1.6.- CLASIFICACION Y OPERACIONES DE FUNCIONES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1.6.- CLASIFICACION Y OPERACIONES DE FUNCIONES"

Transcripción

1 1.6.- CLASIFICACION Y OPERACIONES DE FUNCIONES OBJETIVO.- Conocer y manejar las operaciones definidas entre funciones así como conocer la clasificación de éstas y sus características Operaciones entre Funciones. Aparte de las operaciones algebraicas ya conocidas, como la suma y la multiplicación, que también se pueden realizar entre funciones, para estas tenemos una operación que es privativa de ellas y que es conocida como Composición de Funciones cuyo resultado es otra función que, por como se le da origen, se le llama Función Compuesta o Función Composición, que definiremos en el siguiente artículo Definición de Composición de Funciones. La Composición de Funciones, es una operación definida entre dos funciones y que da como resultado otra función, por lo que se dice que es una Operación Binaria, que es cerrada por naturaleza, y se define en los siguientes términos: Sean dos funciones f() y g() definidas en los reales, es decir. f: R R g: R R La composición de f con g, indicada como: f g se define como la función que se obtiene al valuar la función f con la función g, es decir: f[g()] Esto significa sustituir en la variable independiente de función f() la función g(). Ejemplo: Dadas las funciones: f ():= y g ():= 4e 77

2 Obtenga las siguientes Composiciones: f g g f Como ya indicamos, en el primer caso la composición se obtiene valuando metiendo- la función g() en la función f(), por lo tanto: h ():= 4e ( ) 64e En la que al hacer operaciones nos queda dada por: h ( ) := 16e 4 ( ) e + 10 En el segundo caso la composición se obtiene valuando la función f() en la función g(), por lo tanto: h ():= 4e En la que al hacer operaciones nos queda dada por: h ():= 4e ( ) ( ) Ejemplo No..- Encuentre las dos composiciones entre f y g dadas por: f ():= y g () := Como ya señalamos se lee: f valuado en g. fg := gf 3 := ( 3 + 1) 1 7

3 Condición de Eistencia. No obstante que como operación bien definida siempre es posible realizar una composición, independientemente de las funciones f y g involucradas, el resultado de tal operación esta limitado a la eistencia de la función resultante a partir de las condiciones que le hemos impuesto a las funciones como tales. Es decir, debe estar bien definida la relación establecida entre los conjuntos dominio y contradominio para que la función composición pueda eistir. Ejercicios: Obtengas todos los pares de composiciones con las siguientes funciones y dé el dominio de la función resultante. f() = 6Sen(4-) g() = h() = 6Ln(3-9) De un ejemplo en el que una composición NO se pueda realizar. Esto significa que la función resultante NO eiste en R Inversa de una función: La Inversión de una Función es otra operación definida para las funciones pero en este caso se aplica solamente sobre una función. En este sentido se dice que es una operación Unaria definida sobre un solo elemento- y se define en los siguientes y términos: Sea f() una función definida en R, la que, al establecer una relación de correspondencia entre DOS conjuntos, se acostumbra indicar como: y = f() La función inversa de esta función, indicada como: f() -1 Se obtiene DESPEJANDO la variable independiente y obteniendo otra función dada por: = f(y) en la que se invierten los papeles de las variables. La variable independiente original pasa a ser ahora la variable dependiente en la función inversa. Sin embargo, para efectos de notación se acostumbra epresar la función invertida en función de la original. Ejemplo:- Obtenga la función inversa de: f() =

