 Números Naturales El conjunto de los números naturales. Sistema de numeración decimal. Aproximaciones

Más detalles

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones

Más detalles

Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017.

Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017. Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017. Bloque 1. Procesos, métodos y actitudes en matemáticas. Los criterios correspondientes a este bloque son los marcador

Más detalles

4º E.S.O. Matemáticas A

4º E.S.O. Matemáticas A 4º E.S.O. Matemáticas A Objetivos 1. Incorporar, al lenguaje y formas habituales de argumentación, las distintas formas de expresión matemática (numérica, algebraica, de funciones, geométrica...), con

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS 1. PRIMER CURSO 1.1. CONTENIDOS - Números naturales. - Múltiplos y divisores. Máximo común divisor y Mínimo común múltiplo. - Números enteros. - Números decimales. Aproximación

Más detalles

Contenidos Mínimos de 1º ESO Matemáticas 1º E.S.O.

Contenidos Mínimos de 1º ESO Matemáticas 1º E.S.O. Contenidos Mínimos de 1º ESO Matemáticas 1º E.S.O. - Realizar operaciones básicas con números naturales. - Resolver problemas aritméticos con números naturales. - Calcular potencias y raíces cuadradas

Más detalles

PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C)

PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C) PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C) I.E.S. Universidad Laboral de Málaga Curso 2015/2016 PROGRAMACIÓN DE LA

Más detalles

PENDIENTES DE MATEMÁTICAS DE 3º ESO (CURSO )

PENDIENTES DE MATEMÁTICAS DE 3º ESO (CURSO ) PENDIENTES DE MATEMÁTICAS DE 3º ESO (CURSO 2015-2016) CRITERIOS E INDICADORES Se detallan a continuación los criterios de evaluación junto con sus indicadores de contenidos asociados. Criterio 1: Identificar

Más detalles

MATERIA: MATEMÁTICAS CURSO: CONTENIDOS MÍNIMOS EXTRACTO DE LA PROGRAMACIÓN DIDÁCTICA IES VEGA DEL TÁDER 2º ESO

MATERIA: MATEMÁTICAS CURSO: CONTENIDOS MÍNIMOS EXTRACTO DE LA PROGRAMACIÓN DIDÁCTICA IES VEGA DEL TÁDER 2º ESO MATERIA: MATEMÁTICAS CURSO: 2º ESO CONTENIDOS MÍNIMOS NÚMEROS. Relación de divisibilidad. Descomposición de un número natural en factores primos y cálculo del máximo común divisor y del mínimo común múltiplo

Más detalles

MÓDULO DE MATEMÁTICAS I Contenidos

MÓDULO DE MATEMÁTICAS I Contenidos Bloque 1. Contenidos comunes MÓDULO DE MATEMÁTICAS I Contenidos Utilización de estrategias y técnicas en la resolución de problemas tales como análisis del enunciado y comprobación de la solución obtenida.

Más detalles

Contenidos mínimos Criterios de evaluación Ejemplos de preguntas

Contenidos mínimos Criterios de evaluación Ejemplos de preguntas Contenidos mínimos Criterios de evaluación Ejemplos de preguntas 1º ESO Números naturales, enteros y decimales: operaciones elementales. Fracciones: operaciones elementales. Potencias de exponente natural.

Más detalles

MATERIA: MATEMÁTICAS II CURSO

MATERIA: MATEMÁTICAS II CURSO . I. Currículum de Bachillerato Castilla-La Mancha. Matemáticas II Los contenidos de referencia de la P.A.E.G. serán los establecidos en el Decreto 85/2008, de 17-06-2008, por el que se establece y ordena

Más detalles

BLOQUE I: GEOMETRÍA PLANA Y FIGURAS GEOMÉTRICAS. Ecuaciones y sistemas. 2 (20 horas) Funciones y gráficas. 2 (20 horas) Estadística y probabilidad

BLOQUE I: GEOMETRÍA PLANA Y FIGURAS GEOMÉTRICAS. Ecuaciones y sistemas. 2 (20 horas) Funciones y gráficas. 2 (20 horas) Estadística y probabilidad PROGRAMACIÓN DIDÁCTICA Materia IV Período FBPI Tramo II Ámbito Científico-Tecnológico Bloque I Geometría plana y figuras geométricas Créditos 3 (30 horas) Bloque II Créditos Ecuaciones y sistemas 2 (20

Más detalles

Departamento de Matemáticas. 1º BACHILLERATO Ciencias y Tecnología CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE 2014

Departamento de Matemáticas. 1º BACHILLERATO Ciencias y Tecnología CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE 2014 IES SAN BENITO Departamento de Matemáticas 1º BACHILLERATO Ciencias y Tecnología CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE 2014 PRUEBA EXTAORDINAORIA: La Prueba de septiembre será únicamente de contenidos

Más detalles

UNIDAD 6: ECUACIONES OBJETIVOS

UNIDAD 6: ECUACIONES OBJETIVOS UNIDAD 6: ECUACIONES Conocer los conceptos de ecuación, así como la terminología asociada. Identificar y clasificar los distintos tipos de ecuaciones polinómicas en función de su grado y número de incógnitas.

