Técnicas de Investigación Social

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Técnicas de Investigación Social"

Transcripción

1 Licenciatura en Sociología Curso 2006/07 Técnicas de Investigación Social Medir la realidad social (4) La regresión (relación entre variables) El término REGRESIÓN fue introducido por GALTON en su libro Natural inheritance (1889) refiriéndose a la ley de la regresión universal : Cada peculiaridad en un hombre es compartida por sus descendientes, pero en media, en un grado menor. Regresión a la media Regresión a la media Su trabajo se centraba en la descripción de los rasgos físicos de los descendientes (una variable) a partir de los de sus padres (otra variable). PEARSON (un amigo suyo) realizó un estudio con más de 0 registros de grupos familiares observando una relación del tipo: Altura del hijo = 85cm + 0,5 altura del padre (aprox.) Conclusión: los padres muy altos tienen tendencia a tener hijos que heredan parte de esta altura, aunque tienen tendencia a acercarse (regresar) a la media. Lo mismo puede decirse de los padres muy bajos. Hoy en día el sentido de regresión es el de predicción de una medida basándonos en el conocimiento de otra. FRANCIS GALTON Estadístico y aventurero Fundador (con otros) de la estadística moderna para explicar las teorías de Darwin. Primo de Darwin

2 Estudio conjunto de dos variables A la derecha tenemos una posible manera de recoger los datos obtenido observando dos variables en varios individuos de una muestra. En cada fila tenemos los datos de un individuo Cada columna representa los valores que toma una variable sobre los mismos. Las individuos no se muestran en ningún orden particular. Altura en cm Peso en Kg Dichas observaciones pueden ser representadas en un diagrama de dispersión ( scatterplot ). En ellos, cada individuos es un punto cuyas coordenadas son los valores de las variables. Diagramas de dispersión o nube de puntos Tenemos las alturas y los pesos de individuos representados en un diagrama de dispersión. Pesa 76 kg. Pesa kg. Mide 161 cm. Mide 187 cm.

3 Relación entre variables Tenemos las alturas y los pesos de individuos representados en un diagrama de dispersión. Parece que el peso aumenta con la altura Predicción de una variable en función de otra Aparentemente el peso aumenta 10Kg por cada 10 cm de altura... o sea, el peso aumenta en una unidad por cada unidad de altura. Tenemos las alturas y los pesos de individuos representados en un diagrama de dispersión. 10 kg. 10 cm.

4 Cómo reconocer relación directa e inversa Incorrelación Fuerte relación directa. Para valores de X por encima de la media tenemos valores de Y por encima y por debajo en proporciones similares. Incorrelación Cierta relación inversa Se llama relación directa o creciente entre X e Y cuando: Para los valores de X mayores que la media le corresponden valores de Y mayores también. Para los valores de X menores que la media le corresponden valores de Y menores también. Para los valores de X mayores que la media le corresponden valores de Y menores. Esto es relación inversa o decreciente. Cómo reconocer buena o mala relación Poca relación Dado un valor de X no podemos decir gran cosa sobre Y. Mala relación. Independencia. o o o Fuerte relación directa. o o Conocido X sabemos que Y se mueve por una horquilla estrecha. Buena relación Cierta relación inversa Lo de horquilla estrecha hay que entenderlo con respecto a la dispersión que tiene la variable Y por si sola, cuando no se considera X.

5 Relación entre variables (Definición) Se considera que dos variables cuantitativas están relacionadas entre sí cuando los valores de una de ellas varían de forma sistemática con respecto a los valores homónimos de la otra; en otras palabras, si tenemos dos variables, A y B, existe relación entre ellas si al aumentar los valores de A también lo hacen los de B, o por el contrario si al aumentar los valores de A disminuyen los de B. Relación entre variables (Significado) La relación entre dos variables cuantitativas queda representada mediante la línea de mejor ajuste, que es la que esquematiza las condiciones de la nube de puntos y de la relación. Los componentes elementales de una línea de ajuste y por extensión de una relación entre dos variables son: La fuerza El sentido La forma

6 Relación entre variables (Definición) La fuerza mide el grado en que la línea representa a la nube de puntos. Si la nube es estrecha y alargada una línea recta representará adecuadamente a la nube de puntos y a la relación y por tanto ésta será fuerte. Si por el contrario, la nube de puntos tiene una tendencia elíptica o circular, una línea recta que trate de representar a la misma será consecuencia de una relación débil y poco representativa, con amplios residuos. El sentido de la relación se refiere a cómo varían los valores de B con respecto a A. Si al crecer los valores de la variable A lo hacen los de B, será una relación positiva (a valores bajos de A le corresponden valores bajos de B). Si al aumentar A, disminuye B, será una relación negativa (a valores bajos de A le corresponden valores altos de B y viceversa). La forma establece el tipo de línea a emplear para definir el mejor ajuste. Se pueden emplear tres tipos de líneas: una línea recta, una curva monotónica y una curva no monotónica. Relación entre variables (Definición) En el caso de usar una recta, se admite que existe una proporción entre la diferencia entre dos valores A y la diferencia entre dos valores de B. A ese factor de ajuste entre ambas series se le llama pendiente de la recta, y se asume que es constante a lo largo de toda la recta de ajuste. En el caso de usar una curva monotónica, ese factor de proporción entre las dos variables no es constante a lo largo de toda la recta, y por lo tanto la pendiente de la misma es variable en su recorrido. Se dice entonces que la línea de ajuste es no lineal monotónica, puesto que la línea se ha convertido en curva. Sin embargo, lo que no varía es el sentido de la relación: si la relación es positiva lo será a lo largo de todo el recorrido de la curva y si es negativa, será negativa en toda la curva. Por último, en el caso de usar una curva no monotónica varía tanto la pendiente de la curva como el sentido de la relación, que en unos sectores puede ser positiva (ascendente) y en otros negativa (descendente).

