Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico"

Transcripción

1 Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más aproximado) al número de observaciones. Criterio de Sturges: k= 1+3.3log(n) Ancho de clase = Media aritmética (media muestral) Media aritmética (muestral) para datos agrupados fi = frecuencia absoluta de la clase i mi= es el punto medio de la clase i k = # Intervalos de clase Mediana (muestral) Si n es impar, Si n es par, es la observación ordenada es el promedio las observaciones ordenadas Moda (muestral) Es el valor que más se repite Varianza muestral Varianza muestral para datos agrupados Desviación estándar muestral Coeficiente de variación muestral fi = frecuencia absoluta de la clase i mi= es el punto medio de la clase i k = # Intervalos de clase Es la media muestral agrupada

2 Percentil P 0< P < 100 Es la observación ordenada Diagrama de caja 1. Observación mínima no considerada extrema = Q1-1.5*fs 2. Primer cuartil (Percentil 25, Q1) 3. Mediana (Percentil 50, Q2) 4. Tercer cuartil (Percentil 75, Q3) 5. Observación máxima no considerada extrema = Q *fs Rango intercuartílico = fs= Q3 Q1 Puntos extremos del lado izquierdo < Q1-1.5*fs Puntos extremos del lado derecho > Q *fs Módulo 2. Teoría de Probabilidad Probabilidad marginal P(A) Regla del complemento P(A c ) = 1 P(A) Probabilidad conjunta P(A B) Regla de la adición para eventos mutuamente excluentes P(A B)= P(A) + P(B) Regla de la adición para eventos con elementos en común P(A B) = P(A) + P(B) P(A B) Regla de la multiplicación para eventos P(A B) = P(A)P(B) independientes Regla de la multiplicación para eventos P(A B) = P(A/B)P(B) ; dependientes P(A B) = P(B/A)P(A) Probabilidad condicional para eventos independientes P(A/B) = P(A) ; P(B/A) = P(B) Probabilidad condicional para eventos dependientes P(A/B) = ; P(B/A) = Regla de producto para pares ordenados T = n 1 *n 2 Regla de producto para arreglos ordenados de k elementos T k = n 1 *n 2* *n k Permutaciones En la selección: Importa el orden la selección es sin reemplazo. Combinaciones En la selección: No importa el orden la selección es sin reemplazo. ncx

3 Módulo 3. Modelación de mediciones aleatorias Distribución de probabilidad de una variable aleatoria discreta Distribución de probabilidad acumulada de una variable aleatoria discreta Valor esperado de una variable aleatoria discreta para todos los valores de X para todos los valores de X Varianza de una variables aleatoria discreta donde, Distribución de probabilidad Binomial X = # de éxitos en n pruebas idénticas Valor esperado varianza de una variable aleatoria Binomial Distribución de probabilidad Poisson X = # de éxitos en un intervalo de tiempo Valor esperado varianza de una variable aleatoria Poisson Función de densidad de probabilidad Distribución de probabilidad acumulada de una variable aleatoria continua Valores esperados para variables aleatorias continuas P(X = x) = ncx Para x = 0,1,2,3,...,n µ = E(X) = np σ 2 = V(X) = np(1-p) P(X = x) = x = 0,1,2,3, E(X) = µ V(X) = µ f(x) para variables aleatorias continuas Varianza de una variable aleatoria continua donde, Propiedades del valor esperado E(aX + b) = ae(x) + b Propiedad de la varianza V(aX + b) = a 2 V(X) Función de densidad de probabilidad normal Si X ~ Normal con E(X) = µ V(X) = σ 2 Entonces Función de densidad de probabilidad de una variable aleatoria exponencial Función de distribución acumulada de una variable aleatoria exponencial ~ Normal Estándar con E(Z) = 0 V(Z) = 1 para

4 Módulo 4. Distribuciones de muestreo estimación de parámetros Distribuciones de muestreo Escenario Estadístico Distribución Parámetros Población normal Normal Población desconocida Aproximadamente Normal Aproximadamente normal Intervalos de confianza estimados de 100*(1-α)% Escenario Intervalo Caso 1. Intervalo para µ σ Distribución poblacional de X normal x ± z α Varianza conocida, σ 2 2 Caso 2. Intervalo para µ con muestras pequeñas Distribución poblacional de X normal Varianza desconocida n Caso 3. Intervalo para σ 2 Distribución poblacional de X normal LIC Caso 4. Intervalo para p ; ; (Nivel de confianza aproximado) LSC Tamaños de muestra Para estimar un intervalo para µ para el Caso 1 (Población infinita) Para estimar un intervalo para µ para el Caso 1 (Población finita) E = Error máximo permisible N= Tamaño de la población D=