Más detalles

DEPARTAMENTO MATEMÁTICAS. IES GALLICUM

DEPARTAMENTO MATEMÁTICAS. IES GALLICUM MATEMÁTICAS 2º E.S.O. UNIDAD I: EL NÚMERO ENTERO (16 Horas) 1.- Conocer y distinguir las distintas clases de números (naturales y negativos). (1, 6) 2.- Realizar con soltura operaciones con los números

Más detalles

EXTRACTO DE PROGRAMACIÓN DIDÁCTICA IES VEGA DEL TÁDER 2º BACHILLERATO CONTENIDOS MÍNIMOS

EXTRACTO DE PROGRAMACIÓN DIDÁCTICA IES VEGA DEL TÁDER 2º BACHILLERATO CONTENIDOS MÍNIMOS MATERIA: CURSO: MATEMÁTICAS 2º BACHILLERATO CONTENIDOS MÍNIMOS ÁLGEBRA LINEAL 1) Realizar operaciones con matrices (con un número de filas y columnas no superior a tres) así como obtener la traspuesta

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED.

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. . G r e d o s S a n D i e g o V a l l e c a s CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMERA EVALUACIÓN El Sistema de numeración decimal El sistema de numeración decimal. Lectura y escritura

Más detalles

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS UNIDAD 1: NÚMEROS RACIONALES Distinguir las distintas interpretaciones de una fracción. Reconocer fracciones equivalentes. Amplificar fracciones. Simplificar fracciones hasta obtener la fracción irreducible.

Más detalles

EXTRACTO DE LA PROGRAMACIÓN DOCENTE DEL DEPARTAMENTO DE MATEMÁTICAS CURSO 2010/2011 EDUCACIÓN SECUNDARIA OBLIGATORIA TERCER CURSO

EXTRACTO DE LA PROGRAMACIÓN DOCENTE DEL DEPARTAMENTO DE MATEMÁTICAS CURSO 2010/2011 EDUCACIÓN SECUNDARIA OBLIGATORIA TERCER CURSO EXTRACTO DE LA PROGRAMACIÓN DOCENTE DEL DEPARTAMENTO DE MATEMÁTICAS CURSO 2010/2011 EDUCACIÓN SECUNDARIA OBLIGATORIA TERCER CURSO CRITERIOS DE EVALUACIÓN 1. Utilizar los números racionales, sus operaciones

Más detalles

Resolución de problemas de funciones y gráficas por estudiantes de 3º de E.S.O.

Resolución de problemas de funciones y gráficas por estudiantes de 3º de E.S.O. Máster de Formación del Profesorado de Educación Secundaria Obligatoria y Bachillerato, Formación Profesional y Enseñanza de Idiomas Trabajo Fin de Máster Ámbito Matemáticas Resolución de problemas de

Más detalles

CRITERIOS DE EVALUACIÓN BLOQUE I: ESTADISTICA Y PROBABILIDAD

CRITERIOS DE EVALUACIÓN BLOQUE I: ESTADISTICA Y PROBABILIDAD CRITERIOS DE EVALUACIÓN BLOQUE I: ESTADISTICA Y PROBABILIDAD Clasificar los tipos de caracteres y las variables estadísticas para una determinada población. Elaborar tablas de frecuencias absolutas, relativas

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS El Sistema de numeración decimal

Más detalles

Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra.

Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Clasificar distintos tipos de números: naturales, enteros, racionales y reales. 2. Operar con números reales y aplicar las propiedades

Más detalles

CRITERIOS DE EVALUACIÓN INDICADORES COMPETENCIAS

CRITERIOS DE EVALUACIÓN INDICADORES COMPETENCIAS CICLO: TERCERO NIVEL: SEXTO ÁREA: MATEMÁTICAS CRITERIOS DE EVALUACIÓN INDICADORES COMPETENCIAS C.E.3.1. En un contexto de resolución de problemas sencillos, anticipar una solución razonable y buscar los

Más detalles

CONTENIDOS MÍNIMOS 1ºESO. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos tradicionales.