7 Relación entre variables no lineales Covarianza de dos variables X e Y La covarianza entre dos variables, S xy, nos indica si la posible relación entre dos variables es directa o inversa. S xy 1 = ( x n i i x)( y i y) Directa: S xy > 0 Directa: S xy < 0 Directa: S xy = 0 El signo de la covarianza nos dice si el aspecto de la nube de puntos es creciente o no, pero no nos dice nada sobre el grado de relación entre las variables.

8 Cálculo de la covarianza La covarianza entre dos variables Var 1 y Var 2 viene dada por: S xy 1 = ( x n i i x)( y i y) Donde x i indica el valor de la variable Var 1 para el individuo i, y i el valor de la variable Var 2 para el individuo i, x la media de Var 1 e y la media de Var2. indica Indicadores de correlación La correlación mide la relación lineal entre dos variables y su sentido (si es directo o inverso). Cuando la relación es perfectamente lineal dicho coeficiente vale 1 (ó -1). Cuando el coeficiente tiene un valor próximo a cero, o bien no existe relación entre las variables analizadas o bien dicha relación no es lineal. La correlación habitualmente denotada por r se puede estimar de dos maneras diferentes: El coeficiente de correlación de Pearson denotado por r es utilizado cuando ambas variables son cuantitativas siguiendo una distribución normal El coeficiente de correlación de Spearman denotado por rs se utiliza cuando alguna de las variables es ordinal o incluso dicotómica o para variables cuantitativas con muestras pequeñas.

9 Coeficiente de correlación lineal de Pearson El coeficiente de correlación lineal de Pearson de dos variables, r, nos indica si los puntos tienen una tendencia a disponerse alineadamente (excluyendo rectas horizontales y verticales). Tiene el mismo signo que Sxy por tanto de su signo obtenemos el que la posible relación sea directa o inversa. r es útil para determinar si hay relación lineal entre dos variables, pero no servirá para otro tipo de relaciones (cuadrática, logarítmica,...) r = S S x xy S y Coeficiente de correlación de Pearson El coeficiente de correlación de Pearson se obtiene calculando en primer lugar la covarianza entre las variables, que es una medida de asociación con dependencia de las unidades de medida de las variables. Después se divide por el producto de cada una de las desviaciones típicas de ambas variables, resultando una medida de asociación adimensional. r = S S x xy S y

10 Coeficiente de correlación lineal de Pearson Principio de isomorfía: sólo si la estructura de la hipótesis sustantiva supone una relación lineal, tendrá sentido utilizar el coeficiente de Pearson. Si la relación hipóteticamente se supone no lineal, no deberá utilizarse este coeficiente para contrastar la hipótesis. Si el coeficiente de Pearson calculado para la distribución conjunta informa que no existe relación, deberá tenerse muy presente de que la conclusión es que No hay relación lineal. Propiedades de r Es adimensional Sólo toma valores comprendidos entre [-1,1] Las variables son incorrelada si r = 0 Relación lineal perfecta entre dos variables se produce si r = +1 o r =-1 Excluimos los casos de puntos alineados horizontal o verticalmente. Cuanto más cerca esté r de +1 o -1 mejor será el grado de relación lineal. Siempre que no existan observaciones anómalas.. Relación inversa perfecta Variables incorreladas Relación directa casi perfecta

11 Correlación de Sperman El coeficiente de correlación de Spearman es una técnica no paramétrica que se basa en los rangos en vez de en los valores originales de la variable. Cálculo de Rangos Para los datos de las variables Var 1 y Var 2 se calculan los rangos de los valores de éstas, a los que se denota por: R i (Var 1 ) y R i (Var 2 ), siendo R i (Var 1 ) los rangos de la variable Var 1 asociados al individuo i y R i (Var 2 ) los rangos de la variable Var 2 asociados al individuo i. Ejemplo: Var1 Var 2 R1(Var 1 ) Ri(Var 2 ) Máximo valor rango mayor Empate rangos 1 y 2 rango 1, ,5 5 1, Correlación de Sperman (valores intermedios) Cálculo de valores intermedios A continuación, se realizan los siguientes cálculos intermedios:

12 Coeficiente de Spearman Cálculo del coeficiente de correlación de Spearman. A partir de los coeficientes calculados con anterioridad, se calcula el coeficiente de correlación rs de Spearman dado por:

13

14

15

16 Entrenando el ojo: correlaciones positivas r=0, r=0,4 110 r=0,6 r=0,8 Entrenando el ojo: casi perfectas y positivas r=0,9 r=0,99 r=1

17 Entrenando el ojo: correlaciones negativas r=-0, r=-0, r=-0, r=-0,999 0 Preguntas más frecuentes Si r = 0 eso quiere decir que no las variables son independientes?. En la práctica, casi siempre sí, pero no tiene por qué ser cierto en todos los casos. Lo contrario si es cierto: Independencia implica incorrelación Me ha salido r =1 2 la relación es superlineal? Superqué? Eso es un error de cálculo. Siempre debe tomar un valor entre -1 y +1. A partir de qué valores se considera que hay buena relación lineal? Es difícil dar un valor concreto. Podemos decir que si r >0,7 hay buena relación lineal y que si r >0,4 hay cierta relación.