4 Como ya indicamos, para obtener la función inversa simplemente despejamos de esta función lo que nos da: + f () 1 := Condición de Eistencia. No obstante que como operación bien definida siempre es posible realizar la inversión de una función -independiente de cual sea tal función- el resultado de la operación esta limitado a la eistencia de la función resultante a partir de las condiciones que le hemos impuesto a las funciones. Es decir, debe estar bien definida la relación establecida entre los conjuntos dominio y contradominio para que la función pueda eistir. En particular, la inversión solamente es posible en las funciones biyectivas que son aquellas que establecen una correspondencia biunívoca como veremos en el siguiente artículo. Ejercicios: Obtenga la función inversa de las siguientes funciones: Establezca su dominio de definición y cuando la inversión no eista eplique porqué. f() = 6Sen(4-) g() = h() = 6Ln(3-9) Clasificación de Funciones. Según la correspondencia que establecen entre los elementos del conjunto dominio con los elementos del conjunto contradominio, las funciones aceptan la siguiente clasificación: 1. Función Inyectiva.- Es aquella en la que la correspondencia entre dominio y contradominio es Biunívoca o Uno a Uno. Es decir, a cada elemento del dominio le corresponde Uno y solo Un elemento del contradominio pero en el contradominio sobran elementos. El Mapa de asociación de elementos se muestra enseguida. A B 0

5 Por ejemplo la función eponencial definida en todos los reales positivos: f() = e f : R R Algunas funciones radicales y ciertas funciones cuadráticas o los polinomios pares con todas sus raíces repetidas en las que se adecuen de manera correcta los conjuntos dominio y contradominio.. Función Sobreinyectiva.- Es aquella en la que a al menos un elemento del dominio le corresponde mas de un elemento del contradominio, bajo la regla de correspondencia establecida por la función, y en el contradominio NO sobran elementos. El mapa de correspondencia se muestra enseguida. A B Por ejemplo los polinomios de grado impar como: f() = h() = y en general los polinomios de grado impar que no tengan todas sus raíces repetidas 3. Función Biyectiva.- Es aquella en la que la correspondencia entre dominio y contradominio es Biunívoca o Uno a Uno. Es decir, a cada elemento del dominio le corresponde Uno y solo Un elemento del contradominio pero en el contradominio NO sobran elementos. En este sentido se dice que si entre dos conjuntos dados es posible definir una función Biyectiva, entonces, estos conjuntos tienen la misma cardinalidad. El Mapa de asociación de elementos se muestra enseguida. 1

6 A B Por ejemplo los monomios de grado impar como: f() = h() = 5-7 y, en general, las funciones lineales o los polinomios impares con todas sus raíces repetidas. 4. Funciones que no caen en ninguna de ellas.- Son funciones con correspondencia Sobreinyectiva pero en las que sobran elementos en el contradominio. A B Que a un elemento de B le toquen mas de uno de A y sobran en B Ejemplo de este tipo de funciones son los polinomios pares definidos en todos lo reales como por ejemplo: f() = f: R R En seguida mostramos un conjunto de gráficas que corresponden a otras tantos ejemplos de funciones: 1. Inyectiva si se define de R + a R. Biyectiva si se define de R a R.

7 f ():= Sobreinyectiva de R a R No clasificada si se define de R a R f ():= Biyectiva si se define de R a R 6.- Inyectiva si se define de R + a R f ():=

8 7. - Ninguna de ellas si se define de R a R. f ():= 4 + EJERCICIOS: Clasifique las siguientes funciones considerando su dominio mas amplio. Posteriormente redefina dominio y/o contradominio y modifique en al menos dos formas su clasificación. f ():= f ():= 3 3 4

9 f ():= Clasifique las siguientes funciones considerando su dominio mas amplio. Posteriormente redefina dominio y/o contradominio y modifique en al menos dos formas su clasificación. f() = 7Sen( ) f() = Tan() f() = f() = f() = e - f() = Ln(7-4) f() = f() = f() = f() = 6 Cos( ) 5

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f) MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en

Más detalles

Características de funciones que son inversas de otras

Características de funciones que son inversas de otras Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =

Más detalles

, o más abreviadamente: f ( x)

, o más abreviadamente: f ( x) TEMA 5: 1. CONCEPTO DE FUNCIÓN Observa los siguientes ejemplos: El precio de una llamada telefónica depende de su duración. El consumo de gasolina de un coche depende de la velocidad del mismo. La factura

Más detalles

Profr. Efraín Soto Apolinar. Función Inversa

Profr. Efraín Soto Apolinar. Función Inversa Función Inversa Una función es una relación entre dos variables, de manera que para cada valor de la variable independiente eiste a lo más un único valor asignado a la variable independiente por la función.