5 Para estimar un intervalo para P para el Caso 5 E = Error máximo permisible Módulo 5. Pruebas de hipótesis paramétricas no paramétricas Pruebas de hipótesis con un nivel de significancia de α para una población Escenario Hipótesis Estadístico Regiones de rechazo Caso 1. Prueba para µ Distribución de X normal H 0 : µ = µ 0 H a : µ > µ 0 z z α H a : µ < µ 0 z - z α Varianza conocida, σ 2 H a : µ µ 0 Z - z α/2 ó z z α/2 Caso 2. Prueba para µ Distribución de X normal Varianza desconocida H 0 : µ = µ 0 H a : µ > µ 0 t t α,n-1 H a : µ < µ 0 t - t α, n-1 H a : µ µ 0 t - t α/2, n-1 ó t t α/2, n-1 Caso 3. Prueba para σ 2 Distribución de X normal H 0 : σ 2 = σ 2 0 H a : σ 2 > σ 2 0 χ 2 χ 2 α, n-1 H a : σ 2 < σ 2 0 χ 2 χ 2 1- α, n-1 H a : σ 2 σ 2 0 χ 2 χ 2 1- α/2, n-1 ó χ 2 >= χ 2 α/2, n-1 Caso 4. Prueba para p (nivel de significancia aproximado) ; ; H 0 : p = p 0 H a : p > p 0 z z α H a : p < p 0 z - z α H a : p p 0 z - z α/2 ó z z α/2 Pruebas de hipótesis con un nivel de significancia de α para dos poblaciones

6 Escenario Hipótesis Estadístico Regiones de rechazo H 0 : µ 1 µ 2 = Δ 0 H a : µ 1 µ 2 > Δ 0 z z α Caso 1. Prueba para µ 1 µ 2 Distribuciones normales. Varianzas conocidas (σ 1 2,σ 2 2 ) Muestras independientes. H a : µ 1 µ 2 < Δ 0 z - z α H a : µ 1 µ 2 Δ 0 z z α/2 z - z α/2 ó H a : µ 1 µ 2 > Δ 0 z z α H a : µ 1 µ 2 < Δ 0 z - z α z - z H a : µ 1 µ 2 Δ α/2 ó 0 z z α/2 Caso 2. Prueba para µ 1 µ 2 Escenario 1 Distribuciones normales. Muestras independientes. H 0 : µ 1 µ 2 = Δ 0 H a : µ 1 µ 2 > Δ 0 t t α, (n1+ n2) -2 H a : µ 1 µ 2 < Δ 0 t - t α, (n1+ n2) -2 Varianzas desconocidas, pero asumidas iguales. σ 1 2 = σ 2 2 H a : µ 1 µ 2 Δ 0 t - t α/2, (n1+ n2) -2 ó t t α/2,( n1+ n2) -2 Escenario 2 Distribuciones normales. Muestras independientes. Varianzas desconocidas, pero asumidas diferentes. σ 1 2 σ 2 2 H 0 : µ 1 µ 2 = Δ 0 H a : µ 1 µ 2 > Δ 0 T t α, ν H a : µ 1 µ 2 < Δ 0 T - t α, ν H a : µ 1 µ 2 Δ 0 t - t α/2, ν ó t t α/2, ν Caso 3. Prueba para σ 1 2 /σ 2 2 H 0 : σ 1 2 /σ 2 2 = 1 Distribuciones normales H a : σ 1 2 /σ 2 2 > 1 ν 1 =n 1-1 ν 2 =n 2-1 F F α, ν1,ν2

7 Muestras independientes H a : σ 1 2 /σ 2 2 < 1 F F 1-α, ν1,ν2 H a : σ 1 2 /σ Donde, F F F 1-α/2, ν1,ν2 ó f α/2, ν1,ν2 Caso 4. Prueba para p 1 p 2 (nivel de significancia aproximado) Escenario 1 Muestras independientes Δ 0 = 0 i = 1, 2 ; Escenario 2 Muestras independientes Δ 0 0 H 0 : p 1 p 2 = 0 H a : p 1 p 2 > 0 z z α H a : p 1 p 2 < 0 z - z α z H a : p 1 p 2 0 H 0 : p 1 p 2 = 0 - z α/2 ó z z α/2 H a : p 1 p 2 > 0 z z α ; i = 1, 2 H a : p 1 p 2 0 Valor P = 1 P(Z < z calculada ) H a : p 1 p 2 < 0 z - z α Valor P para una prueba Z para una prueba de cola superior z - z α/2 ó z z α/2 Valor P = P(Z < - z calculada) Valor P = 2*[1 - P(Z < z calculada )] Si, Valor P Valor P para una prueba de cola inferior para una prueba de dos colas Rechazar H 0 al nivel α No rechazar H 0 al nivel α Análisis de Varianza, ANOVA, de un factor Hipótesis Supuestos Región de rechazo H 0 = µ 1 = µ 2 = = µ i =... = µ k H a = al menos dos de las µ i son diferentes Las poblaciones tienen distribuciones normales Las poblaciones tienen desviaciones estándar poblacionales iguales. Las muestras se seleccionan de manera independiente Rechazar H 0 si F >= F α, k 1, n k