18 Otros coeficientes de correlación Cuando las variables en vez de ser numéricas son ordinales, se utilizan otro tipo de indicadores. Disponemos para estos casos de dos estadísticos, aunque no los usaremos en clase: Maurice George Kendall ρ ( ro ) de Spearman τ ( tau ) de Kendall Charles Edward Spearman

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos:

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos: 15. Regresión lineal Este tema, prácticamente íntegro, está calacado de los excelentes apuntes y transparencias de Bioestadística del profesor F.J. Barón López de la Universidad de Málaga. Te recomiendo

Más detalles

Módulo de Estadística

Módulo de Estadística Módulo de Estadística Tema 3: Estadística descriptiva bivariante y regresión lineal. Tema 3: Estadística bivariante 1 Relaciones entre variables y regresión El término regresión fue introducido por Galton

Más detalles

Estadística descriptiva bivariante y regresión lineal.

Estadística descriptiva bivariante y regresión lineal. Estadística descriptiva bivariante y regresión lineal. 1 Relaciones entre variables y regresión El término regresión fue introducido por Galton en su libro Natural inheritance (1889) refiriéndose a la

Más detalles

Bioestadística. Tema 3: Estadística descriptiva bivariante y regresión lineal. Relaciones entre variables y regresión

Bioestadística. Tema 3: Estadística descriptiva bivariante y regresión lineal. Relaciones entre variables y regresión Bioestadística Tema 3: Estadística descriptiva bivariante y regresión lineal. Tema 3: Estadística bivariante 1 Relaciones entre variables y regresión El término regresión fue introducido por Galton en

Más detalles

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Regresión lineal Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I 01 de enero de 2012

Más detalles

Universidad Técnica de Babahoyo CORRELACIÓN DE VARIABLES Y REGRESIÓN LINEAL

Universidad Técnica de Babahoyo CORRELACIÓN DE VARIABLES Y REGRESIÓN LINEAL Universidad Técnica de Babahoyo CORRELACIÓN DE VARIABLES Y REGRESIÓN LINEAL OBJETIVO Analizar las Diferentes formas de Describir la Relación entre dos variables numéricas Trazar un diagrama de dispersión

Más detalles

EJEMPLOS DE PRONÓSTICOS

EJEMPLOS DE PRONÓSTICOS 2 PRONÓSTICO > ES UNA TÉCNICA QUE PERMITE PREDECIR EL FUTURO, BASÁNDOSE EN: > ACONTECIMIENTOS PASADOS. > INFORMACIÓN ESTADÍSTICA RECABADA SOBRE EXPERIENCIAS SIMILARES. > ESTIMACIONES BASADAS EN ESTUDIOS

Más detalles

TEMA 2: DISTRIBUCIONES BIDIMENSIONALES

TEMA 2: DISTRIBUCIONES BIDIMENSIONALES TEMA : DISTRIBUCIONES BIDIMENSIONALES 1.- DISTRIBUCIONES BIDIMENSIONALES Cuando estudiamos un solo carácter estadístico, los datos que obtenemos forman una variable estadística unidimensional. También

Más detalles

Regresión: implica la obtención de una ecuación mediante la que podamos estimar el valor medio de una variable.

Regresión: implica la obtención de una ecuación mediante la que podamos estimar el valor medio de una variable. 1 DEFINICIONES PREVIAS Regresión: implica la obtención de una ecuación mediante la que podamos estimar el valor medio de una variable. Correlación: es la cuantificación del grado de relación existente

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES

VARIABLES ESTADÍSTICAS BIDIMENSIONALES VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes

Más detalles

ESTADÍSTICA. DISTRIBUCIÓN BIDIMENSIONAL

ESTADÍSTICA. DISTRIBUCIÓN BIDIMENSIONAL ESTADÍSTICA. DISTRIBUCIÓN BIDIMENSIONAL CONCEPTOS PREVIOS RELACIÓN ESTADÍSTICA Dos variables x e y están relacionadas estadísticamente cuando conocida la primera se puede estimar aproximadamente el valor

Más detalles

Universidad de Salamanca - Escuela de Educación y Turismo

Universidad de Salamanca - Escuela de Educación y Turismo Universidad de Salamanca - Escuela de Educación y Turismo ! " # $ % $ & ' ( ) * ( +(, + ' -. '. ' - % $ / %.! '. " # $ % & & $ % # # $( #. 0 # (/ $. # % 0 1 # % ( # 0 # 0 1 # 0. (, (! " # # #. $ ($ ' 0

Más detalles

Estadística de dos variables

Estadística de dos variables Versión: Estadística de dos variables 19 de septiembre de 013 1 Introducción En el Tema 1 se consideran las variables estadísticas unidimensionales, es decir, cada individuo de la muestra se describe de

Más detalles

Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se puede saber con exactitud el valor de la segunda.

Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se puede saber con exactitud el valor de la segunda. Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se puede saber con exactitud el valor de la segunda. Ejemplos Si se deja caer una piedra, existe una fórmula que nos permite

Más detalles

Relación funcional Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se

Relación funcional Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se Distr ibuciones bidim ensionales Relación funcional Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se puede saber con exactitud el valor de la segunda. Ejemplos Si se

Más detalles

Tema 3. Relación entre dos variables cuantitativas

Tema 3. Relación entre dos variables cuantitativas Tema 3. Relación entre dos variables cuantitativas Resumen del tema 3.1. Diagrama de dispersión Cuando sobre cada individuo de una población se observan simultáneamente dos características cuantitativas

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

Estadística aplicada a la comunicación

Estadística aplicada a la comunicación Estadística aplicada a la comunicación Tema 5: Análisis de datos cuantitativos I: estadística descriptiva b. Análisis bivariante OpenCourseWare UPV/EHU Unai Martín Roncero Departamento de Sociología 2

Más detalles

Distribuciones Bidimensionales.

Distribuciones Bidimensionales. Distribuciones Bidimensionales. 1.- Variables Estadísticas Bidimensionales. Las variables estadísticas bidimensionales se representan por el par (X, Y) donde, X es una variable unidimensional, e Y es otra

Más detalles

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre

Más detalles

ESTADÍSTICA BIDIMENSIONAL

ESTADÍSTICA BIDIMENSIONAL ESTADÍSTICA BIDIMENSIONAL 0. REPASO DE ESTADÍSTICA La estadística es la parte de las Matemática que estudia los fenómenos que se prestan a cuantificación, que generan conjunto de datos. La misión del estadístico

Más detalles

Relación entre la altura y la distancia del suelo al ombligo

Relación entre la altura y la distancia del suelo al ombligo Relación entre la altura y la distancia del suelo al ombligo JULIA VIDAL PIÑEIRO Los 79 datos usados para realizar el estudio estadístico de la relación altura- distancia al ombligo, se tomaron a personas

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

Tema 9: Estadística en dos variables (bidimensional)

Tema 9: Estadística en dos variables (bidimensional) Tema 9: Estadística en dos variables (bidimensional) 1. Distribución de frecuencias bidimensional En el tema anterior se han estudiado las distribuciones unidimensionales obtenidas al observar sólo un

Más detalles

1, 2, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 2, 1, 1, 4, 1

1, 2, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 2, 1, 1, 4, 1 8 Estadística 81 Distribuciones unidimensionales Tablas de frecuencias En este tema nos ocuparemos del tratamiento de datos estadísticos uestro objeto de estudio será pues el valor de una cierta variable

Más detalles

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple Jesús Eduardo Pulido Guatire, marzo 0 Diagrama de Dispersión y Correlación Lineal Simple Hasta el momento el trabajo lo hemos centrado en resumir las características de una variable mediante la organización

Más detalles

TEMA 4 CUESTIONARIO DE AUTOEVALUACIÓN

TEMA 4 CUESTIONARIO DE AUTOEVALUACIÓN 4.5.- En cuál de los siguientes casos se podría utilizar la varianza residual en lugar del coeficiente de determinación para medir la calidad del ajuste? Con el mismo conjunto de datos y dos ajustes distintos.

Más detalles

Distribuciones bidimensionales. Correlación.

Distribuciones bidimensionales. Correlación. Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 4: Distribuciones bidimensionales. Correlación. Resumen teórico Resumen teórico de los principales conceptos estadísticos

Más detalles

TEMA 14 ESTADÍSTICA. Cuantitativa: si puede medirse y expresarse con números (es una variable), por ejemplo la talla de calzado.

TEMA 14 ESTADÍSTICA. Cuantitativa: si puede medirse y expresarse con números (es una variable), por ejemplo la talla de calzado. Objetivos / Criterios de evaluación TEMA 14 ESTADÍSTICA O.15.1 Conocer el significado y saber calcular los parámetros de centralización y dispersión O.15.2 Interpretar y utilizar los parámetros de dispersión.

Más detalles

3. RELACION ENTRE DOS CONJUNTOS DE DATOS.

3. RELACION ENTRE DOS CONJUNTOS DE DATOS. 3. RELACION ENTRE DOS CONJUNTOS DE DATOS. 3. 1 Introducción En la búsqueda de mejoras o en la solución de problemas es necesario, frecuentemente, investigar la relación entre variables. Para lo cual existen

Más detalles

CORRELACIÓN LINEAL SIMPLE

CORRELACIÓN LINEAL SIMPLE CORRELACIÓN LINEAL SIMPLE ANÁLISIS DE CORRELACIÓN Cuando se trabaja con dos variables, pueden surgir diferentes preguntas como: Existe relación entre lo que una empresa gasta en publicidad y el importe

Más detalles

Técnicas de Inferencia Estadística II. Tema 6. Contrastes de independencia

Técnicas de Inferencia Estadística II. Tema 6. Contrastes de independencia Técnicas de Inferencia Estadística II Tema 6. Contrastes de independencia M. Concepción Ausín Universidad Carlos III de Madrid Grado en Estadística y Empresa Curso 2015/16 Contenidos 1. Introducción 2.

Más detalles

PROBLEMAS SOBRE V. ESTAD. BIDIMENSIONALES. PROFESOR: ANTONIO PIZARRO.