CONTENIDOS MÍNIMOS 1ºESO. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos tradicionales. DEPARTAMENTO DE: MATERIA: CONTENIDOS MÍNIMOS Matemáticas Matemáticas 1ºESO Números naturales y enteros: -Comparar y ordenar números. -Representar en la recta. -Realización de las cuatro operaciones (suma,

Más detalles

CRITERIOS DE EVALUACIÓN DE PRIMERO DE ESO

CRITERIOS DE EVALUACIÓN DE PRIMERO DE ESO CRITERIOS DE EVALUACIÓN DE PRIMERO DE ESO Aplicar las propiedades fundamentales de la multiplicación. Diferenciar entre división exacta y entera y realizar ambas de forma correcta. Utilizar la propiedad

Más detalles

Matemáticas aplicadas a las Ciencias Sociales I

Matemáticas aplicadas a las Ciencias Sociales I Matemáticas aplicadas a las Ciencias Sociales I OBJETIVOS - MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Aritmética y álgebra - Conocer y distinguir los distintos tipos de números reales. - Saber operar

Más detalles

Colegio Decroly Americano Matemática 7th Core, Contenidos I Período

Colegio Decroly Americano Matemática 7th Core, Contenidos I Período Matemática 7th Core, 2015-2016 Contenidos I Período 1. Sentido Numérico a. Identificar y escribir patrones. b. Escribir números en forma de exponentes. c. Escribir cantidades en notación científica. d.

Más detalles

MATEMÁTICAS 2º ESO 1. CONTENIDOS MÍNIMOS PARA LA EVALUACIÓN POSITIVA

MATEMÁTICAS 2º ESO 1. CONTENIDOS MÍNIMOS PARA LA EVALUACIÓN POSITIVA 1ª evaluación De toda la materia DEPARTAMENTO MATERIA CURSO MATEMATICAS MATEMÁTICAS 2º ESO 2º ESO 1. CONTENIDOS MÍNIMOS PARA LA EVALUACIÓN POSITIVA Realiza en su cuaderno las tareas de clase y las propuestas

Más detalles

4.1 CONTENIDOS PARA PRIMERO DE LA ESO. Conceptos

4.1 CONTENIDOS PARA PRIMERO DE LA ESO. Conceptos 4.1 CONTENIDOS PARA PRIMERO DE LA ESO Conceptos I. Aritmética y álgebra. 1. Números naturales. _ Significado y uso en distintos contextos. _ El sistema de numeración decimal. 2. Operaciones con los números

Más detalles

1. CONTENIDOS BÁSICOS:

1. CONTENIDOS BÁSICOS: 1. CONTENIDOS BÁSICOS: Los contenidos básicos exigibles a la finalización del curso serán: BLOQUE 0: CONTENIDOS COMUNES 1. Emisión y justificación de hipótesis. 2. Generalización de resultados. 3. Expresión

Más detalles

Matemáticas de 2º de ESO

Matemáticas de 2º de ESO DISTRIBUCIÓN DE CONTENIDOS Bloque 1.- Contenidos comunes Matemáticas de 2º de ESO - Utilización de estrategias y técnicas simples en la resolución de problemas, tales como el análisis del enunciado, el

Más detalles

Partiendo de los criterios de evaluación de cada uno de los cursos se han definido los indicadores de logro para cada uno de ellos.

Partiendo de los criterios de evaluación de cada uno de los cursos se han definido los indicadores de logro para cada uno de ellos. E) IDENTIFICACIÓN DE LOS CONOCIMIENTOS Y APRENDIZAJES NECESARIOS PARA QUE EL ALUMNO ALCANCE UNA EVALUACIÓN POSITIVA AL FINAL DE CADA CURSO DE LA ETAPA. INDICADORES DE LOGRO O DESEMPEÑO. Partiendo de los

Más detalles

TEMARIOS PRUEBAS SEMESTRALES 2015 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA

TEMARIOS PRUEBAS SEMESTRALES 2015 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA Saint Gaspar College Misio nero s de la Precio sa Sangre F o r m a n d o P e r s o n a s Í n t e g r a s TEMARIOS PRUEBAS SEMESTRALES 2015 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA NIVEL FECHA *TEMARIO*

Más detalles

Departamento de Matemáticas IES El señor de Bembibre Curso Matemáticas II OBJETIVOS - MATEMÁTICAS II. Análisis

Departamento de Matemáticas IES El señor de Bembibre Curso Matemáticas II OBJETIVOS - MATEMÁTICAS II. Análisis Matemáticas II OBJETIVOS - MATEMÁTICAS II Análisis En este bloque se pretende que los alumnos sean capaces de: - Comprender el concepto de función real de variable real. - Comprender y aplicar el concepto

Más detalles

El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así:

El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así: b) Distribución temporal de las unidades didácticas El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así: 1ª EVALUACIÓN Tema 1 Tema 2 Tema

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS. Ingeniería y Ciencias Exactas 2010.

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS. Ingeniería y Ciencias Exactas 2010. BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS Ingeniería y Ciencias Exactas 2010. 1 ÁREA DE INGENIERIAS Y CIENCIAS EXACTAS INTRODUCCIÓN El propósito

Más detalles

CONTENIDOS MÍNIMOS DE ESO PARA LA EVALUACIÓN DE SEPTIEMBRE 2016

CONTENIDOS MÍNIMOS DE ESO PARA LA EVALUACIÓN DE SEPTIEMBRE 2016 CONTENIDOS MÍNIMOS DE ESO PARA LA EVALUACIÓN DE SEPTIEMBRE 2016 DEPARTAMENTO DE MATEMÁTICAS CRITERIOS DE CALIFICACIÓN. En cada uno de los tres periodos de evaluación se realizará al menos un examen escrito.

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS. Ingeniería y Ciencias Exactas 2013.

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS. Ingeniería y Ciencias Exactas 2013. BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS Ingeniería y Ciencias Exactas 2013. 1 ÁREA DE INGENIERIAS Y CIENCIAS EXACTAS INTRODUCCIÓN El propósito

Más detalles

CRITERIOS DE EVALUACIÓN MATEMÁTICAS

CRITERIOS DE EVALUACIÓN MATEMÁTICAS CRITERIOS DE EVALUACIÓN MATEMÁTICAS Criterios de evaluación para la secundaria obligatoria. 1.- 1ºESO. a)utilizar números naturales y enteros y fracciones y decimales sencillos, sus operaciones y propiedades,

Más detalles

TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS

TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS HOJA INFORMATIVA A.5.2.33 TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS Publicado en el B.O.E. de 21 de Septiembre de 1.993 MARZO 1998 MATEMÁTICAS 1. Números naturales. Sistemas de numeración.

Más detalles

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos

Más detalles

UNIDAD 7. SISTEMA MÉTRICO DECIMAL

UNIDAD 7. SISTEMA MÉTRICO DECIMAL UNIDAD 7. SISTEMA MÉTRICO DECIMAL Reconocer la necesidad de medir, apreciar la utilidad de los instrumentos de medida y conocer los más importantes. Definir el metro como la unidad principal de longitud,

Más detalles

DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE

DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN DESARROLLADOS EN EL TRIMESTRE OBJETIVOS Realizar las operaciones con números naturales

Más detalles

La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación.

La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación. La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación. Los contenidos mínimos de la materia son los que aparecen con un * UNIDAD 1: LOS NÚMEROS NATURALES

Más detalles

CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO

CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO Números Naturales Leer, escribir y ordenar Descomponer en forma aditiva. Operatoria básica en los naturales (suma resta, multiplicación y división) Resolución

Más detalles

FACULTAD DE CIENCIAS AGROPECUARIAS ESCUELA ACADÉMICO PROFESIONAL DE MEDICINA VETERINARIA SILABO MATEMÁTICA I

FACULTAD DE CIENCIAS AGROPECUARIAS ESCUELA ACADÉMICO PROFESIONAL DE MEDICINA VETERINARIA SILABO MATEMÁTICA I FACULTAD DE CIENCIAS AGROPECUARIAS ESCUELA ACADÉMICO PROFESIONAL DE MEDICINA VETERINARIA SILABO MATEMÁTICA I I. DATOS GENERALES 1.1 Código : 0401-04123 1.2 Requisito : Ninguno 1.3 Ciclo Académico : Primero

Más detalles

CENTRO UNIVERSITARIO MONTEJO A.C. SECUNDARIA Temario Matemáticas 1

CENTRO UNIVERSITARIO MONTEJO A.C. SECUNDARIA Temario Matemáticas 1 BLOQUE 1 Convierte números fraccionarios a decimales y viceversa. Conoce y utiliza las convenciones para representar números fraccionarios y decimales en la recta numérica. Representa sucesiones de números

Más detalles

5º Básico. Objetivos de Aprendizaje a Evaluar:

5º Básico. Objetivos de Aprendizaje a Evaluar: Royal American School. Objetivos de Aprendizajes, habilidades y contenidos incorporados en Prueba de Relevancia de Matemática de 5º Básico a 8º Básico I Semestre Año 2013. 5º Básico Objetivos de Aprendizaje

Más detalles

CONTENIDOS EXÁMEN DE ADMISIÓN MATEMÁTICA SEGUNDO BÁSICO 2017

CONTENIDOS EXÁMEN DE ADMISIÓN MATEMÁTICA SEGUNDO BÁSICO 2017 SEGUNDO BÁSICO 2017 DEPARTAMENTO ÁMBITO NUMÉRICO 0-50 - Escritura al dictado - Antecesor y sucesor - Orden (menor a mayor y viceversa) - Patrones de conteo ascendente (2 en 2, 5 en 5, 10 en 10) - Comparación

Más detalles

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS UNIDAD 1: NÚMEROS NATURALES Realizar las operaciones con números naturales (suma, resta, multiplicación y división) y operaciones combinadas de las anteriores. Diferenciar entre división exacta y entera,

Más detalles

MATEMÁTICA DE CUARTO 207

MATEMÁTICA DE CUARTO 207 CAPÍTULO 1 CONJUNTOS NUMÉRICOS 1 Introducción... pág. 9 2 Números naturales... pág. 10 3 Números enteros... pág. 10 4 Números racionales... pág. 11 5 Números reales... pág. 11 6 Números complejos... pág.

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS. o Los números de siete y

Más detalles

COLEGIO HELVETIA PROGRAMA DE MATEMÁTICAS GRADO ONCE

COLEGIO HELVETIA PROGRAMA DE MATEMÁTICAS GRADO ONCE COLEGIO HELVETIA PROGRAMA DE MATEMÁTICAS GRADO ONCE 201-2015 OBJETIVO GENERAL: Entender las bases conceptuales de función, el problema del infinito, así como sus aplicaciones a otras áreas del conocimiento

Más detalles

Preparación para Álgebra 1 de Escuela Superior

Preparación para Álgebra 1 de Escuela Superior Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

PROGRAMACIÓN DIDÁCTICA

PROGRAMACIÓN DIDÁCTICA PROGRAMACIÓN DIDÁCTICA Materia Período FBPI Tramo II Ámbito Científico-Tecnológico Bloque I Los números enteros y fraccionarios. Créditos 3 (30 horas) Bloque II Proporcionalidad y álgebra. Áreas y perímetros

Más detalles

3. Resolver triángulos rectángulos utilizando las definiciones de las razones trigonométricas.

3. Resolver triángulos rectángulos utilizando las definiciones de las razones trigonométricas. Contenidos mínimos MI. 1. Contenidos. Bloque I: Aritmética y Álgebra. 1. Conocer las clases de números, los conjuntos numéricos: naturales, enteros, racionales, reales y complejos y las propiedades que

Más detalles

FÍSICA Y QUÍMICA 3º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN 1ª Evaluación: Unidad 1. La medida y el método científico.

FÍSICA Y QUÍMICA 3º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN 1ª Evaluación: Unidad 1. La medida y el método científico. FÍSICA Y QUÍMICA 3º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN 1ª Evaluación: Unidad 1. La medida y el método científico. OBJETIVOS 1. Reconocer las etapas del trabajo científico y elaborar informes

Más detalles

Planificación Matemeatica 4

Planificación Matemeatica 4 Planificación Matemeatica 1 Numeración Reconocer el carácter convencional e histórico de los sistemas de numeración. Conocer la estructura y organización del sistema de numeración decimal. Conocer las

Más detalles

CONTENIDOS DIAGNÓSTICO DE ADMISIÓN MATEMÁTICA

CONTENIDOS DIAGNÓSTICO DE ADMISIÓN MATEMÁTICA 5º BÁSICO Números Naturales Leer, escribir y ordenar Descomponer en forma aditiva. Operatoria básica en los naturales (suma resta, multiplicación y división) Resolución de problemas Fracciones y Números

Más detalles

PROGRAMACIÓN DE AULA MATEMÁTICAS 4º EP CENTRO EDUCATIVO LA AMISTAD. PLAN DE TRABAJO TRIMESTRAL MATEMÁTICAS 4º EP TRIMESTRE 1º REG0801 Pág.

PROGRAMACIÓN DE AULA MATEMÁTICAS 4º EP CENTRO EDUCATIVO LA AMISTAD. PLAN DE TRABAJO TRIMESTRAL MATEMÁTICAS 4º EP TRIMESTRE 1º REG0801 Pág. GRUPO: 4ºEP PLAN DE TRABAJO Y ACTIVIDADES PROGRAMADAS 1 er TRIMESTRE CURSO 2016-17 Temas: 1, 2, 3, 4 Y 5 ÁREA: MATEMATICAS CONTENIDOS CRITERIOS DE EVALUACIÓN ESTÁNDARES DE APRENDIZAJE COMPETENCIAS TEMA

Más detalles

MATEMÁTICAS 2º E.S.O

MATEMÁTICAS 2º E.S.O MATEMÁTICAS 2º E.S.O Desarrollado en Decreto 23/2007, de 10 de Mayo. B.O.C.M. Núm 126; 29 de Mayo de 2007. PROGRAMACIÓN DIDÁCTICA I.E.S. JOSÉ HIERRO (GETAFE) CURSO: 2015-16 Pág 1 de 13 1. Y... 3 1 Números

Más detalles

PRECALCULO INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA. Precálculo. Nombre de la asignatura: MAT-001

PRECALCULO INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA. Precálculo. Nombre de la asignatura: MAT-001 INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA PRECALCULO Nombre de la asignatura: Nomenclatura del Curso: Precálculo MAT-001 Prerrequisitos: Nomenclatura del prerrequisito Ninguno

Más detalles

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado Actualizado en febrero del 2013 Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado CONTENIDOS OBJETIVOS ESPECÍFICOS HABILIDADES CRITERIOS DE EVALUACIÓN

Más detalles

DIBUJO TÉCNICO BACHILLER

DIBUJO TÉCNICO BACHILLER DIBUJO TÉCNICO BACHILLER OBJETIVOS DEL DIBUJO TÉCNICO La enseñanza de Dibujo Técnico en el Bachillerato tendrá como finalidad el desarrollo de las siguientes capacidades: - Utilizar adecuadamente y con

Más detalles

Matemáticas II. Carrera: IFM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Matemáticas II. Carrera: IFM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Matemáticas II Licenciatura en Informática IFM - 0424 3-2-8 2.- HISTORIA DEL PROGRAMA

Más detalles

PLANIFICACIÓN ANUAL NM3 TERCERO MEDIO

PLANIFICACIÓN ANUAL NM3 TERCERO MEDIO PLANIFICACIÓN ANUAL NM3 TERCERO MEDIO TERCER AÑO FORMACIÓN GENERAL OBJETIVOS FUNDAMENTALES CONTENIDOS MINIMOS SUGERENCIAS DE ACTIVIDADES. Los alumnos y las alumnas desarrollarán la capacidad de : Resolver

Más detalles

FACULTAD DE CIENCIAS AGROPECUARIAS ESCUELA ACADÉMICO PROFESIONAL DE MEDICINA VETERINARIA MATEMATICA II SILABO

FACULTAD DE CIENCIAS AGROPECUARIAS ESCUELA ACADÉMICO PROFESIONAL DE MEDICINA VETERINARIA MATEMATICA II SILABO FACULTAD DE CIENCIAS AGROPECUARIAS ESCUELA ACADÉMICO PROFESIONAL DE MEDICINA VETERINARIA I. DATOS GENERALES MATEMATICA II SILABO 1.1. Código : 04130 1.2. Requisito : Matemática I (04123) 1.3. Ciclo Académico

Más detalles

RESUMEN DEL MÓDULO. Aprendizajes Esperados

RESUMEN DEL MÓDULO. Aprendizajes Esperados RESUMEN DEL MÓDULO MÓDULO: INTRODUCCIÓN A LA MATEMÁTICA UNIDAD DE COMPETENCIA: Resolver problemas matemáticos relacionados con el mundo de la economía, los negocios, la tecnología y otros fenómenos socioeconómicos,

Más detalles

2. Recolección de información - Medidas de posición: moda, media aritmética, mínimo, máximo - Frecuencia absoluta, relativa y porcentual

2. Recolección de información - Medidas de posición: moda, media aritmética, mínimo, máximo - Frecuencia absoluta, relativa y porcentual Prueba Escrita de matemática / Nivel: Sétimo año 1. Estadística - Unidad estadística - Características - Datos u observaciones - Población - Muestra - Variabilidad de los datos - Variables cuantitativas

Más detalles

MATEMÁTICAS 1º ESO. INSTRUMENTOS DE CALIFICACIÓN PRUEBAS ESCRITAS 60 % OBSERVACIÓN EN CLASE (comportamiento,

MATEMÁTICAS 1º ESO. INSTRUMENTOS DE CALIFICACIÓN PRUEBAS ESCRITAS 60 % OBSERVACIÓN EN CLASE (comportamiento, MATEMÁTICAS 1º ESO UD 1: LOS NÚMEROS NATURALES UD 2: POTENCIAS Y RAÍCES UD 3: DIVISIBILIDAD UD 4: LOS NÚMEROS ENTEROS UD 5: LOS NÚMEROS DECIMALES UD 6: EL SISTEMA MÉTRICO DECIMAL UD 7: LAS FRACCIONES UD

Más detalles

CONTENIDOS CRITERIOS DE EVALUACIÓN 1º TRIMESTRE 2º TRIMESTRE 3º TRIMESTRE 1.- Realizar operaciones y cálculos

CONTENIDOS CRITERIOS DE EVALUACIÓN 1º TRIMESTRE 2º TRIMESTRE 3º TRIMESTRE 1.- Realizar operaciones y cálculos CÓD.: C.E.I.P. César Manrique Cabrera PROGRAMACIÓN LARGA CONTENIDOS- CRITERIOS DE EVALUACIÓN DEL ÁREA DE MATEMÁTICAS. CURSO 2013-2014 CONTENIDOS CRITERIOS DE EVALUACIÓN 1º TRIMESTRE 2º TRIMESTRE 3º TRIMESTRE

Más detalles

ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA OBJETIVOS CONTENIDOS CRITERIOS DE EVALUACIÓN

ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA OBJETIVOS CONTENIDOS CRITERIOS DE EVALUACIÓN ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA Conocer los nueve primeros órdenes de unidades y las equivalencias entre ellos. Leer, escribir y descomponer números de hasta nueve cifras.

Más detalles

COMPETENCIA MATEMÁTICA 2º CURSO DE EDUCACIÓN SECUNDARIA OBLIGATORIA

COMPETENCIA MATEMÁTICA 2º CURSO DE EDUCACIÓN SECUNDARIA OBLIGATORIA 2º CURSO DE EDUCACIÓN SECUNDARIA OBLIGATORIA 1. DESCRIPCIÓN DE LA COMPETENCIA La competencia matemática consiste en la habilidad para utilizar y relacionar los números, sus operaciones básicas, los símbolos

Más detalles

PLANIFICACIÓN ANUAL. SUBSECTOR: Matemática HORAS SEMANALES: NIVEL: 2 Medio. Título Subtítulo

PLANIFICACIÓN ANUAL. SUBSECTOR: Matemática HORAS SEMANALES: NIVEL: 2 Medio. Título Subtítulo PLANIFICACIÓN ANUAL SUBSECTOR: Matemática HORAS SEMANALES: 4 0 5 NIVEL: 2 Medio OBJETIVOS Objetivos Fundamentales Objetivos Transversales Unidades Contenidos Título Subtítulo Aprendizaje Esperado Tiempo

Más detalles

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

Más detalles

Preparación para Álgebra universitaria con trigonometría

Preparación para Álgebra universitaria con trigonometría Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.

Más detalles

ESO. Procedimientos e instrumentos de evaluación.

ESO. Procedimientos e instrumentos de evaluación. ESO Procedimientos e instrumentos de evaluación. Como procedimientos e instrumentos de evaluación se tendrá en cuenta dos aspectos: Procedimientos de evaluación de conocimientos: Las pruebas escritas,

Más detalles

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 UNIDAD 1: LOS NÚMEROS NATURALES. OPERACIONES Y RELACIONES El sistema de numeración decimal Estimación y redondeo de un número natural Las operaciones con números

Más detalles

Rige a partir de la convocatoria

Rige a partir de la convocatoria TABLA DE ESPECIFICACIONES DE HABILIDADES Y CONOCIMIENTOS QUE SE MEDIRÁN EN LAS PRUEBAS DE CERTIFICACIÓN DEL PROGRAMA: I y II Ciclo de la Educación General Básica Abierta Este documento está elaborado con

Más detalles

MATEMÁTICAS 4º E.S.O Opción A

MATEMÁTICAS 4º E.S.O Opción A MATEMÁTICAS 4º E.S.O Opción A Desarrollado en Decreto 23/2007, de 10 de Mayo. B.O.C.M. Núm 126; 29 de Mayo de 2007. PROGRAMACIÓN DIDÁCTICA I.E.S. JOSÉ HIERRO (GETAFE) CURSO: 2015-16 Pág 1 de 14 1. Y...

Más detalles

PROGRAMACIÓN DIDÁCTICA

PROGRAMACIÓN DIDÁCTICA PROGRAMACIÓN DIDÁCTICA Materia Período FBPI Tramo II Ámbito Científico-Tecnológico Bloque I Números racionales, decimales y potencias. Créditos 3 (30 horas) Bloque II Proporcionalidad Créditos 2 (20 horas)

Más detalles

Departamento de MATEMÁTICAS ETAPA EDUCATIVA: ESO

Departamento de MATEMÁTICAS ETAPA EDUCATIVA: ESO Página 1 CONTENIDOS Y CRITERIOS DE EVALUACIÓN MÍNIMOS. La Prueba Extraordinaria para los alumnos que no superen la Evaluación Final se realizará con un mismo examen sobre los contenidos mínimos, fijada

Más detalles

Nombre y apellidos Nº EXAMEN TEMA 3. ECUACIONES, INECUACIONES Y SISTEMAS 4º E.S.O.

Nombre y apellidos Nº EXAMEN TEMA 3. ECUACIONES, INECUACIONES Y SISTEMAS 4º E.S.O. 1.- Resuelve las siguientes ecuaciones (1p): a) 2x 2 50 = 0 b) 7x 2 + 5x = 0 2.- Resuelve la siguiente ecuación bicuadrada (1p): x 4 10x 2 + 9 = 0 3.- Resuelve el sistema de ecuaciones por cualquiera de

Más detalles

INSTITUTO CHAPULTEPEC MIDDLE SCHOOL

INSTITUTO CHAPULTEPEC MIDDLE SCHOOL MATEMÁTICAS VII. (1er BIMESTRE) INSTITUTO CHAPULTEPEC MIDDLE SCHOOL. 2009-2010 1) SIGNIFICADO Y USO DE LOS NÚMEROS a) Lectura y escritura de números naturales. - Operaciones con números naturales. - Problemas

Más detalles

PROGRAMA DE MATEMÁTICA PRIMER AÑO - BACHILLERATO REFORMULACIÓN AJUSTE horas semanales INTRODUCCIÓN

PROGRAMA DE MATEMÁTICA PRIMER AÑO - BACHILLERATO REFORMULACIÓN AJUSTE horas semanales INTRODUCCIÓN PROGRAMA DE MATEMÁTICA PRIMER AÑO - BACHILLERATO REFORMULACIÓN 2006 - AJUSTE 2010 4 horas semanales INTRODUCCIÓN El programa se organiza en base a tres Bloques temáticos: Geometría, Álgebra Funciones y

Más detalles

Enseñanza Secundaria Obligatoria: ESO

Enseñanza Secundaria Obligatoria: ESO Enseñanza Secundaria Obligatoria: ESO E) la identificación de los conocimientos y aprendizajes necesarios para que el alumno alcance una evaluación positiva al final de cada curso de la etapa. indicadores

Más detalles

OBRA SALESIANA DEL NIÑO JESÚS COLEGIO SALESIANO JUAN DEL RIZZO

OBRA SALESIANA DEL NIÑO JESÚS COLEGIO SALESIANO JUAN DEL RIZZO CONSTRUCCIÓN DEL ARCO EDUCATIVO ÁREA: MATEMATICAS JEFE DEL ÁREA: GUILLERMO OSWALDO MORENO DOCENTES DEL ÁREA POR NIVELES: 1º JAQUELIN MORALES 2º FRANCY ORTIZ GRANADOS 3º MARTHA CASTILLO 4º SANDRA VIVIANA

Más detalles

CONTENIDOS, CRITERIOS DE EVALUACIÓN Y ESTÁNDARES DE APRENDIZAJE EVALUABLES.

CONTENIDOS, CRITERIOS DE EVALUACIÓN Y ESTÁNDARES DE APRENDIZAJE EVALUABLES. ESO Matemáticas 2 CONTENIDOS, CRITERIOS DE EVALUACIÓN Y ESTÁNDARES DE APRENDIZAJE EVALUABLES. BLOQUE 1. PROCESOS, MÉTODOS Y ACTITUDES EN MATEMÁTICAS - Planificación del proceso de resolución de problemas.

Más detalles

A continuación se recogen los bloques de contenido por unidad del primer trimestre, directamente relacionados con los criterios de evaluación.

A continuación se recogen los bloques de contenido por unidad del primer trimestre, directamente relacionados con los criterios de evaluación. UNIDADES DIDÁCTICAS 3º DIVERSIFICACIÓN A continuación se recogen los bloques de contenido por unidad del primer trimestre, directamente relacionados con los criterios de evaluación. 1 UNIDADES DIDÁCTICAS

Más detalles

VINCULACIÓN DE LAS COMPETENCIAS BÁSICAS CON LOS CRITERIOS DE EVALUACIÓN Y LOS

VINCULACIÓN DE LAS COMPETENCIAS BÁSICAS CON LOS CRITERIOS DE EVALUACIÓN Y LOS VINCULACIÓN DE LAS COMPETENCIAS BÁSICAS CON LOS Y LOS 1 MATERIA: MATEMÁTICAS CURSO: 1.º de la ESO N.º 1. COMPETENCIA EN COMUNICACIÓN LINGÜÍSTICA N.º 1 Utilizar los números para recibir y producir información

Más detalles

NOMBRE DEL CURSO: Matemática Básica 1

NOMBRE DEL CURSO: Matemática Básica 1 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA ESCUELA DE CIENCIAS, DEPARTAMENTO DE MATEMÁTICA NOMBRE DEL CURSO: Matemática Básica 1 http://mate.ingeniería.usac.edu.gt CÓDIGO: 101 CRÉDITOS:

Más detalles