8 Fuente de Variación Entre tratamientos Tabla ANOVA Suma de Cuadrados G. de L. Cuadrados Medios Estadístico k - 1 Dentro de tratamientos SCE = SC(Total) - SCT n - k Total n - 1 Donde, T i n i Es la suma total de los valores x en la muestra i Es el número de observaciones en la muestra i Es la suma de los valores de x en todas las muestras Son los valores de x en todas las muestras elevados al cuadrado luego sumados N es el número total de observaciones n = n 1 + n n i + + n k K El número de niveles (poblaciones o tratamientos) del factor Pruebas de la bondad de ajuste Aplicaciones: Hipótesis Estadístico Regiones de rechazo Frecuencias esperadas iguales o diferentes Normalidad H 0 : las frecuencias observadas son iguales a las esperadas Ha: Son diferentes k = clases o celdas e i = n*p i Tablas de contingencia H 0 : las variables categóricas son independientes Ha: Son dependientes r = # renglones c = # columnas

9 Niveles de confianza más utilizados para estimar intervalos que involucran Z 1 - α α α/2 z α/ z 0.05 = z = z 0.01 = z = Regiones de rechazo más utilizadas para pruebas Z con un nivel de significancia de α Prueba de cola inferior Prueba de cola superior Prueba de dos colas α z - z α z z α z - z α ó z z α 0.1 -z 0.1 = z 0.1 = z 0.05 = ó z 0.05 = z 0.05 = z 0.05 = z = ó z = z 0.02 = z 0.02 = z 0.01 = ó z 0.01 = z 0.01 = z 0.01 = z = ó z = 2.575

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables Pág. N. 1 Índice general Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN 1.1 Diseño 1.2 Descriptiva 1.3 Inferencia Diseño Población Muestra Individuo (Observación, Caso, Sujeto) Variables Ejercicios de Población

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO.

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO. DISTRIBUCIÓN t Con frecuencia intentamos estimar la media de una población cuando se desconoce la varianza, en estos casos utilizamos la distribución de t de Student. Si el tamaño de la muestra es suficientemente

Más detalles

Estadística Descriptiva y Probabilidad FORMULARIO

Estadística Descriptiva y Probabilidad FORMULARIO Estadística Descriptiva y Probabilidad FORMULARIO Departament d Estadística i Investigació Operativa Universitat de València Angel Corberán Francisco Montes 2 3 Capítulo 1 Estadística Descriptiva 1.1.

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Indicaciones para el lector... xv Prólogo... xvii

Indicaciones para el lector... xv Prólogo... xvii ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas INDICE Prefacio XIII 1. Introducción 1.1. la imagen de la estadística 1 1.2. dos tipos de estadísticas 1.3. estadística descriptiva 2 1.4. estadística inferencial 1.5. naturaleza interdisciplinaria de

Más detalles

Cátedra: Estadística Técnica Facultad de Ingeniería UNCuyo. Índice D. Fernández & M. Guitart TABLA DE CONTENIDOS

Cátedra: Estadística Técnica Facultad de Ingeniería UNCuyo. Índice D. Fernández & M. Guitart TABLA DE CONTENIDOS Cátedra: TABLA DE CONTENIDOS INTRODUCCIÓN Qué es la Probabilidad? Qué es la Estadística? La evolución histórica de la Estadística Algunos conceptos imprescindibles Fuentes de datos Tipos de datos y escalas

Más detalles

Centro Universitario de Tonalá

Centro Universitario de Tonalá Presentación Este curso de estadística y evaluación de datos se encuentra diseñado para los estudiantes del Doctorado en Agua y Energía del Centro Universitario de Tonalá. Competencias genéricas de la

Más detalles

Estimación de Parámetros.

Estimación de Parámetros. Estimación de Parámetros. Un estimador es un valor que puede calcularse a partir de los datos muestrales y que proporciona información sobre el valor del parámetro. Por ejemplo la media muestral es un

Más detalles

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas

Más detalles

TEMARIO PRUEBA DE SÍNTESIS MATEMÁTICA NIVEL SÉPTIMO BÁSICO

TEMARIO PRUEBA DE SÍNTESIS MATEMÁTICA NIVEL SÉPTIMO BÁSICO NIVEL SÉPTIMO BÁSICO Operatoria números naturales Operatoria números decimales Clasificación de números decimales Transformación de decimal a fracción Orden de números enteros Ubicación de números enteros

Más detalles

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos INDICE Prefacio VII 1. Introducción 1 1.1. Qué es la estadística moderna? 1 1.2. El crecimiento y desarrollo de la estadística moderna 1 1.3. Estudios enumerativos en comparación con estudios analíticos

Más detalles

PROGRAMA DE ESTADÍSTICA DESCRIPTIVA

PROGRAMA DE ESTADÍSTICA DESCRIPTIVA PROGRAMA DE ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS DE ESTADÍSTICA Definición de Estadística Origen del concepto. Evolución histórica de la Estadística Estadística Descriptiva y Estadística Inferencial

Más detalles

Preparación de los datos de entrada

Preparación de los datos de entrada Preparación de los datos de entrada Clase nro. 6 CURSO 2010 Objetivo Modelado de las características estocásticas de los sistemas. Variables aleatorias con su distribución de probabilidad. Por ejemplo:

Más detalles

LA ESTADÍSTICA APLICADA AL ANÁLISIS ECONÓMICO. Introducción 1

LA ESTADÍSTICA APLICADA AL ANÁLISIS ECONÓMICO. Introducción 1 LA ESTADÍSTICA APLICADA AL ANÁLISIS ECONÓMICO ÍNDICE CONCEPTO Página Introducción 1 I Generalidades... 3 I.1 Definiciones de Estadística... 4 I.2 Diferentes clases de Estadística... 8 II La Estadística

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14 Prueba de Hipótesis Bondad de Ajuste Conceptos Generales Hipótesis: Enunciado que se quiere demostrar. Prueba de Hipótesis: Procedimiento para determinar si se debe rechazar o no una afirmación acerca

Más detalles

Información general. Fundamentos de Análisis de datos. Obligatoria básica o de fundamentación X. Obligatoria profesional

Información general. Fundamentos de Análisis de datos. Obligatoria básica o de fundamentación X. Obligatoria profesional Guía de asignatura Formato institucional Rev. Abril 2013 Información general Asignatura Fundamentos de Análisis de datos Código Tipo de asignatura Obligatoria X Electiva Tipo de saber Número de créditos

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

Universidad Central del Este UCE Facultad de Ciencias de la Salud Escuela de Medicina

Universidad Central del Este UCE Facultad de Ciencias de la Salud Escuela de Medicina Universidad Central l Este UCE Facultad Ciencias la Salud Escuela Medicina Programa la asignatura: : MED-052 Bioestadística II Código: Semestre: Asignatura electiva Total créditos 3 Teóricos 3 Prácticos

Más detalles

EXAMEN DE ESTADÍSTICA Septiembre 2011

EXAMEN DE ESTADÍSTICA Septiembre 2011 EXAMEN DE ESTADÍSTICA Septiembre 2011 Apellidos: Nombre: DNI: GRUPO: 1. De una clase de N alumnos se tiene la siguiente información sobre las calificaciones obtenidas del 1 al 8 en una cierta asignatura

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4 PS0401 - Probabilidad y Estadística DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de materia: Obligatoria Clave de la materia: PS0401 Cuatrimestre: 4 UNIVERSIDAD AUTÓNOMA DE Área

Más detalles

Técnicas de Muestreo Métodos

Técnicas de Muestreo Métodos Muestreo aleatorio: Técnicas de Muestreo Métodos a) unidad muestral elemental: a.1) muestreo aleatorio simple a.2) muestreo (seudo)aleatorio sistemático a.3) muestreo aleatorio estratificado b) unidad

Más detalles

Sumario Prólogo Unidad didáctica 1. Introducción a la estadística. Conceptos preliminares Objetivos de la Unidad...

Sumario Prólogo Unidad didáctica 1. Introducción a la estadística. Conceptos preliminares Objetivos de la Unidad... ÍNDICE SISTEMÁTICO PÁGINA Sumario... 5 Prólogo... 7 Unidad didáctica 1. Introducción a la estadística. Conceptos preliminares... 9 Objetivos de la Unidad... 11 1. Población y muestra... 12 2. Parámetro

Más detalles

1. Estadística. 2. Seleccionar el número de clases k, para agrupar los datos. Como sugerencia para elegir el k

1. Estadística. 2. Seleccionar el número de clases k, para agrupar los datos. Como sugerencia para elegir el k 1. Estadística Definición: La estadística es un ciencia inductiva que permite inferir características cualitativas y cuantitativas de un conjunto mediante los datos contenidos en un subconjunto del mismo.

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Ms. C. Marco Vinicio Rodríguez

Ms. C. Marco Vinicio Rodríguez Ms. C. Marco Vinicio Rodríguez mvrodriguezl@yahoo.com http://mvrurural.wordpress.com/ Uno de los objetivos de la estadística es saber acerca del comportamiento de parámetros poblacionales tales como:

Más detalles

PRUEBAS DE BONDAD DE AJUSTE

PRUEBAS DE BONDAD DE AJUSTE PRUEBAS DE BONDAD DE AJUSTE Pruebas de bondad de ajuste xi cuadrada y Kolmogorov-Smirnov Facultad de Ciencias Químicas e Ingeniería, UAEM Simulación de Procesos Contenido Prueba de bondad de ajuste χ2...