PROBLEMAS SOBRE V. ESTAD. BIDIMENSIONALES. PROFESOR: ANTONIO PIZARRO. 1º) (Andalucía, Junio, 98) Se considera la siguiente tabla estadística, donde a es una incógnita: X 2 4 a 3 5 Y 1 2 1 1 3 a) Calcular el valor de a sabiendo que la media de X es 3. b) Mediante la correspondiente

Más detalles

Lección 3. Análisis conjunto de dos variables

Lección 3. Análisis conjunto de dos variables Lección 3. Análisis conjunto de dos variables Estadística Descriptiva Parcialmente financiado a través del PIE13-04 (UMA) GARCÍA TEMA 3. ANÁLII CONJUNTO DE DO VARIABLE 3.1 COVARIANZA COEFICIENTE DE CORRELACIÓN

Más detalles

Tema 8: Distribuciones Unidimensionales y Distribuciones Bidimensionales. Consideraciones iniciales:

Tema 8: Distribuciones Unidimensionales y Distribuciones Bidimensionales. Consideraciones iniciales: Tema 8: Distribuciones Unidimensionales y Distribuciones Bidimensionales. Consideraciones iniciales: - Población: Es el conjunto de todos los elementos que cumplen una determinada característica. Ej.:

Más detalles

2. ESTADÍSTICAS BIDIMENSIONALES

2. ESTADÍSTICAS BIDIMENSIONALES TEMA. ESTADÍSTICAS BIDIMENSIONALES.... Definición. Objetivos.... Coeficiente de Correlación. Lineal... 4 3. Rectas de regresión.... 7 . Definición. Objetivos En el tema anterior hemos estudiado las distribuciones

Más detalles

CORRELACION Y REGRESIÓN LINEAL

CORRELACION Y REGRESIÓN LINEAL LECCION Nº 5 CORRELACION Y REGRESIÓN LINEAL OBJETIVOS ESPECIFICOS Diferenciar los conceptos de correlación lineal, y regresión lineal. Determinar el índice o coeficiente de correlación en una distribución

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

Ajuste por mínimos cuadrados

Ajuste por mínimos cuadrados Mathieu Departamento de Matemática Aplicada y Estadística Universidad Politécnica de Cartagena Cartagena, Enero 2010 Guión 1 Planteamiento 2 Criterio de mínimos cuadrados 3 Casos concretos: regresión lineal

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

ANÁLISIS ESTADÍSTICO CORRELACIÓN LINEAL

ANÁLISIS ESTADÍSTICO CORRELACIÓN LINEAL ANÁLISIS ESTADÍSTICO CORRELACIÓN LINEAL Jorge Fallas jfallas56@gmail.com 2010 1 Temario Concepto de correlación Diagramas de dispersión Correlación: dirección, intensidad Coef. Correlación lineal de Pearson

Más detalles

Cuaderno de actividades 1º

Cuaderno de actividades 1º Cuaderno de actividades 1º 1 ITRODUCCIÓ: Variables estadísticas bidimensionales En numerosas ocasiones interesa estudiar simultáneamente dos (o más) caracteres de una población En el caso de dos (o más)

Más detalles

Estadística para el análisis de los Mercados S3_A1.1_LECV1. Estadística Descriptiva Bivariada

Estadística para el análisis de los Mercados S3_A1.1_LECV1. Estadística Descriptiva Bivariada Estadística Descriptiva Bivariada En el aspecto conceptual, este estudio puede ser generalizado fácilmente para el caso de la información conjunta de L variables aunque las notaciones pueden resultar complicadas

Más detalles

Variables estadísticas bidimensionales

Variables estadísticas bidimensionales Variables estadísticas bidimensionales BEITO J GOZÁLEZ RODRÍGUEZ (bjglez@ulles) DOMIGO HERÁDEZ ABREU (dhabreu@ulles) MATEO M JIMÉEZ PAIZ (mjimenez@ulles) M ISABEL MARRERO RODRÍGUEZ (imarrero@ulles) ALEJADRO

Más detalles

Estadística Descriptiva II: Relación entre variables

Estadística Descriptiva II: Relación entre variables Estadística Descriptiva II: Relación entre variables Iniciación a la Investigación Ciencias de la Salud MUI Ciencias de la Salud, UEx 25 de octubre de 2010 De qué trata? Descripción conjunto concreto de

Más detalles

Universidad Nacional de Colombia Curso Análisis de Datos Cuantitativos Profesor Iván Fernando Camacho. Caso 1: Dos variables cuantitativas

Universidad Nacional de Colombia Curso Análisis de Datos Cuantitativos Profesor Iván Fernando Camacho. Caso 1: Dos variables cuantitativas Universidad Nacional de Colombia Curso Análisis de Datos Cuantitativos Profesor Iván Fernando Camacho Caso 1: Dos variables cuantitativas Escalas de medición Variables Cualitativas NOMINAL ORDINAL Variables

Más detalles

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 Preg. 1. Para comparar la variabilidad relativa de la tensión arterial diastólica y el nivel de colesterol en sangre de una serie de individuos, utilizamos

Más detalles

Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION.

Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION. Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION. Distribuciones uni- y pluridimensionales. Hasta ahora se han estudiado los índices y representaciones de una sola variable por individuo. Son las distribuciones

Más detalles

1 JESTADIS\REGRES.DOC

1 JESTADIS\REGRES.DOC CONTENIDOS 1. Introducción 2. Diagrama de dispersión 3. El coeficiente de correlación de Pearson 4. Regresión 1. Introducción Una de las metas frecuentes en la investigación consiste en determinar si existe

Más detalles

Definición de Correlación

Definición de Correlación Definición de Correlación En ocasiones nos puede interesar estudiar si existe o no algún tipo de relación entre dos variables aleatorias: Estudiar cómo influye la estatura del padre sobre la estatura del

Más detalles

ANÁLISIS DE REGRESIÓN N LINEAL

ANÁLISIS DE REGRESIÓN N LINEAL ANÁLISIS DE REGRESIÓN N LINEAL Varias partes tomadas de Julio H. Cole "Nociones de Regresión Lineal" en Enciclopedia Multimedia Virtual de Economía EMVI. http://eumed.net/cursecon/medir/index.htm Análisis

Más detalles

Tema 2. Descripción Conjunta de Varias Variables

Tema 2. Descripción Conjunta de Varias Variables Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis

Más detalles

Matemáticas. Bioestadística. Correlación y Regresión Lineales

Matemáticas. Bioestadística. Correlación y Regresión Lineales Matemáticas Bioestadística Correlación y Regresión Lineales En una distribución bidimensional puede ocurrir que las dos variables guarden algún tipo de relación entre si. Por ejemplo, si se analiza la

Más detalles

Coeficiente de Correlación

Coeficiente de Correlación Coeficiente de Correlación Al efectuar un análisis de regresión simple (de dos variables) necesitamos hacer las siguientes suposiciones. Que las dos variables son mensurables Que la relación entre las

Más detalles

Capitulo. Describir la relación entre dos variables Pearson Prentice Hall. All rights reserved

Capitulo. Describir la relación entre dos variables Pearson Prentice Hall. All rights reserved Capitulo 34 Describir la relación entre dos variables Relación entre dos variables Al estudiar conjuntos de variables con más de una variable, una pregunta fundamental debe ser si podemos utilizar el valor

Más detalles

I1.1 Introducción n a la correlación

I1.1 Introducción n a la correlación 3 3 SESIÓN N CURSO DE ESTADÍSTICA STICA AVANZADA I. Introducción n a la correlación. Diagramas de dispersión.3 Coeficientes de correlación.4 Errores de interpretación 3 LA SESIÓN N N LINEAL SIMPLE. Introducción

Más detalles

Tema 2: Análisis de datos bivariantes

Tema 2: Análisis de datos bivariantes 1 Tema 2: Análisis de datos bivariantes En este tema: Tabla de contingencia, tabla de doble entrada, distribución conjunta. Frecuencias relativas, marginales, condicionadas. Diagrama de dispersión. Tipos

Más detalles

Unidad IV Introducción a la Regresión y Correlación

Unidad IV Introducción a la Regresión y Correlación Unidad IV Introducción a la Regresión y Correlación Última revisión: 25-0ctubre-2009 Elaboró: Ing. Víctor H. Alcalá-Octaviano Página 48 IV.1 Conceptos fundamentales Antología de Probabilidad y Estadística

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL SIMPLE 1. El problema de la regresión lineal simple. Método de mínimos cuadrados 3. Coeficiente de regresión 4. Coeficiente de correlación lineal 5. El contraste de regresión 6. Inferencias

Más detalles

El ejemplo: Una encuesta de opinión

El ejemplo: Una encuesta de opinión El ejemplo: Una encuesta de opinión Objetivos Lo más importante a la hora de planificar una encuesta es fijar los objetivos que queremos lograr. Se tiene un cuestionario ya diseñado y se desean analizar

Más detalles

UD 1: NÚMEROS REALES Y COMPLEJOS

UD 1: NÚMEROS REALES Y COMPLEJOS UD 1: NÚMEROS REALES Y COMPLEJOS 1. Qué es un número? Para qué sirve? 2. Haz una breve historia de los conjuntos numéricos, por qué surgen cada uno. 3. Cómo clasificarías todos los números que conoces?

Más detalles

Repaso Estadística Descriptiva

Repaso Estadística Descriptiva Grado en Fisioterapia, 2010/11 Cátedra de Bioestadística Universidad de Extremadura 13 de octubre de 2010 Índice Descriptiva de una variable 1 Descriptiva de una variable 2 Índice Descriptiva de una variable

Más detalles

Variables estadísticas bidimensionales: problemas resueltos

Variables estadísticas bidimensionales: problemas resueltos Variables estadísticas bidimensionales: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO

Más detalles

ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL

ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL Msc. Lácides Baleta Octubre 16 Página 1 de 11 REGRESIÓN Y CORRELACIÓN LINEAL Son dos herramientas para investigar la dependencia de una variable dependiente Y

Más detalles

7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE

7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE ESCUELA UNIVERSITARIA DE ENFERMERIA DE TERUEL 1 er CURSO DE GRADO DE ENFERMERIA Estadística en Ciencias de la Salud 7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE PROFESOR Dr. Santiago

Más detalles

CORRELACIÓN Y REGRESIÓN. Raúl David Katz

CORRELACIÓN Y REGRESIÓN. Raúl David Katz CORRELACIÓN Y REGRESIÓN Raúl David Katz 1 Correlación y regresión Introducción Hasta ahora hemos visto el modo de representar la distribución de frecuencias de los datos correspondientes a una variable

Más detalles

ESTADÍSTICA. Individuo. Es cada uno de los elementos que forman la población o muestra.

