Cinemática del Brazo articulado PUMA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cinemática del Brazo articulado PUMA"

Transcripción

1 Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad y le permten posconar y orentar su herramenta fnal. De manera más específca, las prmeras artculacones (sstema Hombro-Codo-Muñeca) posconan en el espaco el grupo formado por las últmas, que son las que orentan el efector. La estructura de artculacones-elementos, queda esbozada en las sguentes fguras, en las que se muestra una magen smétrca del robot y en la de la derecha las dmensones no están a escala para facltar su comprensón: La cnemátca del brazo artculado la formularemos sguendo la representacón de Denavt-Hartenberg, cuya descrpcón comprende apartados: asgnacón de Sstemas de Referenca y relacón de parámetros asocados a elementos y artculacones.. Representacón Denavt-Hartenberg La cnemátca de una cadena artculada se basa en asocar a cada par artculacón brazo un Sstema de Referenca Local con orgen en un punto, Y, Z, comenzando con un prmer y ejes ortonormales { } sstema de referenca fjo e nmóvl representado por los ejes {,, } la Base sobre la que está montada toda la estructura de la cadena. Y Z, anclado a un punto fjo de Este Sstema de Referenca no tene por qué ser el Unversal con orgen en (,,) y ejes {, Y, Z } asocados a la Base canónca. U U U

2 Las artculacones se numeran desde hasta n ( n = en nuestro caso). A la artculacón -ésma se le asoca su propo eje de rotacón como Eje Z, de forma que el eje de gro de la ª artculacón es Z y el de la ª artculacón, Z. Para la artculacón -ésma (que es la que gra alrededor de Z ), la eleccón del orgen de coordenadas y del Eje sgue reglas muy precsas en funcón de la geometría de los brazos artculados. el Eje Y por su parte, se escoge para que el, Y, Z sea dextrógro. sstema { } La especfcacón de cada Eje depende de la relacón espacal entre Z y Z, dstnguéndose casos: - Z y Z no son paralelos Entonces exste una únca recta perpendcular a ambos, cuya nterseccón con los ejes proporcona su mínma dstanca (que puede ser nula). Esta dstanca, representada por a y medda desde el eje Z haca el eje Z (con su sgno), es uno de los parámetros asocados a la artculacón -ésma. Por otra parte, la dstanca d desde a la nterseccón de la perpendcular común entre Z y Z con Z es el º de los parámetros asocados a la artculacón -ésma. En este caso, el Eje El orgen de coordenadas - Z y Z son paralelos es esta recta, sendo el sentdo postvo el que va desde el Eje es la nterseccón de dcha recta con el Eje Z. Z al Z s a >. En esta stuacón el Eje se toma en el plano contenendo a Z y Z y perpendcular a.ambos. El orgen es cualquer punto convenente del eje Z. El parámetro a es, como antes, la dstanca perpendcular entre los ejes Z y Z, y d es la dstanca desde.

3 A la artculacón -ésma se le asoca un er parámetro fjo α que es el ángulo que forman los ejes Z y Z en relacón al eje. Nótese que cuando el brazo -ésmo (que une rígdamente las artculacones e + ) gra en torno al eje Z (que es el de rotacón de la artculacón ), los parámetros a, d y α permanecen constantes, pues dependen exclusvamente de las poscones/orentacones relatvas entre los ejes Z y Z, que son nvarables. Por tanto, a, d y α pueden calcularse a partr de cualquer confguracón de la estructura artculada, en partcular a partr de una confguracón ncal estándar o de reposo. Precsamente el ángulo θ de gro que forman los ejes y con respecto al eje Z es el º parámetro asocado a la artculacón y el únco de ellos que varía cuando el brazo gra. Es mportante observar que el conjunto de los parámetros a, d, α y θ determna totalmente el Sstema de Referenca de la artculacón + en funcón del S.R de la artculacón.. Sstemas de Referenca en el PUMA En la sguente Fgura aparecen representadas las artculacones del robot junto con sus brazos asocados, que han sdo rotados lgeramente para vsualzar mejor los ejes de cada Sstema de Referenca. Veamos cómo se realza la asgnacón de ejes: - La ª artculacón, dbujada en Rojo junto con el brazo que accona al rotar, tene asocado el S.R. de la Base {, Y, Z } junto con su orgen, todos ellos anclados y fjos a la Base. Los ejes Z y Z son coplanaros e ntersectan en el punto. Por tanto, el eje tene la dreccón de Z Z. Por conveno se le ha puesto de sentdo contraro, para que se alnee de forma paralela con el Brazo (en Azul) cuando éste está horzontal. El orgen del S.R. es la nterseccón de la recta perpendcular común a Z y Z que da su mínma dstanca (que es nula) con el eje Z. Por tanto, concde con. Los parámetros constantes de la ª artculacón son: a = d = α = 9º. El ángulo α (gro de Z sobre Z alrededor de ) es negatvo al haber elegdo con sentdo opuesto al de Z Z. Fnalmente, θ es el ángulo de gro entre y.

4 - La ª artculacón, dbujada en Azul con el brazo que accona al rotar, tene asocado el recén defndo Sstema de Referenca {, Y, Z }, alrededor de cuyo eje Z rota. Ahora los ejes Z y Z son paralelos, por lo que el eje es perpendcular a ambos y coplanaro con Z y Z. El orgen se elge en estos casos como cualquer punto sobre el eje Z, habéndolo stuado en el extremo del º brazo. Como ya se desrbó en general, a es la dstanca perpendcular entre Z y Z mentras que d es la dstanca, medda sobre el eje Z, desde hasta la perpendcular común que contene al eje. En el caso del Robot PUMA estas magntudes son: a =.8 mm d = 9.9 mm y por otra parte, el parámetro α = º (ángulo entre Z y Z ). - La ª artculacón, dbujada en Verde, tene asocado el S.R. {, Y, Z }, θ defnmos prevamente el º S.R. { } Para determnar sus parámetros a, d, α, y y gra alrededor de Z., Y, Z,. Los ejes Z y Z se cruzan en el espaco (no son coplanaros), por lo que el eje es la recta perpendcular a ambos que da la mínma dstanca a, medda desde Z a Z en el sentdo de +, con lo cual a < (para el PUMA es a =. mm ). El orgen de coordenadas es, la nterseccón entre y Z. Por su parte, d es la dstanca desde a la nterseccón entre Z y y por tanto d =, mentras que el ángulo desde Z a Z alrededor de es α = + 9º.

5 - La ª artculacón, dbujada en Amarllo, gra alrededor de Z. Los ejes Z y Z se cortan, sendo este punto de corte el orgen. El eje es entonces perpendcular a Z y Z y naturalmente a =. El parámetro d es la dstanca a lo largo de Z desde a la nterseccón de Z y Z. En el caso del PUMA es d =.7 mm y fnalmente, el ángulo que forman Z y Z respecto a es α = 9º. Nótese que la longtud del brazo (representado por un pequeño bloque amarllo) no es un parámetro. - La ª artculacón, dbujada en Grs, gra alrededor de Z. Los ejes Z y Z se cortan, sendo este punto de corte el orgen, que concde con. El eje es perpendcular a Z y Z y a =. El parámetro d es la dstanca a lo largo de Z desde a la nterseccón de Z y Z, con lo cual se tene d =. El ángulo que forman Z y Z respecto a es α = 9º. - La ª artculacón, dbujada en Cyan, gra alrededor de Z y es la últma del brazo artculado. Dado que no exsten más artculacones, y por tanto más ejes de gro, se defne un Sstema de Referenca, lgado al últmo brazo en el que el eje Z concde con Z mentras que es cualquer vector

6 perpendcular. El orgen se stúa en poscón arbtrara, generalmente en el extremo del brazo, que es donde se ancla la herramenta del manpulador. En este caso se tene a = y d es la dstanca desde a, que para el robot PUMA es d =. mm. Fnalmente, α =.. ransformacón de coordenadas Ya se ha comentado que los parámetros a, tene por orgen el punto d, y Base {, Y, Z } α y θ asocados a la -ésma artculacón, cuyo S.R. determnan unívocamente la transformacón en el S.R asocado a la ( + ) -ésma artculacón, que tene orgen en, Y, Z. De estos parámetros, los prmeros son constantes y dependen exclusvamente de la relacón geométrca entre las artculacones e +, mentras que el º parámetro θ es la únca varable de la artculacón, sendo el ángulo de gro del eje alrededor del eje Z para llevarlo hasta. y Base { } Sabemos que dados Sstemas de Referenca R = {, [ u, u, u ] } y R {, [ v, v, v ] } = con Bases ortonormales asocadas, el cambo de coordenadas del segundo S.R. al prmero vene dado por: α β λ α = R β + λ α β λ β β β son las coordenadas de un punto en el S.R R, R es la matrz del Cambo de Base tal λ λ λ son las coordenadas del orgen del segundo S.R., α, α, α del punto en donde,, que v v v = u u u R y,, respecto al prmero. La expresón permte entonces obtener las coordenadas cuestón con respecto al prmero de los S.R. En nuestro caso, para pasar de la ( + ) -ésma artculacón a la -ésma, los Sstemas de Referenca son { Y Z } y R = {,, Y, Z } R =,,,. Estudaremos por separado la matrz del Cambo de Base y la expresón de en en el prmer S.R.

7 . Matrz del Cambo de Base Habendo asgnado los ejes a cada artculacón medante la representacón Denavt-Hartenberg, tenemos que: - El eje se obtene rotando el eje alrededor del eje Z un ángulo θ. - El eje Z se obtene rotando el eje Z alrededor del eje un ángulo α. Por su parte, el eje Y vene ya determnado por y La prmera transformacón es una rotacón alrededor del er vector de la ª Base, cuyas ecuacones genércas son: Z. () () () u u u = u u u R( θ ) La segunda transformacón es una rotacón alrededor del er vector de la Base ya transformada, y tene por expresón: () () () () () () u u u = u u u R ( α ) Por tanto, concatenándolas: () () () u u u = u u u R( θ ) R ( α ) Y Z = Y Z R ( ) R ( α ) Fnalmente, cambamos la notacón para tener: θ Con lo cual, la matrz del Cambo de Base es: R = R( θ ) R ( α ) = cosθ cosα senα senα cosα cos α senα R = cosθ cosα cosθ senα senα cosα. Coordenadas de en el prmer S.R. Según la representacón de Denavt-Hartenberg, el orgen del º Sstema de Referenca se obtene medante: - raslacón de a lo largo del eje Z por la magntud d. - raslacón a lo largo del eje por la magntud a. La prmera transformacón es: = + d Z La segunda transformacón es: = + a () ()

8 enendo ahora en cuenta que: cosα senα Y Z = Y Z cosθ cos α cosθ senα senα cos α Se tene, para el er vector: = Y Z = cosθ + Y () ( ) de donde: = + a = + d Z + a cosθ + Y = + ( a cosθ ) + ( a ) Y + d Z y por tanto, las coordenadas de en el er Sstema de Referenca son: λ a cosθ λ = a λ d Fnalmente, la transformacón de coordenadas del S.R.,[,Y,Z ] al S.R., [, Y, Z ] α cos α senα a cosθ α = cosθ cosα cosθ senα β + a α senα cosα β d Cambando la notacón para las coordenadas: x cosα senα x a cosθ y = cosθ cosα cosθ senα y + a z senα cos α z d β es: Donde el subíndce denota el Sstema de Referenca respecto al cual están expresadas las coordenadas. En coordenadas homogéneas: x cosα senα a cosθ x y cosθ cosα cosθ senα a y = z senα cosα d z

9 . Matrces de transformacón para el PUMA- En la seccón se explcó la estructura artculada del PUMA-, la asgnacón de Sstemas de Referenca a cada artculacón y el valor de los parámetros constantes a, d, α asocados. A modo de resumen, tenemos la sguente abla: Artculacón a d α A partr de la cual podemos obtener las matrces de transformacón: - cosθ = a cosθ cosθ a = d a cosθ cosθ a = - cosθ = d cosθ = cosθ = d Y la transformacón de coordenadas desde el S.R.,[,Y,Z ] al,[,y,z ] es: p = p () ( ) En partcular, para la últma artculacón: p = p () ( )

Robótica Tema 4. Modelo Cinemático Directo

Robótica Tema 4. Modelo Cinemático Directo UNIVERSIDAD POLITÉCNICA DE MADRID E.U.I.T. Industral ASIGNATURA: Robótca TEMA: Modelo Cnemátco Ttulacón: Grado en Ingenería Electrónca y Automátca Área: Ingenería de Sstemas y Automátca Departamento de

Más detalles

Herramientas Matemáticas para la localización espacial. Prof. Cecilia García

Herramientas Matemáticas para la localización espacial. Prof. Cecilia García Herramentas Matemátcas para la localzacón espacal Contendo I. Justfcacón 2. Representacón de la poscón 2. Coord. Cartesanas 2.2 Coord. Polares y Clíndrcas 2.3 Coord. Esfércas 3. Representacón de la orentacón

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

TEMA 2 Revisión de mecánica del sólido rígido

TEMA 2 Revisión de mecánica del sólido rígido TEMA 2 Revsón de mecánca del sóldo rígdo 2.. ntroduccón SÓLDO RÍGDO SÓLDO: consderar orentacón y rotacón RÍGDO: CONDCÓN DE RGÍDEZ: - movmento: no se alteran dstancas entre puntos - se gnoran las deformacones

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1.

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1. Objetvos y orentacones metodológcas SISTEMA DIÉDRICO I Interseccón de planos y de recta con plano TEMA 8 Como prmer problema del espaco que presenta la geometría descrptva, el alumno obtendrá la nterseccón

Más detalles

Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: epartamento de Físca, UTFSM Físca General II / Prof: A. Brunel. FIS120: FÍSICA GENERAL II GUÍA#6: Campo magnétco, efectos. Objetvos de aprendzaje. Esta guía es una herramenta que usted debe usar para lograr

Más detalles

PRACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERPO RÍGIDO ALREDEDOR DE UN EJE FIJO.

PRACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERPO RÍGIDO ALREDEDOR DE UN EJE FIJO. RACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERO RÍGIDO ALREDEDOR DE UN EJE FIJO. 1. -INTRODUCCIÓN TEÓRICA El objeto de la eperenca será el equlbrar estátca y dnámcamente un

Más detalles

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica.

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica. TRABAJO Y ENERGÍA INTRODUCCIÓN La aplcacón de las leyes de Newton a problemas en que ntervenen fuerzas varables requere de nuevas herramentas de análss. Estas herramentas conssten en los conceptos de trabajo

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA.

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Programacón en Pascal 5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Exsten numerosas stuacones que pueden representarse medante relacones de recurrenca; entre ellas menconamos las secuencas y las

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)} Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces

Más detalles

Cinemática del movimiento rotacional

Cinemática del movimiento rotacional Cnemátca del movmento rotaconal Poscón angular, θ Para un movmento crcular, la dstanca (longtud del arco) s, el rado r, y el ángulo están relaconados por: 180 s r > 0 para rotacón en el sentdo anthoraro

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin.

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin. Capítulo II: MECÁNICA DEL SÓLIDO RÍGIDO 5ª Leccón: Sstema de fuerzas gravtatoras. Cálculo de centros de gravedad de fguras planas: teoremas de Guldn. Sstemas de fuerzas gravtatoras La deduccón parte de

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO 12) CAPÍTULO II.- ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA 7.- MEDIDAS DE CONCENTRACIÓN. DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA 1.

Más detalles

Operadores por Regiones

Operadores por Regiones Operadores por Regones Fltros por Regones Los fltros por regones ntentan determnar el cambo de valor de un píxel consderando los valores de sus vecnos I[-1,-1] I[-1] I[+1,-1] I[-1, I[ I[+1, I[-1,+1] I[+1]

Más detalles

x i y p i h i h p i P i x p i O i

x i y p i h i h p i P i x p i O i Capítulo T NÁLISIS CINEMÁTIC DE SISTEMS MULTICUER.5 CINEMÁTIC LN Coordenadas de un punto pertenecente a un elemento lo largo de este apartado a partr de ahora se van a utlzar las coordenadas de punto de

Más detalles

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido TEM. Dnámca I Captulo 3. Dnámca del sóldo rígdo TEM : Dnámca I Capítulo 3: Dnámca del sóldo rígdo Eje nstantáneo de rotacón Sóldo con eje fjo Momento de nerca. Teorema de Stener. Conservacón del momento

Más detalles

INSTITUTO TECNOLÓGICO DE VERACRUZ ANTORCHA Y LUZ DE FUEGO PERMANENTE

INSTITUTO TECNOLÓGICO DE VERACRUZ ANTORCHA Y LUZ DE FUEGO PERMANENTE INSTITUTO TECNOLÓGICO DE VERACRUZ ANTORCHA Y LUZ DE FUEGO PERMANENTE INGENIERIA MECATRONICA INGENIERIA MECATRONICA REPRESENTACION DE DENAVIT-HARTENBERG CADENAS CINEMATICAS CNIEMATICA DIRECTA CATEDRATICO:

Más detalles

CONTROL PARA UN BRAZO ROBOT COLOCADO SOBRE LA PLATAFORMA MÓVIL ÚRSULA

CONTROL PARA UN BRAZO ROBOT COLOCADO SOBRE LA PLATAFORMA MÓVIL ÚRSULA CONTROL PARA UN BRAZO ROBOT COLOCADO SOBRE LA PLATAFORMA MÓVIL ÚRSULA MARCELA APARICIO GONZÁLEZ JOHANNA CAROLINA ORJUELA PARRA PONTIFICIA UNIVERSIDAD JAVERIANA FACULTAD DE INGENIERIA CARRERA INGENIERIA

Más detalles

Tema 2 : DEFORMACIONES

Tema 2 : DEFORMACIONES Tema : eformacones Tema : EFRMACINES F F 3 F / u u u 3 3 3 / 3 / F n Prof.: Jame Santo omngo Santllana E.P.S.-Zamora (U.SAL.) - 008 Tema : eformacones..- INTRUCCIÓN Los cuerpos se deforman debdo a la accón

Más detalles

I Coordenadas generalizadas Constricciones y coordenadas generalizadas Desplazamientos virtuales... 3

I Coordenadas generalizadas Constricciones y coordenadas generalizadas Desplazamientos virtuales... 3 .1 Parte I Mecánca de Lagrange Índce I 1 1. Coordenadas generalzadas 1 1.1. Constrccones y coordenadas generalzadas............. 1 1.2. Desplazamentos vrtuales...................... 3 2. Ecs. de Lagrange

Más detalles

Fuerzas ficticias Referencial uniformemente acelerado

Fuerzas ficticias Referencial uniformemente acelerado Capítulo 10 Fuerzas fctcas Las fuerzas fctcas son fuerzas que deben nclurse en la descrpcón de un sstema físco cuando la observacón se realza desde un sstema de referenca no nercal, a pesar de ello, se

Más detalles

Capítulo V Dinámica del cuerpo rígido

Capítulo V Dinámica del cuerpo rígido Capítulo V Dnámca del cuerpo rígdo 5. Dnámca de un sstema de masas puntuales Hasta el momento hemos estudado la nteraccón de dos cuerpos puntuales. Corresponde ahora analzar lo que ocurre cuando tenemos

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D.

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D. Clase 9: Estado Estaconaro y Flujo de Potenca EL400 - Conversón de la Energía y Sstemas Eléctrcos Eduardo Zamora D. Temas - Líneas de Transmsón - El Sstema Eléctrco - Matrz de Admtanca - Flujo de Potenca

Más detalles

TEORÍA DE ESTRUCTURAS

TEORÍA DE ESTRUCTURAS TEORÍA DE ESTRUCTURAS TEA 4: CÁCUO DE ESTRUCTURAS POR E ÉTODO DE A DEFORACIÓN ANGUAR DEPARTAENTO DE INGENIERÍA ECÁNICA - EKANIKA INGENIERITZA SAIA ESCUEA TÉCNICA SUPERIOR DE INGENIERÍA DE BIBAO UNIVERSIDAD

Más detalles

Centro de Masa. Sólido Rígido

Centro de Masa. Sólido Rígido Centro de Masa Sóldo Rígdo El centro de masa de un sstema de partículas es un punto en el cual parecería estar concentrada toda la masa del sstema. En un sstema formado por partículas dscretas el centro

Más detalles

Ejercicios y problemas (páginas 131/133)

Ejercicios y problemas (páginas 131/133) 7 Calcula el opuesto y el conjugado de los sguentes números complejos, expresándolos en forma polar: a) z b) z (cos 00 sen 00 ) c) z Expresamos en prmer lugar los números complejos en forma Calcula las

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

Geometría convexa y politopos, día 1

Geometría convexa y politopos, día 1 Geometría convexa y poltopos, día 1 Alexey Beshenov (cadadr@gmal.com) 8 de agosto de 2016 Los objetos geométrcos que nos nteresan en esta hstora son subconjuntos de R n. Voy a denotar los puntos de R n

Más detalles

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17 Procesamento Dgtal de mágenes Pablo Roncaglolo B. Nº 7 Orden de las clases... CAPTURA, DGTALZACON Y ADQUSCON DE MAGENES TRATAMENTO ESPACAL DE MAGENES TRATAMENTO EN FRECUENCA DE MAGENES RESTAURACON DE MAGENES

Más detalles

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de: Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

Tema 3. Sólido rígido.

Tema 3. Sólido rígido. Tema 3. Sóldo rígdo. Davd Blanco Curso 009-010 ÍNDICE Índce 1. Sóldo rígdo. Cnemátca 3 1.1. Condcón cnemátca de rgdez............................ 3 1.. Movmento de traslacón...............................

Más detalles

Desarrollo de sistema de control para un manipulador de seis grados de libertad

Desarrollo de sistema de control para un manipulador de seis grados de libertad Memora del Trabajo Fn de Máster realzado por Fdel Pérez Menéndez para la obtencón del título de Máster en Ingenería de Automatzacón e Informátca Industral Desarrollo de sstema de control para un manpulador

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

(p +Q 222 P +Q P +Q )

(p +Q 222 P +Q P +Q ) TEMA S.- PUNTOS. RECTAS Y PLANOS EN EL ESPACO. TEMA 5.- PUNTOS, RECTAS Y PLANOS EN EL ESPACO..- PUNTOS. Sstema de referenca: Un sstema de referenca en el espaco 93 consste en un conjunto formado por un

Más detalles

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1 CÁLCL ECTRIAL 1. Magntudes escalares y vectorales.. ectores. Componentes vectorales. ectores untaros. Componentes escalares. Módulo de un vector. Cosenos drectores. 3. peracones con vectores. 3.1. Suma.

Más detalles

ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO.

ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO. ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO..- PERSPECTIVA HISTÓRICA MATERIA { MOLÉCULAS } { ÁTOMOS}, sendo los átomos y/o moléculas estables por la nteraccón electromagnétca. Desde la perspectva electromagnétca

Más detalles

Fuerzas distribuidas. 2. Momento de inercia

Fuerzas distribuidas. 2. Momento de inercia Dpto. Físca y Mecánca Fuerzas dstrbudas d Centro de gravedad centro de masas. Centro de gravedad, centro de masas. Momento de nerca ntroduccón. Fuerzas dstrbudas Cálculo de centrodes y centros de gravedad

Más detalles

Descripción de la deformación y de las fuerzas en un medio continuo

Descripción de la deformación y de las fuerzas en un medio continuo Descrpcón de la deformacón y de las fuerzas en un medo contnuo Mecánca del Contnuo 15 de marzo de 2010 1. Temas tratados con anterordad: Descrpcón cualtatva de un medo contnuo Hpótess del contnuo Elementos

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Físca General 1 Proyecto PMME - Curso 2007 Insttuto de Físca Facultad de Ingenería UdelaR ANÁLISIS E INFLUENCIA DE DISTINTOS PARÁMETROS EN EL ESTUDIO DE LA ESTÁTICA DE CUERPOS RÍGIDOS. Sebastán Bugna,

Más detalles

Geometría diferencial de superficies en el espacio

Geometría diferencial de superficies en el espacio Geometría dferencal de superfces en el espaco Marano Suárez-Álvarez 31 de agosto, 2015 1 Superfces en el espaco 1 1.1 Cartas y superfces..................... 1 1.2 Funcones dferencables..................

Más detalles

Mecánica Clásica ( Partículas y Bipartículas )

Mecánica Clásica ( Partículas y Bipartículas ) Mecánca lásca ( Partículas y Bpartículas ) Alejandro A. Torassa Lcenca reatve ommons Atrbucón 3.0 (0) Buenos Ares, Argentna atorassa@gmal.com Resumen Este trabajo consdera la exstenca de bpartículas y

Más detalles

FORMA TRADICIONAL DE CÁLCULO DE DESPLAZAMIENTOS Y FUERZAS EN ESTRUCTURAS SIN MAMPOSTERÍA RESUMEN

FORMA TRADICIONAL DE CÁLCULO DE DESPLAZAMIENTOS Y FUERZAS EN ESTRUCTURAS SIN MAMPOSTERÍA RESUMEN CAPITULO 1 FORMA TRADICIONAL DE CÁLCULO DE DESPLAZAMIENTOS Y FUERZAS EN ESTRUCTURAS SIN MAMPOSTERÍA RESUMEN En la actualdad los métodos de dseño estructural y las consderacones que se realzan prevas al

Más detalles

A2. Smart Services. Manual de identidad visual

A2. Smart Services. Manual de identidad visual A2. Marcas Sectorales Smart Servces 1 Una marca para Smart Servces Smart Servces es una marca que pertenece a la órbta de Marca País. La marca de Smart Servces responde a dos necesdades. Por un lado la

Más detalles

CAMPOS DE VELOCIDADES DE LOS DISCOS

CAMPOS DE VELOCIDADES DE LOS DISCOS CAMPOS DE VELOCIDADES DE LOS DISCOS Los dscos galáctcos se modelan como anllos crculares concéntrcos. S Ω es la velocdad angular del anllo y r el vector que va hasta el centro, sendo n el vector untaro

Más detalles

Apuntes de Mecánica Newtoniana: Sistemas de Partículas, Cinemática y Dinámica del

Apuntes de Mecánica Newtoniana: Sistemas de Partículas, Cinemática y Dinámica del Apuntes de Mecánca Newtonana: Sstemas de Partículas, Cnemátca y Dnámca del Rígdo. Arel Fernández Danel Marta Insttuto de Físca - Facultad de Ingenería - Unversdad de la Repúblca Índce general Contendos

Más detalles

Introducción a la Química Computacional. Reservados todos los derechos de reproducción. Luis A. Montero Cabrera, Universidad de La Habana, Cuba, 2006.

Introducción a la Química Computacional. Reservados todos los derechos de reproducción. Luis A. Montero Cabrera, Universidad de La Habana, Cuba, 2006. TEORÍA SIMPLE DE ORBITALES MOLECULARES DE ÜCKEL (MO) En 93 Erck ückel planteó que la combnacón lneal de orbtales atómcos (LCAO) tomados como funcones hdrogenodes del tpo p z permte calcular los estados

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón

Más detalles

4. La Factorización No Negativa de Matrices

4. La Factorización No Negativa de Matrices 4. La Factorzacón No Negatva de Matrces 4.1 Introduccón Un problema bastante extenddo en dferentes técncas de análss de datos consste en encontrar una representacón adecuada de los datos. Un tpo de representacón

Más detalles

CAPITULO 2 VALORES, VECTORES PROPIOS y SVD. Ing. Diego A. Patiño M.Sc., Ph.D.

CAPITULO 2 VALORES, VECTORES PROPIOS y SVD. Ing. Diego A. Patiño M.Sc., Ph.D. CAPITULO VALORES, VECTORES PROPIOS y SVD Ing. Dego A. Patño M.Sc., Ph.D. Valores y Vectores Propos Muchas de las transformacones que se necestan en el dseño de sstemas de control se realzan sobre vectores

Más detalles

Unidad Nº III Unidad Aritmética-Lógica

Unidad Nº III Unidad Aritmética-Lógica Insttuto Unverstaro Poltécnco Santago Marño Undad Nº III Undad Artmétca-Lógca Undad Artmétca-Lógca Es la parte del computador que realza realmente las operacones artmétcas y lógcas con los datos. El resto

Más detalles

SEGUNDA PARTE RENTAS FINANCIERAS

SEGUNDA PARTE RENTAS FINANCIERAS SEGUNDA PARTE RENTAS FINANCIERAS 5 INTRODUCCIÓN A LA TEORÍA DE RENTAS 5.1 CONCEPTO: Renta fnancera: conjunto de captales fnanceros cuyos vencmentos regulares están dstrbudos sucesvamente a lo largo de

Más detalles

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria).

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria). Unversdad de Sonora Dvsón de Cencas Exactas y Naturales Departamento de Físca Laboratoro de Mecánca II Práctca #3: Cálculo del momento de nerca de un cuerpo rígdo I. Objetvos. Determnar el momento de nerca

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA Ingenería Químca Undad I. Introduccón a los cálculos de Ingenería Químca

Más detalles

Circuitos eléctricos en corriente continúa. Subcircuitos equivalentes Equivalentes en Serie Equivalentes en Paralelo Equivalentes de Thevenin y Norton

Circuitos eléctricos en corriente continúa. Subcircuitos equivalentes Equivalentes en Serie Equivalentes en Paralelo Equivalentes de Thevenin y Norton ema II Crcutos eléctrcos en corrente contnúa Indce Introduccón a los crcutos resstvos Ley de Ohm Leyes de Krchhoff Ley de correntes (LCK) Ley de voltajes (LVK) Defncones adconales Subcrcutos equvalentes

Más detalles

Tallerine: Energías Renovables. Fundamento teórico

Tallerine: Energías Renovables. Fundamento teórico Tallerne: Energías Renovables Fundamento teórco Tallerne Energías Renovables 2 Índce 1. Introduccón 3 2. Conceptos Báscos 3 2.1. Intensdad de corrente................................. 3 2.2. Voltaje..........................................

Más detalles

Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador.

Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador. ITM, Insttucón unverstara Guía de Laboratoro de Físca Mecánca Práctca : Colsones en una dmensón Implementos Psta curva, soporte vertcal, cnta métrca, eseras metálcas, plomada, dspostvo óptco dgtal, varlla

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6a)

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6a) ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 Rcardo Ramírez Facultad de Físca, Pontfca Unversdad Católca, Chle 1er. Semestre 2008 Corrente eléctrca CORRIENTE ELECTRICA Corrente eléctrca mplca carga en movmento.

Más detalles

4 BOMBAS DE ENGRANAJES DE PERFILES TROCOIDALES. ANÁLISIS MECÁNICO

4 BOMBAS DE ENGRANAJES DE PERFILES TROCOIDALES. ANÁLISIS MECÁNICO 4 BOMBAS DE ENGRANAJES DE ERFILES TROCOIDALES. ANÁLISIS MECÁNICO 4. INTRODUCCIÓN En capítulos anterores se ha presentado la geometría del engranaje de perfl trocodal y sus característcas volumétrcas cuando

Más detalles

W i. = PdV. f = F dl = F dl cosϕ

W i. = PdV. f = F dl = F dl cosϕ aletos 1 2.14-1 Introduccón En el capítulo 2.09, se establecó que la expresón matemátca del prmer prncpo no es sólo la expresón del prncpo de conservacón de la energía. Dcho prncpo tene un contendo mucho

Más detalles

MOVIMIENTO CIRCULAR Y MOVIMIENTO DE ROTACIÓN DE UN CUERPO RÍGIDO TOMÁS S. GRIGERA

MOVIMIENTO CIRCULAR Y MOVIMIENTO DE ROTACIÓN DE UN CUERPO RÍGIDO TOMÁS S. GRIGERA MOVIMIENTO CIRCULAR Y MOVIMIENTO DE ROTACIÓN DE UN CUERPO RÍGIDO TOMÁS S. GRIGERA Insttuto de Físca de Líqudos y Sstemas Bológcos (IFLYSIB), CONICET y Unversdad Naconal de La Plata, Calle 59 no. 789, La

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

HANDEL ANDRÉS MARTÍNEZ SARACHE CARLOS ARTURO PORRAS ABAUNZA UNIVERSIDAD INDUSTRIAL DE SANTADER FACULTAD DE INGENIERÍAS FÍSICO-MECÁNICAS

HANDEL ANDRÉS MARTÍNEZ SARACHE CARLOS ARTURO PORRAS ABAUNZA UNIVERSIDAD INDUSTRIAL DE SANTADER FACULTAD DE INGENIERÍAS FÍSICO-MECÁNICAS DISEÑO Y CONSTRUCCIÓN DE UN SISTEMA DE CONTROL PARA LA REALIZACIÓN DE TAREAS PROGRAMADAS DE UN ROBOT MANIPULADOR ARM MR 999 DE CINCO GRADOS DE LIBERTAD. HANDEL ANDRÉS MARTÍNEZ SARACHE CARLOS ARTURO PORRAS

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

TEMA 2: PROBLEMAS RESUELTOS DE CELOSÍAS

TEMA 2: PROBLEMAS RESUELTOS DE CELOSÍAS Problemas elosías TEM : PROBLEMS RESUELTOS DE ELOSÍS.. La fgura muestra una celosía formada por dversas barras de un msmo materal, un acero de módulo de elastcdad E= GPa. La seccón de las barras del cordón

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio.

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio. 1 Movmento Vbratoro Tema 8.- Ondas, Sondo y Luz Movmento Peródco Un móvl posee un movmento peródco cuando en ntervalos de tempo guales pasa por el msmo punto del espaco sempre con las msmas característcas

Más detalles

El Modelo IS-LM. El modelo IS-LM

El Modelo IS-LM. El modelo IS-LM El Modelo IS-LM El modelo IS-LM 4. Introduccón 4.2 La demanda agregada: La funcón de nversón 4.3 Equlbro del mercado de benes: La curva IS 4.4 Equlbro del mercado de dnero: La curva LM 4.5 Equlbro de la

Más detalles

CANTIDADES VECTORIALES: VECTORES

CANTIDADES VECTORIALES: VECTORES INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO N FEH DURION 3 11 3 JULIO 26 DE 2013 9

Más detalles

MEMORIAS DEL XV CONGRESO INTERNACIONAL ANUAL DE LA SOMIM 23 al 25 DE SEPTIEMBRE, 2009 CD. OBREGÓN, SONORA. MÉXICO A4_139

MEMORIAS DEL XV CONGRESO INTERNACIONAL ANUAL DE LA SOMIM 23 al 25 DE SEPTIEMBRE, 2009 CD. OBREGÓN, SONORA. MÉXICO A4_139 MEMORIAS DEL XV CONGRESO INERNACIONAL ANUAL DE LA SOMIM 23 al 25 DE SEPIEMBRE, 29 CD. OBREGÓN, SONORA. MÉXICO A4_39 Cnemátca Inversa y Análss Jacobano del Robot Paralelo Hexa Vázquez Hernández Jesús, Cuenca

Más detalles

Coordenadas Curvilíneas

Coordenadas Curvilíneas Departamento: Físca Aplcada III Mecánca Raconal (Ingenería Industral) Curso 007-08 Coordenadas Curvlíneas 1. Introduccón a. Obetvo: Generalar los tpos de coordenadas conocdos. Cartesanas. Clíndrcas, Esfércas,

Más detalles

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud Unversdad de Pamplona Facultad de Cencas Báscas Físca para cencas de la vda y la salud AÁLISIS GRÁFICO DE DATOS EXPERIMETALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos

Más detalles

Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun

Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun Práctca 1 - Programacón en C++ Pág. 1 Práctcas de C++ Practca Nº 1 Informátca II Fundamentos de Programacón Prof. Dr. Paul Bustamante Práctca 1 - Programacón en C++ Pág. 1 INDICE ÍNDICE... 1 1.1 Ejercco

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

Equilibrio fásico. (b) El sistema heterogéneo se considera aislado.

Equilibrio fásico. (b) El sistema heterogéneo se considera aislado. Termodnámca del equlbro Equlbro fásco Profesor: lí Lara En el área de Ingenería Químca exsten muchos procesos ndustrales en los cuales está nvolucrado el equlbro entre fases. Una de estas operacones es

Más detalles

MÁQUINAS DE CORRIENTE CONTINUA

MÁQUINAS DE CORRIENTE CONTINUA MÁQUINAS D CORRINT CONTINUA n esta stuacón, la energía producda por el motor que funcona como generador es transformada en calor por efecto Joule en las resstencas de carga conectadas al nducdo del motor.

Más detalles

Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático

Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático qco sθ qz Ez= 4 zπε0 2+ R2 = 4πε0 [z2 +R2 ]3/ 2 El campo de las cargas en reposo. Campo electrostátco ntroduccón. Propedades dferencales del campo electrostátco. Propedades ntegrales del campo electromagnétco.

Más detalles

Números Complejos. Matemática

Números Complejos. Matemática Números Complejos Matemátca 4º Año Cód. 40-6 M r t a R o s t o V e r ó n c a F l o t t J u a n C a r l o s B u e Dpto. de Matemátca Los Números Complejos. Una amplacón más en el campo numérco La necesdad

Más detalles

Números Complejos. Matemática

Números Complejos. Matemática Números Complejos Matemátca 4º Año Cód. 40-5 M r t a R o s t o V e r ó n c a F l o t t J u a n C a r l o s B u e Dpto. de Matemátca Los Números Complejos. Una amplacón más en el campo numérco La necesdad

Más detalles

Tema 3-Sistemas de partículas

Tema 3-Sistemas de partículas Tema 3-Sstemas de partículas Momento lneal y colsones Momento lneal de un partícula Segunda ley de Newton dp F dt p mv Impulso I tb ta Fdt Teorema del mpulso I p B p A Centro de masas 1 r M m r con M m

Más detalles

Mecánica Clásica Alternativa II

Mecánica Clásica Alternativa II Mecánca Clásca Alternatva II Alejandro A. Torassa Lcenca Creatve Commons Atrbucón 3.0 (2014) Buenos Ares, Argentna atorassa@gmal.com - versón 1 - Este trabajo presenta una mecánca clásca alternatva que

Más detalles