Más detalles

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { }

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { } I. RELACIONES Y FUNCIONES PAREJAS ORDENADAS Una pareja ordenada se compone de dos elementos x y y, escribiéndose ( x, y ) donde x es el primer elemento y y el segundo elemento. Teniéndose que dos parejas

Más detalles

Concepto de función y funciones elementales

Concepto de función y funciones elementales Concepto de unción unciones elementales Matemáticas I - º Bachillerato Las unciones describen enómenos cotidianos, económicos, psicológicos, cientíicos Tales unciones se obtienen eperimentalmente, mediante

Más detalles

Funciones Reales en una Variable

Funciones Reales en una Variable Funciones Reales en una Variable Contenidos Concepto función Grafica de una función Dominio y Recorrido de una función Clasificación de la funciones Función Inversa Paridad de las Funciones Operaciones

Más detalles

Funciones polinomiales de grados 3 y 4

Funciones polinomiales de grados 3 y 4 Funciones polinomiales de grados 3 y 4 Ahora vamos a estudiar los casos de funciones polinomiales de grados tres y cuatro. Vamos a empezar con sus gráficas y después vamos a estudiar algunos resultados

Más detalles

1.5.- FUNCIONES Y SUS GRAFICAS. OBJETIVO.- Que el alumno conozca el concepto de función, su representación gráfica así como su uso en el Cálculo.

1.5.- FUNCIONES Y SUS GRAFICAS. OBJETIVO.- Que el alumno conozca el concepto de función, su representación gráfica así como su uso en el Cálculo. 1.5.- FUNCIONES Y SUS GRAFICAS OBJETIVO.- Que el alumno conozca el concepto de función, su representación gráfica así como su uso en el Cálculo. 1.5.1.- Introducción. Como ya mencionamos al inicio de estas

Más detalles

Funciones 1. Ejercicios básicos sobre funciones. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Funciones 1. Ejercicios básicos sobre funciones. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Funciones Ejercicios básicos sobre funciones www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-008 Contenido. Introducción. Ejercicios Introducción Los aspectos básicos a estudiar

Más detalles

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones

Más detalles

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD TEMA 8: DE FUNCIONES. CONTINUIDAD 1. EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores de se hacen enormemente grandes ( ) o enormemente pequeños

Más detalles

Funciones. Efraín Soto Apolinar

Funciones. Efraín Soto Apolinar Funciones Efraín Soto Apolinar TÉRMINOS DE USO Derechos Reservados c 010. Todos los derechos reservados a favor de Efraín Soto Apolinar. Soto Apolinar, Efraín. Funciones Primera edición. Incluye índice.

Más detalles

Funciones reales de variable real: límites y continuidad

Funciones reales de variable real: límites y continuidad Capítulo 3 Funciones reales de variable real: límites y continuidad 3.. Funciones reales de variable real 3... ntroducción Una función f : A B consiste en dos conjuntos, el dominio A = Dom(f) y el rango

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Relaciones y Funciones

Relaciones y Funciones OBJETIVOS Unidad Tema Subtema Objetivos IV Relaciones y funciones 4.1 Relaciones 4.2 Funciones Entender y definir el concepto de relación así como las diferentes representaciones de una relación Entender,

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

Propiedades de los límites

Propiedades de los límites SECCIÓN 3 Cálculo analítico de ites 59 3 Cálculo analítico de ites Evaluar un ite mediante el uso de las propiedades de los ites Desarrollar usar una estrategia para el cálculo de ites Evaluar un ite mediante

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función TEMA 3 FUNCIONES 3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función Una función es una relación establecida entre dos variables que asocia a cada valor de la primera variable

Más detalles

Funciones y gráficas (1)

Funciones y gráficas (1) Funciones y gráficas (1) Introducción Uno de los conceptos más importantes en matemática es el de función. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes

Más detalles

MODULO PRECALCULO TERCERA UNIDAD

MODULO PRECALCULO TERCERA UNIDAD MODULO PRECALCULO TERCERA UNIDAD Función Eponencial y Función Logarítmica 9 Alicia rió. "No sirve de nada intentarlo - dijo -; uno no puede creer cosas imposibles." - "Me atrevería a decir que no tienes

Más detalles

Funciones polinomiales de grados cero, uno y dos

Funciones polinomiales de grados cero, uno y dos Funciones polinomiales de grados cero, uno y dos A una función p se le llama polinomio si: p x = a n x n + a n 1 x n 1 + + a 2 x 2 + a 1x + a 0 Donde un entero no negativo y los números a 0, a 1, a 2,

Más detalles

Horno solar en el desierto de Mojave, California

Horno solar en el desierto de Mojave, California Horno solar en el desierto de Mojave, California Parte Ecuaciones diferenciales ordinarias. Introducción a las ecuaciones diferenciales 2. Ecuaciones diferenciales de primer orden 3. Ecuaciones diferenciales

Más detalles

TEMA 4. FUNCIONES DE VARIABLE REAL

TEMA 4. FUNCIONES DE VARIABLE REAL TEMA 4. FUNCIONES DE VARIABLE REAL 4.1 Definición de función real Definición: Una función real de variable real es una aplicación de un subconjunto A en. f : A El dominio de una función es el conjunto

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

3. Operaciones con funciones.

3. Operaciones con funciones. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente

Más detalles

FUNCIONES EN R. Agosto 2007

FUNCIONES EN R. Agosto 2007 FUNCIONES EN R Alexis Vera Pérez Instituto de Estadística & Sistemas Computarizados de Información Universidad de Puerto Rico, Recinto de Río Piedras Agosto 2007 1 Definición y notación Definición 1 Una

Más detalles

1. Definición 2. Operaciones con funciones

1. Definición 2. Operaciones con funciones 1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de

Más detalles

Capítulo 2: Concepto y Cálculo de Límites

Capítulo 2: Concepto y Cálculo de Límites Capítulo : Concepto y Cálculo de Límites Geovany Sanabria Contenido Concepto de Límite Una definición intuitiva de Límite Ejercicios 6 Problemas con la utilización de sucesiones para calcular límites 7

Más detalles

3. OPERACIONES CON FUNCIONES.

3. OPERACIONES CON FUNCIONES. 3. OPERACIONES CON FUNCIONES. Las operaciones de suma, resta, multiplicación y división entre funciones son posibles y semejantes a las correspondientes efectuadas con los números. En esta sección definiremos

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.4.2 ED lineales homogéneas con coeficientes constantes de orden n 3 En la sección anterior hemos obtenido las soluciones de la ED lineal homogénea

Más detalles

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Índice 1. Función 2 1.1. Definición............................. 2 1.2. Clasificación............................

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 7 Funciones reales de una variable real Elaborado por la Profesora Doctora

Más detalles

Funciones uno-uno, sobre y biunívocas

Funciones uno-uno, sobre y biunívocas Funciones uno-uno, sobre y biunívocas La inversa (biunívocas) de una función es una regla que actúa en la salida de la función y produce la entrada correspondiente. Así, la inversa deshace o invierte lo

Más detalles

DESIGUALDADES página 1

DESIGUALDADES página 1 DESIGUALDADES página 1 1.1 CONCEPTOS Y DEFINICIONES Una igualdad en Álgebra es aquella relación que establece equivalencia entre dos entes matemáticos. Es una afirmación, a través del signo =, de que dos

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

FUNCIÓN REAL DE VARIABLE REAL

FUNCIÓN REAL DE VARIABLE REAL FUNCIÓN REAL DE VARIABLE REAL Autor: Patrici Molinàs Mata (pmolinas@uoc.edu), José Francisco Martínez Boscá (jmartinezbos@uoc.edu) ESQUEMA DE CONTENIDOS Definición FUNCIÓN REAL DE VARIABLE REAL Ejemplos

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

Toda regla de correspondencia como los ejemplos anteriores es llamada relación.

Toda regla de correspondencia como los ejemplos anteriores es llamada relación. . Funciones.1. Definición de función Toda regla de correspondencia como los ejemplos anteriores es llamada relación. Ciertos tipos especiales de reglas de correspondencia se llaman funciones. La definición

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

FACTORIZACIÓN DE LA SUMA DE DOS CUADRADOS 1. FACTORIZACIÓN DE LA SUMA DE DOS CUADRADOS EN Q.

FACTORIZACIÓN DE LA SUMA DE DOS CUADRADOS 1. FACTORIZACIÓN DE LA SUMA DE DOS CUADRADOS EN Q. FACTORIZACIÓN DE LA SUMA DE DOS CUADRADOS CON APLICACIONES EN EL CÁLCULO DIFERENCIAL E INTEGRAL JORGE ALFONSO HERNÁNDEZ Profesor Titular de Matemática Facultad de Ciencias Económicas Universidad de El

Más detalles

DE LOS NÚMEROS NATURALES A LOS NÚMEROS ENTEROS

DE LOS NÚMEROS NATURALES A LOS NÚMEROS ENTEROS DE LOS NÚMEROS NATURALES A LOS NÚMEROS ENTEROS Exposición de contenidos matemáticos Primera Parte SOBRE EL CONCEPTO DE FUNCIÓN Qué es una función? Una función es una formula? Por ejemplo X 2 + Y 3 es una

Más detalles

APUNTES DE CÁLCULO DIFERENCIAL

APUNTES DE CÁLCULO DIFERENCIAL PROGRAMA DE CALCULO DIFERENCIAL OBJETIVO(S) GENERAL(ES) DEL CURSO: Plantear y resolver problemas que requieren del concepto de función de una variable para modelar y de la derivada para resolver. UNIDAD

Más detalles

Ejercicios de Matemática para. Bachillerato. Miguel Ángel Arias Vílchez

Ejercicios de Matemática para. Bachillerato. Miguel Ángel Arias Vílchez Ejercicios de Matemática para Bachillerato Miguel Ángel Arias Vílchez 009 Profesor Miguel Ángel Arias Vílchez 009 Se pretende mediante este material contribuir a que los estudiantes que se preparan de

Más detalles

Funciones, x, y, gráficos

Funciones, x, y, gráficos Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

MATEMÁTICAS. TEMA 5 Límites y Continuidad

MATEMÁTICAS. TEMA 5 Límites y Continuidad MATEMÁTICAS TEMA 5 Límites y Continuidad MATEMÁTICAS º BACHILLERATO CCSS. TEMA 5: LÍMITES Y CONTINUIDAD ÍNDICE. Introducción. Concepto de función. 3. Dominio e imagen de una función. 4. Gráfica de algunas

Más detalles

Teoría de Conjuntos y Funciones

Teoría de Conjuntos y Funciones Elaborado por: Lic. Eleazar J. García República Bolivariana de Venezuela. Tinaco.- Estado Cojedes Teoría de Conjuntos Funciones Este capítulo comienza con el estudio de las nociones de la teoría de conjuntos

Más detalles

Relaciones y Funciones

Relaciones y Funciones OBJETIVOS Unidad Tema Subtema Objetivos IV Relaciones y funciones 4.1 Relaciones 4.2 Funciones Entender y definir el concepto de relación así como las diferentes representaciones de una relación Entender,

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS 2 Í N D I C E CAPÍTULO MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES MATRICES. MATRIZ. DEFINICIÓN 2. ALGUNOS

Más detalles

EJERCITARIO GENERAL DE CÁLCULO DIFERENCIAL

EJERCITARIO GENERAL DE CÁLCULO DIFERENCIAL UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA CPI EJERCITARIO GENERAL DE CÁLCULO DIFERENCIAL AÑO 014 CURSO PREPARATORIO DE INGENIERÍA CPI-014 CAPÍTULO 1: FUNCIONES

Más detalles

Una función se refiere a una asignación o correspondencia de un conjunto a otro. Su definición formal es la siguiente:

Una función se refiere a una asignación o correspondencia de un conjunto a otro. Su definición formal es la siguiente: Facultad de Contaduría Administración. UNAM Teoría de unciones Autor: r. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS TEORÍA E FUNCIONES Las manitudes que caracterizan un enómeno dado pueden quedar

Más detalles

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido Indicadores FUNCIONES Calcula el valor de incógnitas usando la definición de función. Determina valores de la variable dependiente a partir de valores dados a la variable independiente. Determina los puntos

Más detalles

TEMA 1: Cálculo Diferencial de una variable

TEMA 1: Cálculo Diferencial de una variable TEMA 1: Cálculo Diferencial de una variable Cálculo para los Grados en Ingeniería EPIG - UNIOVI Curso 2010-2011 Los números Naturales I Los números Naturales N = f1, 2, 3, g I Principio de inducción Supongamos

Más detalles

CALCULO AVANZADO. Campos escalares. Límite y continuidad UCA FACULTAD DE CIENCIAS FISICOMATEMATICAS E INGENIERIA

CALCULO AVANZADO. Campos escalares. Límite y continuidad UCA FACULTAD DE CIENCIAS FISICOMATEMATICAS E INGENIERIA UCA FACULTAD DE CIENCIAS FISICOMATEMATICAS E INGENIERIA CALCULO AVANZADO SEGUNDO CUATRIMESTRE 8 TRABAJO PRÁCTICO 4 Campos escalares Límite continuidad Página de Cálculo Avanzado http://www.uca.edu.ar Ingeniería

Más detalles

FUNCIONES INTRODUCCIÓN

FUNCIONES INTRODUCCIÓN FUNCIONES INTRODUCCIÓN Contenidos Concepto unción Graica de una unción Dominio y Recorrido de una unción Clasiicación de la unciones Función Inversa Paridad de las Funciones Operaciones con unciones Ejemplos

Más detalles

(Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA

(Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA (Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA Esta clasiicación obedece a la orma en que están relacionados los elementos del dominio con los del codominio.

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

Capítulo 3: APLICACIONES DE LAS DERIVADAS

Capítulo 3: APLICACIONES DE LAS DERIVADAS Capítulo : Aplicaciones de la derivada 1 Capítulo : APLICACIONES DE LAS DERIVADAS Dentro de las aplicaciones de las derivadas quizás una de las más importantes es la de conseguir los valores máimos y mínimos

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

Relaciones y Funciones

Relaciones y Funciones Capítulo Relaciones Funciones.1. Producto Cartesiano Definición El producto cartesiano de A B, se define por A B = (a, b)/a A b B} A B conjuntos dados, A B se lee A cruz B (a, b) es un par ordenado, recuerde

Más detalles

Bachillerato. Matemáticas. Ciencias y tecnología

Bachillerato. Matemáticas. Ciencias y tecnología Bachillerato º Matemáticas Ciencias y tecnología Índice Unidad 0 Números reales........................................... 7. Evolución histórica................................... 8. Números reales......................................

Más detalles

Anexo 2: Demostraciones

Anexo 2: Demostraciones 0 Matemáticas I : Cálculo diferencial en IR Aneo : Demostraciones Funciones reales de variable real Demostración de: Propiedades del valor absoluto 79 de la página 85 Propiedades del valor absoluto 79.-

Más detalles

Funciones y sus gráficas

Funciones y sus gráficas Funciones y sus gráficas El concepto de función es de suma importancia en la matemática moderna, debido a esto vamos a estudiar este tema de una manera un poco detallada. Dos conjuntos de números, por

Más detalles

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado.

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado. ECUACIONES Y DESIGUALDADES UNIDAD VII VII. CONCEPTO DE ECUACIÓN Una igualdad es una relación de equivalencia entre dos epresiones, numéricas o literales, que se cumple para algún, algunos o todos los valores

Más detalles

FUNCIONES DE VARIABLE REAL

FUNCIONES DE VARIABLE REAL CAPÍTULO II. FUNCIONES DE VARIABLE REAL SECCIONES A. Dominio e imagen de una función. B. Representación gráfica de funciones. C. Operaciones con funciones. D. Ejercicios propuestos. 47 A. DOMINIO E IMAGEN

Más detalles

0 7, que no tiene sentido. Así, al número 0 no se. puede asociar por esta regla, ningún número real. La función definida por la expresión x + asocia

0 7, que no tiene sentido. Así, al número 0 no se. puede asociar por esta regla, ningún número real. La función definida por la expresión x + asocia FUNCIONES Notas redactadas por A. Diego M. I. Platzeck para el curso de Matemática General. DEFINICIÓN Y EJEMPLOS. El concepto de función que vamos a estudiar está en la base de la matemática, de otras

Más detalles

RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES

RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Dpto. de Matemáticas (Área de Álgebra) 1. Sean X e Y conjuntos. Demostrar: a) X = X Y Y X. b) X = X Y X Y. RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES

Más detalles

Álgebra II. Tijani Pakhrou

Álgebra II. Tijani Pakhrou Álgebra II Tijani Pakhrou Índice general 1. Teoría de conjuntos 1 1.1. Conjuntos................................. 1 1.2. Productos cartesianos........................... 6 1.3. Relaciones de equivalencia........................

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

CUADERNO DE TRABAJO 2

CUADERNO DE TRABAJO 2 1 COLEGIO UNIVERSITARIO DE CARTAGO ELECTRÓNICA MATEMÁTICA ELEMENTAL EL-103 CUADERNO DE TRABAJO 2 Elaborado por: Msc. Adriana Rivera Meneses II Cuatrimestre 2014 2 ESTIMADO ESTUDIANTE: Continuamos con el

Más detalles

Transformaciones lineales invertibles (no singulares)

Transformaciones lineales invertibles (no singulares) Transformaciones lineales invertibles (no singulares) Objetivos. Estudiar la definición y los criterios de invertibilidad de una transformación lineal. Requisitos. Funciones inyectivas, suprayectivas e

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

Matemáticas IV. 6 5 4 3 2 1 1 2 3 4 5 6 7

Matemáticas IV. 6 5 4 3 2 1 1 2 3 4 5 6 7 6 5 4 4 5 6 7 Matemáticas IV. COLEGIO DE BACHILLERES DEL ESTADO DE SONORA Director General Lic. Eusebio Pillado Hernández Director Académico Lic. Jorge Alberto Ponce Salazar Director de Administración

Más detalles

Guía para el examen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías y matemáticas aplicadas.

Guía para el examen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías y matemáticas aplicadas. Guía para el eamen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías matemáticas aplicadas. Septiembre 23 Índice. Instrucciones.. Objetivo....2. Requisitos....3. Característicasdeleamen...

Más detalles

49 http://iedonboscohunter.hol.es

49 http://iedonboscohunter.hol.es 49 http://iedonboscohunter.hol.es MODULO PRECALCULO SEGUNDA UNIDAD Funciones Algebraicas Había un hombre en Roma que se parecía mucho a César Augusto; Augusto se enteró de ello, mandó buscarlo y le preguntó.

Más detalles

UNIDAD 1: LÍMITES DE FUNCIONES. CONTINUIDAD

UNIDAD 1: LÍMITES DE FUNCIONES. CONTINUIDAD UNIDAD : LÍMITES Y CONTINUIDAD UNIDAD : LÍMITES DE FUNCIONES CONTINUIDAD ÍNDICE DE LA UNIDAD - INTRODUCCIÓN - LÍMITE DE UNA FUNCIÓN EN UN PUNTO LÍMITES LATERALES - LÍMITES EN EL INFINITO 5 4- ÁLGEBRA DE

Más detalles

Taller de Matemáticas IV

Taller de Matemáticas IV Taller de Matemáticas IV Universidad CNCI de Méico Temario. Funciones.. Características de la relación y de la función... Formas de representar a una función... Dominio y rango de una función.. Operaciones

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN AUTOR: M. F. ALBERTO DE LA ROSA ELIZALDE MATEMÁTICAS II (CÁLCULO DIFERENCIAL) Clave: 66 Plan: 005 Créditos: 8 Licenciatura:

Más detalles

Polinomios y Ecuaciones

Polinomios y Ecuaciones Ejercicios de Cálculo 0 Prof. María D. Ferrer G. Polinomios y Ecuaciones.. Polinomios: Un polinomio o función polinómica es una epresión de la forma: n n n P a a a a a a = n + n + n + + + + 0 () Los números

Más detalles

EJERCICIOS DE FUNCIONES REALES

EJERCICIOS DE FUNCIONES REALES EJERCICIOS DE FUNCIONES REALES.- La ley que relaciona el valor del área de un cuadrado con la longitud de su lado es una función. Sabemos que la epresión que nos relacionas ambas variables es. Observa

Más detalles

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente

Más detalles

a) PAR: Una función es simétrica con respecto al eje Y cuando se verifica:

a) PAR: Una función es simétrica con respecto al eje Y cuando se verifica: TEMA 10: REPRESENTACIÓN DE FUNCIONES. 10.1. DOMINIO. El dominio de definición de una función y = f{) (valores para los cuales eiste la función) es, en principio, todo ir, salvo que haya operaciones imposibles

Más detalles

Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe. matics.webs.comprofesoresdematemá

Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe. matics.webs.comprofesoresdematemá Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe Matemáticas IV matics.webs.comprofesoresdematemá ENP ticaswww.instituteofmathematics.web s.comprofesoresdematematicaswww.i

Más detalles

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six

Más detalles

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder

Más detalles

1. Funciones de varias variables: representaciones gráficas, límites y continuidad.

1. Funciones de varias variables: representaciones gráficas, límites y continuidad. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Funciones de varias variables: representaciones gráficas, límites y continuidad. En el análisis de los problemas de la ciencia y de la técnica, las cantidades

Más detalles

Conjuntos, Relaciones y Funciones

Conjuntos, Relaciones y Funciones Conjuntos, Relaciones y Funciones 0.1 Conjuntos El término conjunto y elemento de un conjunto son términos primitivos y no definidos. De un punto de vista intuitivo parece ser que cualquier colección de

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 1 Estructuras algebraicas 1.1 Álgebras binarias Sea A un conjunto no vacío, una operación binaria (u operación interna) en A es una aplicación *: A A A (x, y) x * y es decir, una regla que a cada

Más detalles

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto

Más detalles

Funciones Reales de Variable Real

Funciones Reales de Variable Real 1 Capítulo 6 Funciones Reales de Variable Real M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet

Más detalles

Aplicaciones lineales

Aplicaciones lineales Capítulo 4 Aplicaciones lineales 4.1. Introduccción a las aplicaciones lineales En el capítulo anterior encontramos la aplicación de coordenadas x [x] B que asignaba, dada una base del espacio vectorial,

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la

Más detalles

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim DERIVADAS. CONTENIDOS. Recta tangente a una curva en un punto. Idea intuitiva del concepto de derivada de una función en un punto. Función derivada. sucesivas. Reglas de derivación Aplicación de la derivada

Más detalles

Advierta que la definición 1 requiere implícitamente tres cosas si f es continua en a:

Advierta que la definición 1 requiere implícitamente tres cosas si f es continua en a: SECCIÓN.5 CONTINUIDAD 9.5 CONTINUIDAD En la sección.3 se le hizo notar que a menudo se puede hallar el ite de una función cuando tiende a a, con sólo calcular el valor de la función en a. Se dice que las

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS UNIDAD 3 FUNCIONES TRIGONOMÉTRICAS Concepto clave: 1. Razones trigonométricas Si A es un ángulo interior agudo de un triángulo rectángulo y su medida es, entonces: sen longitud del cateto opuesto al A

Más detalles

LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función exponencial

LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función exponencial LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función eponencial La función eponencial es de la forma f () = a, tal que a > 0, a El valor a se llama base de la función

Más detalles