ESTADÍSTICA. Individuo. Es cada uno de los elementos que forman la población o muestra. ESTADÍSTICA La estadística tiene por objeto el desarrollo de técnicas para el conocimiento numérico de un conjunto de datos empíricos (recogidos mediante experimentos o encuestas). Según el colectivo a

Más detalles

Modelación y Simulación de Sistemas

Modelación y Simulación de Sistemas Modelación y Simulación de Sistemas Conferencia 1 www.norte.uni..edu.ni Maestro Julio Rito Vargas Avilés Programa de la Asignatura Objetivo General Crear modelos matemáticos que describan los sistemas

Más detalles

Unidad Temática 3: Estadística Analítica. Unidad 9 Correlación y Regresión Lineal Simple

Unidad Temática 3: Estadística Analítica. Unidad 9 Correlación y Regresión Lineal Simple Unidad Temática 3: Estadística Analítica Unidad 9 Correlación y Regresión Lineal Simple Análisis de Correlación Creado por Karl Pearson en 1920. Tiene el propósito de medir el grado de asociación observado

Más detalles

Tema 2: Análisis de datos bidimensionales

Tema 2: Análisis de datos bidimensionales Tema : Análisis de datos bidimensionales Variables estadísticas bidimensionales Distribuciones de frecuencias asociadas Regresión y correlación En una población puede resultar interesante considerar simultáneamente

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

Tema 2: Análisis de datos bivariantes

Tema 2: Análisis de datos bivariantes Tema 2: Análisis de datos bivariantes Los contenidos a desarrollar en este tema son los siguientes: 1. Tablas de doble entrada. 2. Diagramas de dispersión. 3. Covarianza y Correlación. 4. Regresión lineal.

Más detalles

ESTADÍSTICA Y ANÁLISIS DE DATOS

ESTADÍSTICA Y ANÁLISIS DE DATOS ESTADÍSTICA Y ANÁLISIS DE DATOS Práctica del Tema 2. Variables estadísticas bidimensionales Problemas 1. En la siguiente tabla aparecen, según la OIT (Organización Internacional del Trabajo), los parados

Más detalles

Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 2. Modelos de regresión

Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 2. Modelos de regresión Estadís5ca Tema 2. Modelos de regresión María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo Departamento de Matemá.ca Aplicada y Ciencias de la Computación Este tema se publica bajo

Más detalles

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento.

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento. UNIVERSIDAD DE ATACAMA FACULTAD DE CIENCIAS JURÍDICAS / CARRERA DE TRABAJO SOCIAL TECNOLOGÍA INFORMÁTICA I (SPSS) ESTADÍSTICA DESCRIPTIVA CON MÁS DE UNA VARIABLE Profesor: Hugo S. Salinas. Primer Semestre

Más detalles

12 Estadística. bidimensional. 1. Distribuciones bidimensionales. Piensa y calcula. Aplica la teoría

12 Estadística. bidimensional. 1. Distribuciones bidimensionales. Piensa y calcula. Aplica la teoría Estadística bidimensional. Distribuciones bidimensionales Piensa y calcula Se ha administrado una sustancia A, otra B y otra C a individuos para estudiar su relación con los niveles de colesterol. Observando

Más detalles

Pronósticos en los negocios L.C. y Mtro. Francisco Javier Cruz Ariza

Pronósticos en los negocios L.C. y Mtro. Francisco Javier Cruz Ariza Pronósticos en los negocios L.C. y Mtro. Francisco Javier Cruz Ariza Tema 1: Elementos de Planeación Financiera. El pronóstico y el presupuesto. Metodología a seguir en la elaboración del presupuesto.

Más detalles

Tema 1.- Correlación Lineal

Tema 1.- Correlación Lineal Tema 1.- Correlación Lineal 3.1.1. Definición El término correlación literalmente significa relación mutua; de este modo, el análisis de correlación mide e indica el grado en el que los valores de una

Más detalles

Análisis de datos en los estudios epidemiológicos III Correlación y regresión

Análisis de datos en los estudios epidemiológicos III Correlación y regresión Análisis de datos en los estudios epidemiológicos III Correlación y regresión Salinero. Departamento de Investigación Fuden Introducción En el capitulo anterior estudiamos lo que se denomina estadística

Más detalles

Estadís6ca y Métodos Numéricos Tema 6. Modelos de Regresión

Estadís6ca y Métodos Numéricos Tema 6. Modelos de Regresión Estadís6ca y Métodos Numéricos Tema 6. Modelos de Regresión Ángel Barón Caldera Ángel Cobo Ortega María Dolores Frías Domínguez Jesús Fernández Fernández Francisco Javier González Or@z Carmen María Sordo

Más detalles

Estadísticas II. M. en E. M. Milagros Eugenia Faci. 15 de julio de 2010

Estadísticas II. M. en E. M. Milagros Eugenia Faci. 15 de julio de 2010 2010 Estadísticas II M. en E. M. Milagros Eugenia Faci 15 de julio de 2010 2 Estadísticas II CONTENIDO UNIDAD III. CORRELACIÓN Y REGRESIÓN...3 III.1 CARACTERÍSTICAS DE UNA CORRELACIÓN...3 METODO DE MÍNIMOS