Más detalles

Carrera: COT Participantes Representante de las academias de Contaduría de los Institutos Tecnológicos.

Carrera: COT Participantes Representante de las academias de Contaduría de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Estadística administrativa I Licenciatura en Contaduría COT-0425 2-3-7 2.- HISTORIA

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía Disttool Es una herramienta de MATLAB que permite visualizar de forma gráfica las características de cada distribución con la posibilidad de variar sus parámetros. Las funciones que muestra son: Función

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA

ANALISIS DE FRECUENCIA EN HIDROLOGIA ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos

Más detalles

Programa. Asignatura: Estadística Aplicada. año de la Carrera de Contador Público

Programa. Asignatura: Estadística Aplicada. año de la Carrera de Contador Público Sede y localidad Carrera Sede Atlántica, Viedma Contador Publico Programa Asignatura: Estadística Aplicada Año calendario: 2012 Carga horaria semanal: 6 (seis) hs. Cuatrimestre: Primer Cuatrimestre. Segundo

Más detalles

Estadística Descriptiva en SPSS

Estadística Descriptiva en SPSS Estadística Descriptiva en SPSS Marcelo Rodríguez Ingeniero Estadístico - Magister en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I 22 de

Más detalles

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico.

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN 1. Conteste las preguntas siguientes: a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. 1. 2. 3. 4. b. En

Más detalles

CONTRASTES NO PARAMÉTRICOS: ALEATORIEDAD Y LOCALIZACIÓN

CONTRASTES NO PARAMÉTRICOS: ALEATORIEDAD Y LOCALIZACIÓN CONTRASTES NO PARAMÉTRICOS: ALEATORIEDAD Y LOCALIZACIÓN Antonio Morillas A. Morillas: C. no paramétricos (II) 1 1. Contrastes de aleatoriedad. Contraste de rachas. 2. Contrastes de localización 2.1 Contraste

Más detalles

UNIVERSIDAD ALONSO DE OJEDA ESTADISTICA II

UNIVERSIDAD ALONSO DE OJEDA ESTADISTICA II UNIVERSIDAD ALONSO DE OJEDA ESTADISTICA II UNIDAD I MUESTREO Y ESTIMACION DE PARAMETROS (GUIA DE ESTUDIO) DR. DENY GONZALEZ MAYO 2016 La Estadística es un conjunto de métodos para la toma de decisiones

Más detalles

Selección de distribuciones de probabilidad

Selección de distribuciones de probabilidad Selección de distribuciones de probabilidad Georgina Flesia FaMAF 3 de mayo, 2012 Análisis estadístico de datos simulados Los sistemas reales tienen fuentes de aleatoriedad: Tipo de sistema Fabricación

Más detalles

3 ANALISIS DESCRIPTIVO DE LOS DATOS

3 ANALISIS DESCRIPTIVO DE LOS DATOS 3 ANALISIS DESCRIPTIVO DE LOS DATOS 3.1 La tabulación de los datos 3.1.1 Tabla de distribución de frecuencias. 3.1.2 El histograma. 3.2 Medidas de tendencia central 3.2.1 La media. 3.2.2 La mediana. 3.2.3

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

SUBDIRECCION ACADEMICA

SUBDIRECCION ACADEMICA SUBDIRECCION ACADEMICA Página 1 de 9 CARRERA Ingeniería en Gestión Empresarial CURSO O ASIGNATURA Estadística Descriptiva PERIODO DEL CURSO Agosto 2011- Enero 2012 GRUPO 3 AGE NOMBRE DEL DOCENTE Ing. Rangel

Más detalles

1 CÁLCULO DE PROBABILIDADES

1 CÁLCULO DE PROBABILIDADES 1 CÁLCULO DE PROBABILIDADES 1.1 EXPERIENCIAS ALEATORIAS. SUCESOS 1.1.1 Definiciones Experiencia aleatoria: experiencia o experimento cuyo resultado depende del azar. Suceso aleatorio: acontecimiento que

Más detalles

Nombre de la materia. Departamento. Academia

Nombre de la materia. Departamento. Academia Probabilidad Ciencias Aplicadas de la Información Ciencias Básicas Nombre de la materia Departamento Academia Clave Horas-teoría Horas-práctica Horas-AI Total-horas Créditos I4862 60 20-80 9 Nivel Carrera

Más detalles

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo... CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................

Más detalles

Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística

Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística Fuente de los comics: La Estadística en Comic. LarryGonicky Woollcatt Smith. Ed. ZendreraZariquiey, 1999 ESTADÍSTICA ESTADÍSTICA

Más detalles

Syllabus. Curso:SEXTO. Materia:ESTUDIOS MATEMÁTICOS

Syllabus. Curso:SEXTO. Materia:ESTUDIOS MATEMÁTICOS Syllabus Curso:SEXTO Materia:ESTUDIOS MATEMÁTICOS Descripción del curso: Esta asignatura está destinada a estudiantes con distintas capacidades y niveles de conocimiento, con el objeto de infundir seguridad

Más detalles

Probabilidad, Variable Aleatoria Pag 1 de 26 PROBABILIDAD

Probabilidad, Variable Aleatoria Pag 1 de 26 PROBABILIDAD Probabilidad, Variable Aleatoria Pag 1 de 6 PROBABILIDAD Actualmente la teoría de probabilidades desempeña un papel importante en el campo de los negocios, la investigación, específicamente en la toma

Más detalles

UNIVERSIDAD MILITAR NUEVA GRANADA

UNIVERSIDAD MILITAR NUEVA GRANADA CONTENIDO PROGRAMÁTICO Fecha Emisión: 2011/09/15 Revisión No. 1 AC-DO-F-8 Página 1 de 10 ESTADÍSTICA I CÓDIGO 14241 PROGRAMA INGENIERÍA INDUSTRIAL ÁREA DE FORMACIÓN CIENCIAS BÁSICAS SEMESTRE TERCERO PRERREQUISITOS

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

UNIVERSIDAD MEXIQUENSE DEL BICENTENARIO UNIDAD DE ESTUDIOS SUPERIORES IXTAPALUCA PLAN DE TRABAJO

UNIVERSIDAD MEXIQUENSE DEL BICENTENARIO UNIDAD DE ESTUDIOS SUPERIORES IXTAPALUCA PLAN DE TRABAJO UNIVERSIDAD MEXIQUENSE DEL BICENTENARIO UNIDAD DE ESTUDIOS SUPERIORES IXTAPALUCA PLAN DE TRABAJO NOMBRE DEL PROFESOR: Ing. Oscar Solís Beltrán ASIGNATURA: Probabilidad y Estadística. FECHA DE INICIO: 01

Más detalles

A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA. Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords

A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA. Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords A. PRUEBAS DE BONDAD DE AJUSTE: Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords B.TABLAS DE CONTINGENCIA Marta Alperin Prosora Adjunta de Estadística alperin@fcnym.unlp.edu.ar http://www.fcnym.unlp.edu.ar/catedras/estadistica

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Mag. María del Carmen Romero 2014 romero@econ.unicen.edu.ar Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo

Más detalles

Carrera: ADT Participantes Representante de las academias de Administración de los Institutos Tecnológicos.

Carrera: ADT Participantes Representante de las academias de Administración de los Institutos Tecnológicos. .- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Estadística administrativa I Licenciatura en Administración ADT-046-3-7.- HISTORIA

Más detalles

Título: ESTADISTICA I DESDE UN ENFOQUE POR COMPETENCIAS Primera edición. de esta edición. Fondo Editorial. Universidad San Ignacio de Loyola

Título: ESTADISTICA I DESDE UN ENFOQUE POR COMPETENCIAS Primera edición. de esta edición. Fondo Editorial. Universidad San Ignacio de Loyola Título: ESTADISTICA I DESDE UN ENFOQUE POR COMPETENCIAS 2014. Primera edición de esta edición Fondo Editorial Universidad San Ignacio de Loyola Av. La Fontana 750, La Molina Teléfono: 317-1000 anexo 3705

Más detalles

Facultad de Ciencias e Ingeniería. Escuela Académico Profesional de Comunicación SÍLABO

Facultad de Ciencias e Ingeniería. Escuela Académico Profesional de Comunicación SÍLABO Facultad de Ciencias e Ingeniería Escuela Académico Profesional de Comunicación SÍLABO ASIGNATURA: ESTADÍSTICA APLICADA A LAS COMUNICIONES I. DATOS GENERALES: 1.1. Código de Asignatura : 21252 1.2. Escuela

Más detalles

ANÁLISIS ESTADÍSTICO PRUEBA DE HIPOTESIS

ANÁLISIS ESTADÍSTICO PRUEBA DE HIPOTESIS ANÁLISIS ESTADÍSTICO PRUEBA DE HIPOTESIS Jorge Fallas jfallas56@gmail.com 2010 1 Temario Datos experimentales y distribuciones de referencia Una media poblacional Hipótesis nula, alternativa y nivel de

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO LICENCIATURA EN TURISMO UNIDAD DE APRENDIZAJE: ESTADISTICA TEMA 1.5 : ESTADISTICA DESCRIPTIVA M. EN C. LUIS ENRIQUE KU MOO FECHA:

Más detalles

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A.

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. 1 PROBABILIDAD Probabilidad de un evento es la posibilidad relativa de que este ocurra al realizar el experimento Es la frecuencia de que algo ocurra dividido

Más detalles

INDICE Prefacio Como usar este libro Capitulo 1. Introducción Capitulo 2. Análisis exploratorio de los datos

INDICE Prefacio Como usar este libro Capitulo 1. Introducción Capitulo 2. Análisis exploratorio de los datos INDICE Prefacio Como usar este libro Capitulo 1. Introducción 1 El comienzo de todo: determinación lo que se debe saber 2 Evaluación numérica de las unidades de observación con la ayuda de las escalas

Más detalles

PRUEBA DE BONDAD DE AJUSTE O PRUEBA CHI - CUADRADO

PRUEBA DE BONDAD DE AJUSTE O PRUEBA CHI - CUADRADO O PRUEBA CHI - CUADRADO Hasta ahora se han mencionado formas de probar lo que se puede llamar hipótesis paramétricas con relación a una variable aleatoria, o sea que se ha supuesto que se conoce la ley

Más detalles

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas Distribuciones Probabilísticas Curso de Estadística TAE,005 J.J. Gómez Cadenas Distribución Binomial Considerar N observaciones independientes tales que: El resultado de cada experimento es acierto o fallo

Más detalles

8 Resolución de algunos ejemplos y ejercicios del tema 8.

8 Resolución de algunos ejemplos y ejercicios del tema 8. INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 29 8 Resolución de algunos ejemplos y ejercicios del tema 8. 8.1 Ejemplos. Ejemplo 49 Supongamos que el tiempo que tarda en dar respuesta a un enfermo el personal

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Tema 4: Variables Aleatorias

Tema 4: Variables Aleatorias Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto

Más detalles

Determinación del tamaño de muestra (para una sola muestra)

Determinación del tamaño de muestra (para una sola muestra) STATGRAPHICS Rev. 4/5/007 Determinación del tamaño de muestra (para una sola muestra) Este procedimiento determina un tamaño de muestra adecuado para la estimación o la prueba de hipótesis con respecto

Más detalles

Distribución Chi (o Ji) cuadrada (χ( 2 )

Distribución Chi (o Ji) cuadrada (χ( 2 ) Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably

Más detalles

Muestreo de variables aleatorias

Muestreo de variables aleatorias Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como

Más detalles

= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) =

= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) = SOLUCIONES AL EXAMEN DE MÉTODOS ESTADÍSTICOS 2 0 ITIE. 19 /01/2009 1. X = 132, 25 Mediana: M e = 134 + 135 2 = 134, 5 Tercer cuartil: Q 3 = 140 + 141 2 = 140, 5 11 288 12 11267 13 04566 14 0127 15 12 Pueden

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

UNIVERSIDAD MILITAR NUEVA GRANADA

UNIVERSIDAD MILITAR NUEVA GRANADA CONTENIDO PROGRAMÁTICO Fecha Emisión: 2011/09/15 AC-DO-F-8 Revisión No. 1 Página 1 de 8 ESTADÍSTICA I CÓDIGO 14241 PROGRAMA INGENIERÍA INDUSTRIAL ÁREA DE FORMACIÓN CIENCIAS BÁSICAS SEMESTRE TERCERO PRERREQUISITOS

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 4 horas a la semana 8 créditos Semestre variable según la carrera Objetivo del curso: Analizar y resolver problemas de naturaleza aleatoria en la ingeniería, aplicando conceptos

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

PROBABILIDAD Y ESTADÍSTICA PROPUESTAS PARA UNA AUTOEVALUACIÓN DE LOS FUNDAMENTOS TEÓRICOS

PROBABILIDAD Y ESTADÍSTICA PROPUESTAS PARA UNA AUTOEVALUACIÓN DE LOS FUNDAMENTOS TEÓRICOS PROBABILIDAD Y ESTADÍSTICA PROPUESTAS PARA UNA AUTOEVALUACIÓN DE LOS FUNDAMENTOS TEÓRICOS En lo que sigue le presentamos 50 puntos que fueron incluidos en diferentes evaluaciones finales de los fundamentos

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

PROGRAMA DEL CURSO DE MÉTODOS CUANTITATIVOS I

PROGRAMA DEL CURSO DE MÉTODOS CUANTITATIVOS I UNIVERSIDAD DE SAN CARLOS DE GUATEMALA CENTRO UNIVERSITARIO DE JUTIAPA JUSAC- LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS CURSO: MÉTODOS CUANTITATIVOS I CÓDIGO 05250 AÑO 2014: Primer Semestre COORDINADOR:

Más detalles

COLEGIO CALASANCIO. MADRID. ESTADÍSTICA UNIDIMENSIONAL. 4º E.S.O.

COLEGIO CALASANCIO. MADRID. ESTADÍSTICA UNIDIMENSIONAL. 4º E.S.O. Repasa de cursos anteriores: Estadística. Población. Muestra. Carácter estadístico: cualitativo (modalidad) y cuantitativo (variable estadística), que puede ser (discreta y continua] Frecuencias: absolutas

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA INDUSTRIAL Y DE SISTEMAS ESCUELA PROFESIONAL DE INGENIERIA AGROINDUSTRIAL

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA INDUSTRIAL Y DE SISTEMAS ESCUELA PROFESIONAL DE INGENIERIA AGROINDUSTRIAL UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA INDUSTRIAL Y DE SISTEMAS ESCUELA PROFESIONAL DE INGENIERIA AGROINDUSTRIAL ASIGNATURA: ESTADÍSTICA I CODIGO : 5B0067 I.- DATOS GENERALES SILABO

Más detalles

Tema 7: Introducción a la Teoría sobre Estimación

Tema 7: Introducción a la Teoría sobre Estimación Tema 7: Introducción a la Teoría sobre Estimación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 7: Introducción a la Teoría sobre Estimación

Más detalles

Tema 4: Modelos probabilísticos

Tema 4: Modelos probabilísticos Tema 4: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable

Más detalles

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI NOMBRE DE LA ASIGNATURA: PROBABILIDAD Y ESTADÍSTICA PARA CIENCIAS ECONÓMICO ADMINISTRATIVAS FECHA DE ELABORACIÓN: ENERO

Más detalles

Elementos de probabilidad e inferencia estadística en el seguro

Elementos de probabilidad e inferencia estadística en el seguro Elementos de probabilidad e inferencia estadística en el seguro Instructor: Act. Erick Mier Moreno. Director general y profesor de AMAT- Applied Mathematics and Actuary Training. Profesor de asignatura

Más detalles

Análisis de datos y gestión n veterinaria. Tema 1 Estadística descriptiva. Prof. Dr. José Manuel Perea Muñoz

Análisis de datos y gestión n veterinaria. Tema 1 Estadística descriptiva. Prof. Dr. José Manuel Perea Muñoz Análisis de datos y gestión n veterinaria Tema 1 Estadística descriptiva Prof. Dr. José Manuel Perea Muñoz Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, de Septiembre

Más detalles

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS UCS THS/SEM

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS UCS THS/SEM UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ciencias Básicas CODIGO SEMESTRE DENSIDAD HORARIA HT

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA PROYECTO CURRICULAR DE INGENIERÍA DE SISTEMAS

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA PROYECTO CURRICULAR DE INGENIERÍA DE SISTEMAS I. IDENTIFICACIÓN DE LA ASIGNATURA ESTADÍSTICA I CÓDIGO DE LA ASIGNATURA 33102106 ÁREA CIENCIAS BASICAS DE INGENIERIA SEMESTRE SEGUNDO PLAN DE ESTUDIOS 1996 AJUSTE 2002 HORAS TOTALES POR SEMESTRE 64 HORAS

Más detalles

PROBABILIDAD. Unidad I Ordenamiento de la Información

PROBABILIDAD. Unidad I Ordenamiento de la Información 1 PROBABILIDAD Unidad I Ordenamiento de la Información 2 Captura de datos muestrales Conceptos básicos de la estadística 3 Población (o universo): Totalidad de elementos o cosas bajo consideración Muestra:

Más detalles

Juan Carlos Colonia INFERENCIA ESTADÍSTICA

Juan Carlos Colonia INFERENCIA ESTADÍSTICA Juan Carlos Colonia INFERENCIA ESTADÍSTICA PARÁMETROS Y ESTADÍSTICAS Es fundamental entender la diferencia entre parámetros y estadísticos. Los parámetros se refieren a la distribución de la población

Más detalles

EXPERIMENTO ALEATORIO

EXPERIMENTO ALEATORIO EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,

Más detalles

Contenidos IB-Test Matemática NM 2014.

Contenidos IB-Test Matemática NM 2014. REDLAND SCHOOL MATHEMATICS DEPARTMENT 3 MEDIO NM 1.- Estadística y probabilidad. Contenidos IB-Test Matemática NM 2014. 1.1.- Conceptos de población, muestra, muestra aleatoria, y datos discretos y continuos.

Más detalles

TEMA 1: ESTADISTICA DESCRIPTIVA

TEMA 1: ESTADISTICA DESCRIPTIVA ESTADÍSTICA, CURSO 008 009 1 TEMA 1: ESTADISTICA DESCRIPTIVA 1 FUDAMETOS 11 VARIABLES ESTADISTICAS Población: conjunto completo de elementos, con alguna característica común, objeto del estudio estadístico

Más detalles

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1 Bioestadística Tema 2: Estadísticos Tema 2: Estadísticos 1 Parámetros y estadísticos Parámetro: Es una cantidad numérica calculada sobre una población La altura media de los individuos de un país La idea

Más detalles

CAPITULO 8 MUESTRAS ALEATORIAS Y NUMEROS ALEATORIOS

CAPITULO 8 MUESTRAS ALEATORIAS Y NUMEROS ALEATORIOS Teoría elemental de muestreo CAPITULO 8 TEORIA DE MUESTREO La teoría de muestreo es el estudio de las relaciones existentes entre una población y las muestras extraídas de ella. Es de gran utilidad en

Más detalles