La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México.
|
|
- Luis Pérez Gómez
- hace 6 años
- Vistas:
Transcripción
1 La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. Resumen Se dan algunas definiciones básicas relacionadas con la divisibilidad y las clases de congruencia en el conjunto de los números naturales. Se muestra una forma más eficiente de enlistar los números primos, lo que se denomina la nueva criba de Eratóstenes. Palabras clave: Congruencias divisibilidad módulos números primos primos gemelos teoría de números. 1. DEFINICIONES Definición Cerradura Sea A un conjunto no vacío, y sea una operación binaria definida para cualesquiera dos elementos a, b A. Si a b A para cualesquiera a, b A, entonces, decimos que el conjunto A es cerrado bajo la operación. Definición Divisibilidad. Sean a, b, m números naturales. Decimos que el número b divide al número a, o de forma equivalente, que el número a es divisible por el número b, si existe un número natural m tal que a = b m, y se denota por b a. Definición Número primo. Un número natural es primo si tiene exactamente dos divisores naturales. Definición Número compuesto. Un número natural es compuesto si tiene 3 o más divisores. Definición Números primos gemelos. Dos números primos son primos gemelos si la diferencia entre ellos es 2. Teorema 1.1. Sean a, b, c, m, n números naturales. La divisibilidad tiene las siguientes propiedades: i. Si b a, entonces b (a c). vi. Si b a entonces b a. ii. Si b a, y a c, entonces b c. vii. Si a 0, entonces a a. iii. Si b a, y b c, entonces b (a + c). viii. Si a b, y b a, entonces a = b. iv. Si b a, y b c, entonces b (a c). v. Si b a, y b c, entonces b (a m + c n). ix. 1 a. 1 Estudiante del programa de posgrado en Ingeniería de Sistemas de la Facultad de Ingeniería Mecánica Eléctrica de la U.A.N.L.
2 Nueva criba de Eratóstenes La siguiente definición es una notación inventanda por Carl F. Gauss que nos ayudará a simplificar cálculos y nos facilitará la construcción de la nueva criba de Eratóstenes. Definición Congruencias. Si a = b m + r, se entiende que b (a r), y escribimos: a r mód b para indicarlo y se lee a es congruente con r módulo b. Teorema 1.2. Sean a, b, c, r, s números naturales. Las congruencias tienen las siguientes propiedades: i. Si a r mód b, y 0 r b, entonces r es el residuo de dividir a entre b ii. a r mód b b (a r) a = b m + r iii. a a mód b iv. Si a r mód b, entonces r a mód b v. Si a r mód b, y r s mód b, entonces a s mód b vi. Si a r mód b, y c s mód b, entonces a + c (r + s) mód b vii. Si a r mód b, y c s mód b, entonces a c (r s) mód b viii. Si a r mód b, y c s mód b, entonces a c (r s) mód b ix. Si a r mód b, entonces a s r s mód b Teorema 1.3. Sea p 5 un número primo. Entonces, bien p 1 mód 6, bien p 5 mód 6. Demostración. Un número natural a cualquiera puede estar en alguna de las siguientes clases de congruencia: a 0 mód 6, con lo que sería divisible por 6. a 1 mód 6, con lo que podría ser primo. a 2 mód 6, con lo que resultaría ser divisible por 2. a 3 mód 6, con lo que resultaría ser divisible por 3. a 4 mód 6, con lo que resultaría ser divisible por 2. a 5 mód 6, con lo que podría ser primo. Nota: No todos los números naturales p que cumplen con p 1 mód 6, o bien, p 5 mód 6 son primos, pero todos los primos mayores o iguales a 5, tienen esa forma. Teorema 1.4. Sea P el conjunto de todos los números naturales p 5 (no necesariamente primos) de la forma: p 1 mód 6, ó p 5 mód 6; o bien P = {p p 1 mód 6, ó p 5 mód 6; p N, p 5}. Entonces, el conjunto P es cerrado bajo la multiplicación. Demostración. Sea a 1 mód 6, y b 5 mód 6. Por definición, a, b P. Por las propiedades i, iv y viii de las congruencias de módulos tenemos: 2
3 a a 1 mód 6 a b 5 mód 6 b b 25 mód 6 1 mód 6 con lo que queda establecido el teorema. 2. NUEVA CRIBA DE ERATÓSTENES En los estudios de nivel elemental a medio superior se enseña la criba de Eratóstenes como un método para encontrar todos los números primos hasta un número natural finito. Con los teoremas enlistados tenemos una segunda forma (más eficiente) de encontrar la lista de los números primos. Para este fin empezamos enlistando a los únicos dos números primos que no pertenecen al conjunto P = {p p 1 mód 6, ó p 5 mód 6; p N, p 5}; esos dos números primos son 2 y 3. Inmediatamente después podemos hacer una tabla donde enlistemos los números en columnas, de acuerdo a la clase de congruencia a la que pertenezcan: 5 mód 6 0 mód 6 1 mód Tabla 1. Clases 5, 0 y 1 de módulo 6. En la tabla 1 tenemos 3 columnas. La columna del centro contiene números que son divisibles por 6, solamente para que nos sirva de guía para encontrar las otras dos columnas. Las columnas de la izquierda y de la derecha son las que tienen a los elementos del conjunto P. En la lista podemos ver algunos números que no son primos, e.g., 25. El teorema 1.4 explica por qué tenemos números compuestos en P. La siguiente cuestión consiste en eliminar los números que son compuestos. Para lograr esta meta haremos uso del teorema 1.4 y de la definición de número compuesto. Es obvio que todo número natural n (a excepción del número 1) tiene al menos dos divisores: el número 1 y el número n (i.e., él mismo). Entonces, si aparece un divisor más, se entiende que ya es compuesto. 3
4 Nueva criba de Eratóstenes Por el teorema 1.4 sabemos que algunos de los elementos de P tienen más de dos divisores, por lo que no son números primos, sino compuestos. 3. CONSTRUYENDO LA NUEVA CRIBA La tarea ahora parece muy sencilla: tomamos el menor de todos los elementos del conjunto P (esto es posible gracias al principio del buen ordenamiento, que dice que un conjunto no vacío de números naturales tiene un elemento que es menor o igual a cualquier otro elemento del conjunto considerado) y lo multiplicamos por todos los elementos del conjunto P. Así encontraremos los números p P que no son primos. Después de haber multiplicado el primer número primo 5 P por todos los elementos del conjunto P (incluido el 5 mismo), debemos continuar con el siguiente primo, en este caso el número 7. Ahora debemos multiplicar a este número primo por todos los demás elementos del conjunto P que todavía no han sido eliminados (en caso de no ser primos). Es claro que no se requiere multiplicar 7 5, dado que esta multiplicación se realizó cuando empezamos multiplicando el número 5 por todos los elementos del conjunto P. Entonces, debemos empezar desde 7 7. Y así sucesivamente, hasta que hayamos terminado con la lista que deseamos obtener. En seguida se muestra el proceso elaborado hasta el número primo mód 6 1 mód Tabla 2. Nueva criba de Eratóstenes eliminó al número 25, 5 7 eliminó al número 35, 5 11 eliminó al número 55, etc., 7 7 eliminó al número 49, 7 11 elimina al número 77, etc., elimina al número 121, etc., y así sucesivamente. 4
5 4. CONCLUSIONES Este mismo procedimiento puede usarse para generar un algoritmo muy eficiente para verificar si un número natural dado n es o no un número primo. En este caso se debe iniciar comparando el número dado n con los dos únicos números primos que no están en P. En caso de que no sea así, se debe encontrar el residuo de dividir el número n entre 6. Si este residuo es distinto a 1 ó 5, entonces, con certeza sabemos que el número es compuesto. Por otra parte, si el residuo de dividir n entre 6 es, bien 1, bien 5, entonces debemos verificar si se divide por alguno de los números p P. No requerimos checar todos los números p P hasta uno antes de n, como es bien sabido, basta verificar hasta el número natural mayor o igual a n. El algoritmo creado con la criba de Eratóstenes verifica si el número n es divisible por los números impares. Es claro que hay 3 números impares de cada 6 números naturales. El algoritmo de la nueva criba de Eratóstenes solamente verifica 2 de cada seis números naturales: los que pertenecen al conjunto P = {p p 1 mód 6, ó p 5 mód 6; p N, p 5}. Más aún, algunos de los elementos del conjunto P son compuestos y es muy obvio verificarlo: cuando en la cifra de las unidades tiene un 5, por ejemplo: 25 (5 5), 55 (5 11), 125 (5 25), etc. Se debe recordar que esta nueva criba no considera a los primeros dos números naturales primos: el 2 y el 3. Por tanto, cuando se haga la lista de los números primos utilizando la nueva criba de Eratóstenes deben incluirse estos dos números primos. Durante mucho tiempo ha existido la pregunta (sin responder hasta el día de hoy) si existe un número infinito de parejas de números primos gemelos. El teorema 1.3 muestra por qué aparecen los números primos gemelos. En el primer intento por demostrar esta conjetura (la infinitud de los números primos gemelos) se encontraron los resultados que aquí se muestran. El reto que queda por resolver es la cuestión de si hay un número infinito de números primos gemelos, para lo cual habrá que estudiar la distribución de los productos de los elementos de P. 5. Reconocimientos El físico Abel Chávez Morales colaboró en la discusión de las ideas plasmadas en este documento. 5
Divisibilidad y números primos
Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos
Tema 2. Espacios Vectoriales. 2.1. Introducción
Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por
Funciones polinomiales de grados 3 y 4
Funciones polinomiales de grados 3 y 4 Ahora vamos a estudiar los casos de funciones polinomiales de grados tres y cuatro. Vamos a empezar con sus gráficas y después vamos a estudiar algunos resultados
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
Funciones, x, y, gráficos
Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre
Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1
. ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio
Profr. Efraín Soto Apolinar. Números reales
úmeros reales En esta sección vamos a estudiar primero los distintos conjuntos de números que se definen en matemáticas. Después, al conocerlos mejor, podremos resolver distintos problemas aritméticos.
EJERCICIOS SOBRE : DIVISIBILIDAD
1.- Múltiplo de un número. Un número es múltiplo de otro cuando lo contiene un número exacto de veces. De otra forma sería: un número es múltiplo de otro cuando la división del primero entre el segundo
Sistemas de numeración
Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan
SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97
SISTEMAS DE NUMERACIÓN Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. La norma principal en un sistema de numeración posicional es que un mismo símbolo
Múltiplos y divisores
2 Múltiplos y divisores Objetivos En esta quincena aprenderás a: Saber si un número es múltiplo de otro. Reconocer las divisiones exactas. Hallar todos los divisores de un número. Reconocer los números
Operaciones con polinomios
Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)
Subespacios vectoriales en R n
Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo
Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x
Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada
SITEMA BINARIO, OCTAL Y HEXADECIMAL: OPERACIONES
Unidad Aritmética Lógica La Unidad Aritmético Lógica, en la CPU del procesador, es capaz de realizar operaciones aritméticas, con datos numéricos expresados en el sistema binario. Naturalmente, esas operaciones
Profr. Efraín Soto Apolinar. Factorización
Factorización La factorización es la otra parte de la historia de los productos notables. Esto es, ambas cosas se refieren a las mismas fórmulas, pero en los productos notables se nos daba una operación
Informática Bioingeniería
Informática Bioingeniería Representación Números Negativos En matemáticas, los números negativos en cualquier base se representan del modo habitual, precediéndolos con un signo. Sin embargo, en una computadora,
Anterior Sistemas binarios: Aritmética binaria Siguiente ARITMÉTICA BINARIA. Operaciones elementales con números binarios
1 de 10 27/09/11 09:57 Anterior Sistemas binarios: Aritmética binaria Siguiente ARITMÉTICA BINARIA Operaciones elementales con números binarios Suma de números binarios Resta de números binarios Complemento
SUMA Y RESTA DE FRACCIONES
SUMA Y RESTA DE FRACCIONES CONCEPTOS IMPORTANTES FRACCIÓN: Es la simbología que se utiliza para indicar que un todo será dividido en varias partes (se fraccionará). Toda fracción tiene dos partes básicas:
Matrices equivalentes. El método de Gauss
Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar
La lección de hoy es sobre Resolver Ecuaciones. El cuál es la expectativa para el aprendizaje del estudiante SEI.2.A1.1
SEI.2.A1.1-Solving Equations-Student Learning Expectation. La lección de hoy es sobre Resolver Ecuaciones. El cuál es la expectativa para el aprendizaje del estudiante SEI.2.A1.1 En esta lección aprenderemos
Conjuntos Numéricos. Las dos operaciones en que se basan los axiomas son la Adición y la Multiplicación.
Conjuntos Numéricos Axiomas de los números La matemática se rige por ciertas bases, en la que descansa toda la matemática, estas bases se llaman axiomas. Cuántas operaciones numéricas conocen? La suma
342 SOBRE FORMAS TERNARIAS DE SEGUNDO GRADO.
342 SOBRE FORMAS TERNARIAS DE SEGUNDO GRADO. ALGUNAS APLICACIONES A LA TEORIA DE LAS FORMAS BINARIAS. Encontrar una forma cuya duplicación produce una forma dada del género principal. Puesto que los elementos
UNIDAD 1. LOS NÚMEROS ENTEROS.
UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar
2. Aritmética modular Ejercicios resueltos
2. Aritmética modular Ejercicios resueltos Ejercicio 2.1 Probar, mediante congruencias, que 3 2n+5 + 2 4n+1 es divisible por 7 cualquiera que sea el entero n 1. Trabajando módulo 7 se tiene que 3 2n+5
NÚMEROS NATURALES Y NÚMEROS ENTEROS
NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de
Espacios generados, dependencia lineal y bases
Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................
Aplicaciones lineales continuas
Lección 13 Aplicaciones lineales continuas Como preparación para el cálculo diferencial, estudiamos la continuidad de las aplicaciones lineales entre espacios normados. En primer lugar probamos que todas
1. INVERSA DE UNA MATRIZ REGULAR
. INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales
Módulo 9 Sistema matemático y operaciones binarias
Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional
Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina
Datos del autor Nombres y apellido: Germán Andrés Paz Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Correo electrónico: germanpaz_ar@hotmail.com =========0========= Introducción
Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)
Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.
E 1 E 2 E 2 E 3 E 4 E 5 2E 4
Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),
Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido
Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6
EJERCICIOS DEL TEMA 1
EJERCICIOS DEL TEMA 1 Introducción a los ordenadores 1) Averigua y escribe el código ASCII correspondiente, tanto en decimal como en binario, a las letras de tu nombre y apellidos. Distinguir entre mayúsculas/minúsculas,
Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b
La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente
Tema 3. Espacios vectoriales
Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición
Números Reales. MathCon c 2007-2009
Números Reales z x y MathCon c 2007-2009 Contenido 1. Introducción 2 1.1. Propiedades básicas de los números naturales....................... 2 1.2. Propiedades básicas de los números enteros........................
Los números racionales
Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones
FUNDACIÓN HOSPITAL INFANTIL UNIVERSITARIO DE SAN JOSÉ
CONSULTA DE CUENTA DETALLADO PÁGINA 1 de 9 2.1 como consultar los cargos realizados por los diferentes departamentos, en cuanto a la tarifa y el tipo de servicio en el que han sido cargados? 2.1.1.consulta
Los Números y sus Propiedades Básicas. Efraín Soto Apolinar.
Los Números y sus Propiedades Básicas Efraín Soto Apolinar. Términos de uso Ninguna parte de esta publicación puede ser reproducida, almacenada en sistema de almacenamiento alguno, transmitida en forma
En cualquier caso, tampoco es demasiado importante el significado de la "B", si es que lo tiene, lo interesante realmente es el algoritmo.
Arboles-B Características Los árboles-b son árboles de búsqueda. La "B" probablemente se debe a que el algoritmo fue desarrollado por "Rudolf Bayer" y "Eduard M. McCreight", que trabajan para la empresa
Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones
Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces
Sección 1: Introducción
Sección 1: Introducción Bienvenido a la sección de referencias! La primera sección tiene como meta ayudar al facilitador a presentar el curso a los participantes, comenzando con un objetivo muy claro.
Estructuras algebraicas
Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota
Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice
Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +
LÍMITES Y CONTINUIDAD DE FUNCIONES
Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos
1. Objetivos. 2. Idea Principal. Teoría de Autómatas y Lenguajes Formales. Boletín de Autoevaluación 3: Cómo se minimiza un AFD?.
Teoría de Autómatas y Lenguajes Formales Boletín de Autoevaluación 3: Cómo se minimiza un AFD?.. Objetivos. El objetivo de este boletín es ilustrar uno de los métodos ue permiten obtener el Autómata Finito
Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones
Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Números 2 Polinomios 3 Funciones y su Representación
Apuntes de Matemática Discreta 9. Funciones
Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y
Ciclo de vida y Metodologías para el desarrollo de SW Definición de la metodología
Ciclo de vida y Metodologías para el desarrollo de SW Definición de la metodología La metodología para el desarrollo de software es un modo sistemático de realizar, gestionar y administrar un proyecto
Matrices Invertibles y Elementos de Álgebra Matricial
Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices
PRÁCTICA N 2 SISTEMAS DE NUMERACIÓN
PRÁCTICA N 2 SISTEMAS DE NUMERACIÓN Ejercicio 1. Diseñar una planilla EXCEL que tome como dato de entrada un número entero y devuelva la representación en base 2. Testearla con los números 23, 245, 673,
Plan de mejora de las competencias lectoras en la ESO. PERFECTOS, AMIGOS Y GEMELOS
Plan de mejora de las competencias lectoras en la ESO. PERFECTOS, AMIGOS Y GEMELOS Las categorías en las que se clasifican los números enteros son numerosas y atienden a diversos criterios, siendo los
DESIGUALDADES E INECUACIONES
DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia
Apuntes de Matemática Discreta 7. Relaciones de Orden
Apuntes de Matemática Discreta 7. Relaciones de Orden Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 7 Relaciones de Orden Contenido
MÉTODO DEL CAMBIO DE BASE PARA CÁLCULO MANUAL DE SUBREDES CON IP V4.0
MÉTODO DEL CAMBIO DE BASE PARA CÁLCULO MANUAL DE SUBREDES CON IP V4.0 José Antonio Guijarro Guijarro Profesor de Secundaria Especialidad de Informática Profesor Técnico de F.P. Especialidad de Sistemas
Capítulo 0. Introducción.
Capítulo 0. Introducción. Bueno, por fin está aquí el esperado (espero!!) Capítulo Cero del Tutorial de Assembler. En él estableceremos algunos conceptos que nos serán de utilidad a lo largo del Tutorial.
QUÉ ES UN NÚMERO DECIMAL?
QUÉ ES UN NÚMERO DECIMAL? Un número decimal representa un número que no es entero, es decir, los números decimales se utilizan para representar a los números que se encuentran entre un número entero y
Wise Up Kids! En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción.
Fracciones o Quebrados En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción. Las fracciones pueden ser representadas de
Profr. Efraín Soto Apolinar. Función Inversa
Función Inversa Una función es una relación entre dos variables, de manera que para cada valor de la variable independiente eiste a lo más un único valor asignado a la variable independiente por la función.
3. Equivalencia y congruencia de matrices.
3. Equivalencia y congruencia de matrices. 1 Transformaciones elementales. 1.1 Operaciones elementales de fila. Las operaciones elementales de fila son: 1. H ij : Permuta la fila i con la fila j. 2. H
RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES
RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES 1 La ecuación 2x - 3 = 0 se llama ecuación lineal de una variable. Obviamente sólo tiene una solución. La ecuación -3x + 2y = 7 se llama ecuación lineal de
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 7 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de
CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de cualquier modelo en el software Algor. La preparación de un modelo,
DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO
I. SISTEMAS NUMÉRICOS DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO LIC. LEYDY ROXANA ZEPEDA RUIZ SEPTIEMBRE DICIEMBRE 2011 Ocosingo, Chis. 1.1Sistemas numéricos. Los números son los mismos en todos
REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS
SUMA REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES (N) 1. Características: Axiomas de Giuseppe Peano (*): El 1 es un número natural. Si n es un número natural, entonces el sucesor (el siguiente
Lección 24: Lenguaje algebraico y sustituciones
LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce
1. Ecuaciones no lineales
1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar
BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.
BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades
NÚMEROS RACIONALES Y DECIMALES
NÚMEROS RACIONALES Y DECIMALES Unidad didáctica. Números racionales y decimales CONTENIDOS Fracciones Fracciones equivalentes Amplificar fracciones Simplificar fracciones Representación en la recta numérica.
Polinomios y Fracciones Algebraicas
Tema 4 Polinomios y Fracciones Algebraicas En general, a lo largo de este tema trabajaremos con el conjunto de los números reales y, en casos concretos nos referiremos al conjunto de los números complejos.
Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3
1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite
Clase 4: Probabilidades de un evento
Clase 4: Probabilidades de un evento Definiciones A continuación vamos a considerar sólo aquellos experimentos para los que el EM contiene un número finito de elementos. La probabilidad de la ocurrencia
AMPLIACIÓN DE MATEMÁTICAS. REPASO DE MATEMÁTICAS DISCRETA. CONGRUENCIAS. En el conjunto de los números enteros
AMPLIACIÓN DE MATEMÁTICAS REPASO DE MATEMÁTICAS DISCRETA. CONGRUENCIAS. En el conjunto de los números enteros Z = {..., n,..., 2, 1, 0, 1, 2, 3,..., n, n + 1,...} tenemos definidos una suma y un producto
Tema 3. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.
Los estados financieros proporcionan a sus usuarios información útil para la toma de decisiones
El ABC de los estados financieros Importancia de los estados financieros: Aunque no lo creas, existen muchas personas relacionadas con tu empresa que necesitan de esta información para tomar decisiones
LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL
OBJETIVO Mejorar el nivel de comprensión y el manejo de las destrezas del estudiante para utilizar formulas en Microsoft Excel 2010. 1) DEFINICIÓN Una fórmula de Excel es un código especial que introducimos
Lección 22: Probabilidad (definición clásica)
LECCIÓN 22 Lección 22: Probabilidad (definición clásica) Empezaremos esta lección haciendo un breve resumen de la lección 2 del libro de primer grado. Los fenómenos determinísticos son aquellos en los
SISTEMAS DE NUMERACIÓN (11001, 011) 1.2 1.2 0.2 0.2 1.2 0.2 1.2 1.2 = + + + + + + + = 1 1 4 8 (32,12)
SISTEMAS DE NUMERACIÓN 1. Expresa en base decimal los siguientes números: (10011) ; ( 11001,011 ) 4 (10011) = 1. + 0. + 0. + 1. + 1. = 16 + + 1 = 19 (11001, 011) 1. 1. 0. 0. 1. 0. 1. 1. 4 1 = + + + + +
Tema 2 Límites de Funciones
Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos
Realizado por Pablo Yela ---- pablo.yela@gmail.com ---- http://pabloyela.wordpress.com
ARITMETICA BINARIA Operaciones básicas con sistema binario Conversión de Decimal a Binario Lo primero que debemos comprender es como convertir números decimales a binarios para realizar este proceso existen
Fórmulas y enfoques utilizados para calcular el Tasa Efectiva de Interés (TEI) o Costo Anual Total (CAT)
Fórmulas y enfoques utilizados para calcular el Tasa Efectiva de Interés (TEI) o Costo Anual Total (CAT) El propósito del Costo Anual Total (CAT) El precio verdadero del préstamo no solamente incluye los
MEDIDAS DE TENDENCIA CENTRAL
CAPÍTULO 14 MEDIDAS DE TENDENCIA CENTRAL A veces, de los datos recolectados ya organizados en alguna de las formas vistas en capítulos anteriores, se desea encontrar una especie de punto central en función
EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO
EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO 1º) Considérese un número estrictamente positivo del sistema de números máquina F(s+1, m, M, 10). Supongamos que tal número es: z = 0.d 1 d...d s 10 e Responde
Métodos generales de generación de variables aleatorias
Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad
PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables
Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver
Manual de usuario para Facturación Electrónica 2011
Contenido Manual de usuario Facturación Electrónica.... 2 Requisitos... 2 Registro de usuario.... 2 Inicio de sesión.... 4 Cerrar Sesión.... 4 Mi cuenta.... 5 Datos Personales.... 5 Información Fiscal...
Materia: Informática. Nota de Clases Sistemas de Numeración
Nota de Clases Sistemas de Numeración Conversión Entre Sistemas de Numeración 1. EL SISTEMA DE NUMERACIÓN 1.1. DEFINICIÓN DE UN SISTEMA DE NUMERACIÓN Un sistema de numeración es un conjunto finito de símbolos
A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:
ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,
Sistemas de numeración y aritmética binaria
Sistemas de numeración y aritmética binaria Héctor Antonio Villa Martínez Programa de Ciencias de la Computación Universidad de Sonora Este reporte consta de tres secciones. Primero, la Sección 1 presenta
AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES
AXIOMASDECUERPO(CAMPO) DELOSNÚMEROSREALES Ejemplo: 6 INECUACIONES 15 VA11) x y x y. VA12) x y x y. Las demostraciones de muchas de estas propiedades son evidentes de la definición. Otras se demostrarán
Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones:
2. Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma informal,
UNIDAD DE APRENDIZAJE IV
UNIDAD DE APRENDIZAJE IV Saberes procedimentales 1. Interpreta y utiliza correctamente el lenguaje simbólico ara el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones
Qué son los monomios?
Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes
Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES
Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos
Relaciones y funciones
Relaciones y funciones En matemáticas, una relación es un conjunto de pares ordenados. Como si se tratara de coordenadas de puntos, un conjunto de pares ordenados, forma una relación. Relación Es un conjunto
Unidad 1 Sistemas de numeración Binario, Decimal, Hexadecimal
Unidad 1 Sistemas de numeración Binario, Decimal, Hexadecimal Artículo adaptado del artículo de Wikipedia Sistema Binario en su versión del 20 de marzo de 2014, por varios autores bajo la Licencia de Documentación
UNIDAD 4 Sistemas de ecuaciones lineales... 84 Introducción... 84 4.1.- Sistemas de ecuaciones lineales con dos incógnitas... 84 4.2.
FACULTAD DE INGENIERÍA - UNSJ Unidad : Sistemas de Ecuaciones Lineales UNIDAD Sistemas de ecuaciones lineales... 8 Introducción... 8.1.- Sistemas de ecuaciones lineales con dos incógnitas... 8..- Resolución