Más detalles

3. CORRELACIÓN Y REGRE-

3. CORRELACIÓN Y REGRE- 3. CORRELACIÓN Y REGRE- SIÓN Objetivo Medir y ajustar una relación lineal entre dos variables cuantitativas. Bibliografia recomendada Peña y Romo (1997), Capítulos 8 y 9. Índice 1. Covarianza y sus propiedades

Más detalles

RENTABILIDAD Y RIESGO

RENTABILIDAD Y RIESGO RENTABILIDAD Y RIESGO 1. MEDICIONES 1. SITUACIÓN La rentabilidad que tienen que entregar las inversiones, no solo involucran el beneficio natural que debe otorgar al capital por su utilización, sino la

Más detalles

Análisis descriptivo con SPSS. Favio Murillo García

Análisis descriptivo con SPSS. Favio Murillo García Análisis descriptivo con SPSS Favio Murillo García Tablas de contingencia Cuando se trabaja con variables categóricas, los datos suelen organizarse en tablas de doble entrada en las que cada entrada representa

Más detalles

Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables):

Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables): 0 81 098 www.ceformativos.com EJERCICIOS RESUELTOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Cinco niñas de 2,3,,7 y 8 años de edad pesan respectivamente 14, 20, 30, 42 y 44 kilos. a) Hallar la ecuación de la recta

Más detalles

Probabilidad y Estadística - Clase 3

Probabilidad y Estadística - Clase 3 Probabilidad y Estadística - Clase 3 Relación entre dos variables Karl Pearson (1857-1936). Matemático británico. Mejoró los trabajos de Francis Galton. Se propuso estudiar la relación entre la estatura

Más detalles

CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña

CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña CORRELACIÓN Y REGRESIÓN Juan José Hernández Ocaña CORRELACIÓN Muchas veces en Estadística necesitamos saber si existe una relación entre datos apareados y tratamos de buscar una posible relación entre

Más detalles

Matemáticas. Selectividad ESTADISTICA COU

Matemáticas. Selectividad ESTADISTICA COU Matemáticas Selectividad ESTADISTICA COU 1. Un dentista observa el Nº de Caries en cada uno de los 100 niños de cierto colegio. La información obtenida aparece resumida en la siguiente tabla. Nº Caries

Más detalles

4.1 Análisis bivariado de asociaciones

4.1 Análisis bivariado de asociaciones 4.1 Análisis bivariado de asociaciones Los gerentes posiblemente estén interesados en el grado de asociación entre dos variables Las técnicas estadísticas adecuadas para realizar este tipo de análisis

Más detalles

Capítulo 17 Análisis de correlación lineal Los procedimientos Correlaciones bivariadas y Correlaciones parciales

Capítulo 17 Análisis de correlación lineal Los procedimientos Correlaciones bivariadas y Correlaciones parciales Capítulo 17 Análisis de correlación lineal Los procedimientos Correlaciones bivariadas y Correlaciones parciales Cuando se analizan datos, el interés del analista suele centrarse en dos grandes objetivos:

Más detalles

Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias

Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias Estructura de este tema Tema 4 Regresión lineal simple José R. Berrendero Departamento de Matemáticas Universidad utónoma de Madrid Planteamiento del problema. Ejemplos Recta de regresión de mínimos cuadrados

Más detalles

Bioestadística. En una distribución bidimensional puede ocurrir que las dos variables guarden algún tipo de relación entre si.

Bioestadística. En una distribución bidimensional puede ocurrir que las dos variables guarden algún tipo de relación entre si. 1 de 5 15/10/2006 06:04 a.m. Bioestadística. Correlación y regresión lineales. En una distribución bidimensional puede ocurrir que las dos variables guarden algún tipo de relación entre si. Por ejemplo,

Más detalles

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y

Más detalles

LECCIÓN PÚBLICA. Tema 4 Descripción bivariante de datos. Profa. María Fátima Dos Santos

LECCIÓN PÚBLICA. Tema 4 Descripción bivariante de datos. Profa. María Fátima Dos Santos LECCIÓN PÚBLICA Tema 4 Descripción bivariante de datos Profa. María Fátima Dos Santos 1 TEMARIO Variables nominales. Tablas de contingencia Relación entre variables dicotómicas Relación entre variables

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE REGREIÓN LINEAL IMPLE ANÁLII DE REGREIÓN Al continuar con el estudio de la relación entre dos variables X y Y, ahora es pertinente considerar el caso en que es necesario pronosticar la variable dependiente

Más detalles

EJERCICIOS RESUELTOS TEMA 4. Tarea realizada 68 (84,8) --- (---) 96 (112,8) --- (---)

EJERCICIOS RESUELTOS TEMA 4. Tarea realizada 68 (84,8) --- (---) 96 (112,8) --- (---) Nivel de ansiedad Ansiedad INTRODUCCIÓN AL ANÁLII DE DATO EJERCICIO REUELTO TEMA 4. 4.1. Con los datos de la Tabla 1, el valor de es igual a: A) 7,17; B) 11,80 C) 16,8. Tabla 1. En un estudio se investigó

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles