Ejercicio 1 (20 puntos)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicio 1 (20 puntos)"

Transcripción

1 ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Examen Montevideo, 15 de diciembre de Nombre: C.I.: EXAMEN Libre Reglamentado El examen consta de dos partes. La primera parte debe ser realizada por todos los alumnos y el tiempo previsto es de 2 horas. La segunda parte debe ser realizada sólo por los alumnos libres. El tiempo adicional para esta segunda parte es de 1 hora. PRIMERA PARTE Ejercicio 1 (20 puntos) En primaria están interesados en analizar si hombres o mujeres presentan mayor sobrepeso. Por tal motivo se realiza un relevamiento del peso y la altura de los asistentes a fin de saber si hay una relación entre estas variables. Se plantea el siguiente modelo: donde peso es el peso en kilogramos de los asistentes de primaria, altura es la altura en centímetros y mujer es una variable que toma valor 1 si la observación corresponde a una mujer. Se estimó la regresión mediante MCO. Los resultados son los que se presentan en la siguiente tabla: Source SS df MS Number of obs = F( 2, 4068) = Modelo Prob > F = Residuos R-squared = xxxxx Adj R-squared = xxxxx Total Root MSE = log(peso) Coef. Std. Err. t P> t [95% Conf. Interval log(altura) xxxxx mujer _cons a) Interprete el coeficiente asociado a la variable altura. b) La variable que indica si la observación es mujer, es significativos al 5% para determinar el peso? Responda utilizando los datos de la tabla sin realizar cálculos adicionales. c) Contraste la siguiente hipótesis: la altura no influye en el peso de los estudiantes una vez que se ha controlado por el género. Explique cuál sería la hipótesis nula de este contraste, la hipótesis alternativa (puede suponer la que quiera), el estadístico utilizado para la prueba de hipótesis, la regla de rechazo y su conclusión a un nivel de significancia del 5%. d) Calcule el R 2 y el R 2 -ajustado de este modelo como indicadores de la bondad de ajuste del modelo. Evalúe el ajuste del modelo.

2 Ejercicio 2 (20 puntos) Una variable aleatoria X sigue una distribución Uniforme[a,b, con parámetros a = 10 y b = 50. a) Hallar la media de la distribución b) Determinar el valor de la variable que acumula una probabilidad de 95 % para valores menores o iguales (percentil 95 de la distribución). c) Calcular P(20 < X 45). Ejercicio 3 (20 puntos) Del total de jóvenes entre 14 y 29 años de edad del país, un 16,5 % no estudia ni trabaja. Entre las mujeres entre 14 y 29 años de edad, la proporción que no estudia ni trabaja es 21,5 %, mientras que en el grupo de los varones del mismo tramo de edad dicha proporción es solamente 11,8 %. a) Cuál es la proporción de varones en la población entre 14 y 29 años de edad? b) Si una persona es seleccionada al azar en el grupo de edades entre 14 y 29 años y se observa que no estudia ni trabaja, qué probabilidad hay de que sea una mujer? SEGUNDA PARTE Ejercicio 4 (20 puntos) La distribución de probabilidad conjunta de dos variables aleatorias (X, Y ) está dada por: P(X,Y) Y X 0 0,08 0,1 0,15 2 0,05 0,12 0,08 4 0,20 0,12 0,10 a) Son independientes X e Y? Fundamentar. b) Hallar P(X 4/Y 1). c) Calcular P(X + Y 3). d) Hallar E(X/Y = 1). Ejercicio 5 (20 puntos) La media obtenida para una variable a partir de una muestra de tamaño 900 es igual a 290, con una desviación estándar muestral igual a 127. a) Obtenga los intervalos de confianza al 95% y 99% para la media. Justifique la distribución en el muestreo de la media muestral utilizada. b) Explique cuál es la interpretación que podemos dar a los valores obtenidos para ambos intervalos. c) Pruebe la hipótesis nula Ho) : = 300 contra la alternativa bilateral al 5% y 1%, explicando el procedimiento seguido. d) Explique la relación entre los resultados obtenidos en los puntos a y c.

3 SOLUCION Solución Ejercicio 1 (20 puntos) a) La interpretación de es la siguiente: ante un incremento de 1% en la altura de los estudiantes, el peso aumenta en 1.59%, manteniendo el sexo constante. b) Según la evidencia de los datos con los que contamos, el sexo del individuo es significativo para explicar el peso de los individuos. Esto se debe a que el valor-p de mujer es 0 (menor al valor de significancia del 5%). También podemos concluir lo mismo observando los intervalos al 95% de confianza que calcula el programa, ya que el 0 no cae en intervalo calculado por el programa (o sea que si se sacan 100 muestras aleatorias, en 95 de esas muestras el 0 no es un valor que aparezca en el intervalo). c) Las prueba de hipótesis que se solicita es: Se supone que la hipótesis alternativa es bilateral: El estadístico t solicitado es: La regla de rechazo es:, donde Por lo tanto, el estadístico calculado (23,68) es mayor al valor crítico y cae dentro de la zona de rechazo. Rechazamos H 0: la altura afecta al peso, aún cuando se ha controlado por el sexo de la persona. d) Para medir la bondad de ajuste del modelo a los datos utilizamos el o el -ajustado. Estos indicadores nos dice cuánto de la variabilidad de la variable dependiente logra ser explicada por el modelo. El -ajustado considera la cantidad de variables que se incorporan a la regresión, por lo que da una medida más acertada de lo que explica el modelo. La altura y el sexo de los estudiantes explican aproximadamente el 25% de la variabilidad total de su peso, por lo que el modelo no se ajusta muy bien a los datos de la muestra. Solución Ejercicio 2 (20 puntos) a) E(X) = = (a+b)/2 = 30 b) El área bajo la densidad entre 10 y x 0.95 es igual a La densidad es un rectángulo con altura igual a 1/40= Por lo tanto (x )*0.025 = Se obtiene x 0.95 = 0.95/ = 48 c) P(20 < X 45) es igual al área bajo la densidad entre 20 y 45. P(20 < X 45) = (45 20)* =

4 Solución Ejercicio 3 (20 puntos) El espacio muestral relevante es el de los jóvenes entre 14 y 29 años de edad. Definamos a los eventos M (mujer), H (hombre) y N (no estudia ni trabaja). Se nos indica que: P(N) = 0.165; P(N / M) = 0.215; y P(N/H) = a) Utilizamos que el conjunto de los que no estudian ni trabajan es la unión de dos conjuntos disjuntos, los varones que no estudian ni trabajan (N H) y las mujeres que no estudian ni trabajan (N H C ). La proporción que no estudia ni trabaja P(N) = P(N H) + P(N H C ). Como P(N/H) = sabemos que P(N H) = P(N/H) *P(H) = 0.118*P(H). A su vez sabemos que P(N H C ) = P(N/H C )*P(H C ) = 0.215*(1 P(H)) Esto permite escribir la probabilidad P(N) = = 0.118*P(H) *(1 P(H)) = ( )*P(H). Esto permite obtener 0.97P(H) = con lo cual P(H) = ( )/0.97= b) P(M /N) = P(N/M) *P(M) /P(N) = * ( )/0.165 = Solución Ejercicio 4 (20 puntos) a) X e Y serían independientes si se cumpliera P XY (x,y) = P X (x) * P Y (y) para todo x, y. En este caso no se cumple, ya que tenemos P XY (0,0) = 0.08 P X (0) * P Y (0) =0,33 *0,33 = Con que en un caso solo no se cumpla la condición, las variables no son independientes. b) P(X 4/Y 1) = P(X 4 Y 1) / P(Y 1) = *P XY (4,1) + P XY (4,2)/ [P Y (1) + P Y (2) = [ / [ = 0,328. c) Se trata de una variable aleatoria nueva Z = X + Y, y se pide calcular P(Z 3). La nueva variable toma los valores 0, 1, 2, 3, 4, 5, 6, con las probabilidades: P Z (0) = 0.08; P Z (1) = 0.1; P Z (2) = =0.2; P Z (3) = 0.12; P Z (4) = =0.28; P Z (5) = 0.12; P Z (6) = Por tanto P(X+Y 3) = P(Z 3) = P Z (0) + P Z (1) + P Z (2) + P Z (3) = = 0.5 d) E(X/Y = 1) = xp X/Y (x/y=1). La cuantía condicional se obtiene P X/Y (x/y=1)= P XY (x,y)/ P Y (1). Por tanto P X/Y (0/Y=1)= 0.1/0.34 = 0,294; P X/Y (2/Y=1)= 0.12/0.34 = 0,353; P X/Y (2/Y=1)= 0.12/0.34 = 0,353. Finalmente E(X/Y = 1) = 0*0, *0, * 0,353 = 2,118. Solución Ejercicio 5 (20 puntos) La media obtenida para una variable a partir de una muestra de tamaño 900 es igual a 290, con una desviación estándar muestral igual a 127. a) Como la muestra es grande (n=900), sabemos que aproximada Normal(0,1). El intervalo de confianza al 95% está dado por: sigue una distribución [ Con =0.05 y n=900 se tiene:

5 [ El valor de tablas z = 1,96. En la muestra se obtiene = 290, y s= 127, lo cual genera el intervalo: [ *127/30, *127/30 = [281,7, 298,3 El intervalo de confianza al 99% establece =0.01. Por lo tanto: [ El valor de tablas z = 2,576. Se genera el intervalo: [ *127/30, *127/30 = [279,1, 300,9 b) La probabilidad de obtener un intervalo que contenga el verdadero valor del parámetro es, en cada caso, 1 -. Eso no garantiza que el valor del parámetro se encuentra comprendido entre los extremos del intervalo concreto que se ha calculado para esa muestra en particular. c) Prueba de hipótesis Ho): = 300 H1): 300 Estadístico de la prueba: Distribución bajo H0: Región crítica: Rechazo H0) si aproximadamente Normal(0,1) aproximadamente Normal(0,1) i. Con =0.05. >1,96 = z Rechazo Ho. ii. Con =0.01. <2,576 = z No Rechazo Ho. d) Los intervalos de confianza y prueba de hipótesis están relacionados, pues ambos se basan en la misma distribución aproximada de la media muestral. El intervalo al 95% de confianza no contiene el valor 300, y la prueba de hipótesis al 95% rechaza la hipótesis nula de que la media es igual a 300. En cambio el intervalo al 99% sí incluye al valor 300, y en la prueba no se puede rechazar la hipótesis nula de que la media es igual a 300. Si se requiere más confianza ( más chico), se tiene menor precisión (intervalo más ancho).

Ejercicio 1(10 puntos)

Ejercicio 1(10 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Segundo Parcial Montevideo, 4 de julio de 2015. Nombre: Horario del grupo: C.I.: Profesor: Ejercicio 1(10 puntos) La tasa de desperdicio en una empresa

Más detalles

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

1. Hallar la media de metros cúbicos consumidos por mes.

1. Hallar la media de metros cúbicos consumidos por mes. ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Primer parcial 206 / Montevideo, 2 de mayo de 206. Nombre: C.I.: El tiempo previsto para realizar el parcial es de 2 horas. El total es de 40 puntos

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

Muestreo e inferencia

Muestreo e inferencia Images created with STATA software. 1 Muestreo e inferencia Calidad de los datos y las mediciones Razones para hablar de muestreo Formación académica de la población Comprender los datos que se van a utilizar

Más detalles

ENUNCIADO y SOLUCIONES. Problema 1

ENUNCIADO y SOLUCIONES. Problema 1 Ingeniería Industrial Métodos estadísticos de la Ingeniería Examen Junio 007. ENUNCIADO y SOLUCIONES Problema La memoria RAM para un ordenador se puede recibir de dos fabricantes A y B con igual probabilidad.

Más detalles

Repaso de estadística básica. Juan D. Barón Santiago de Chile, 8 de abril de 2013

Repaso de estadística básica. Juan D. Barón Santiago de Chile, 8 de abril de 2013 Repaso de estadística básica Juan D. Barón Santiago de Chile, 8 de abril de 2013 1 I. CONCEPTOS ESTADÍSTICOS BÁSICOS 2 Las decisiones se toman bajo incertidumbre Las decisiones se basan en información

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004 Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/004 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta (0,5 puntos c/u): 1. (V F) Los contrastes de hipótesis de dos muestras

Más detalles

Beatriz Sánchez Reyes. 22 de septiembre de 2010

Beatriz Sánchez Reyes. 22 de septiembre de 2010 Regresión cuantílica Beatriz Sánchez Reyes 22 de septiembre de 2010 Índice Definición de cuantil Regresión cuantílica - Estimación - Inferencia Regresión mediana (Ejemplo) Regresión cuartílica (Ejemplo)

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA www.jmontenegro.wordpress.com UNI ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA PROF. JOHNNY MONTENEGRO MOLINA Objetivos Desarrollar el concepto de estimación de parámetros Explicar qué es una

Más detalles

Cómo introducir Prueba de Hipótesis para una media, utilizando experimentos en el salón de clase.

Cómo introducir Prueba de Hipótesis para una media, utilizando experimentos en el salón de clase. Cómo introducir Prueba de Hipótesis para una media, utilizando experimentos en el salón de clase. M. C. Blanca Evelia Flores Soto. Dpto. de Matemáticas Universidad de Sonora Introducción. Actividad desarrollada

Más detalles

Solución Examen Parcial IV Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005

Solución Examen Parcial IV Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005 Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta o llene los espacios en blanco (0,5 puntos c/u): 1. (V F) La prueba

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

El primer paso en la realización de una investigación es planear las hipótesis de investigación. Definamos el concepto de hipótesis:

El primer paso en la realización de una investigación es planear las hipótesis de investigación. Definamos el concepto de hipótesis: El primer paso en la realización de una investigación es planear las hipótesis de investigación. Definamos el concepto de hipótesis Definición 1.- Una hipótesis es una afirmación que está sujeta a verificación

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

PATRONES DE DISTRIBUCIÓN ESPACIAL

PATRONES DE DISTRIBUCIÓN ESPACIAL PATRONES DE DISTRIBUCIÓN ESPACIAL Tipos de arreglos espaciales Al azar Regular o Uniforme Agrupada Hipótesis Ecológicas Disposición al Azar Todos los puntos en el espacio tienen la misma posibilidad de

Más detalles

Tema 8: Contraste de hipótesis

Tema 8: Contraste de hipótesis Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste

Más detalles

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico.

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN 1. Conteste las preguntas siguientes: a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. 1. 2. 3. 4. b. En

Más detalles

CONTROL ESTADISTICO DE LA CALIDAD

CONTROL ESTADISTICO DE LA CALIDAD CICLO 2012-I Módulo:2 Unidad:2 Semana: 2 CONTROL ESTADISTICO DE LA CALIDAD ING. ENRIQUE MONTENEGRO MARCELO PRUEBAS DE HIPOTESIS CONTENIDOS TEMÁTICOS 1. DEFINICIÓN DE HIPOTESIS 2. PROCEDIMIENTO DE UNA PRUEBA

Más detalles

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis Diseño Estadístico y Herramientas para la Calidad Pruebas de Hipótesis Expositor: Dr. Juan José Flores Romero juanf@umich.mx http://lsc.fie.umich.mx/~juan M. en Calidad Total y Competitividad Pruebas de

Más detalles

8 Resolución de algunos ejemplos y ejercicios del tema 8.

8 Resolución de algunos ejemplos y ejercicios del tema 8. INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 29 8 Resolución de algunos ejemplos y ejercicios del tema 8. 8.1 Ejemplos. Ejemplo 49 Supongamos que el tiempo que tarda en dar respuesta a un enfermo el personal

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] =

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] = El peso en kg de los estudiantes universitarios de una gran ciudad se supone aproximado por una distribución normal con media 60kg y desviación típica 8kg. Se toman 100 muestras aleatorias simples de 64

Más detalles

Estadísticas Pueden ser

Estadísticas Pueden ser Principios Básicos Para iniciar en el curso de Diseño de experimentos, es necesario tener algunos conceptos claros en la parte de probabilidad y estadística. A continuación se presentan los conceptos más

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

Análisis de Tendencias de los indicadores en las Encuestas de Verificación Nacional Muestral

Análisis de Tendencias de los indicadores en las Encuestas de Verificación Nacional Muestral Análisis de Tendencias de los indicadores en las Encuestas de Verificación Nacional Muestral Introducción A partir de 1994, el Registro Federal de Electores ha llevado a cabo diversos ejercicios cuyo objetivo

Más detalles

Contraste de hipótesis con STATGRAPHICS

Contraste de hipótesis con STATGRAPHICS Contraste de hipótesis con STATGRAPHICS Ficheros empleados: Transistor.sf3, Estaturas.sf3 1. Introducción: Una forma habitual de hacer inferencia acerca de uno o más parámetros de una población consiste

Más detalles

Ejemplos Resueltos Tema 4

Ejemplos Resueltos Tema 4 Ejemplos Resueltos Tema 4 2012 1. Contraste de Hipótesis para la Media µ (con σ conocida) Dada una muestra de tamaño n y conocida la desviación típica de la población σ, se desea contrastar la hipótesis

Más detalles

Universitat Pompeu Fabra Licenciatura de ADE y Economía Econometría I / 10143) Profesor: Javier Coronado Examen Final Diciembre 2011

Universitat Pompeu Fabra Licenciatura de ADE y Economía Econometría I / 10143) Profesor: Javier Coronado Examen Final Diciembre 2011 Econometría I Examen Final 1 Universitat Pompeu Fabra Licenciatura de ADE y Economía Econometría I / 10143) Profesor: Javier Coronado Examen Final Diciembre 2011 Este examen consta de un total de 50 puntos.

Más detalles

Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre Profesor: Jaime Soto

Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre Profesor: Jaime Soto Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre 2011-1 Profesor: Jaime Soto PRUEBA DE HIPÓTESIS Ejemplo El jefe de la Biblioteca de la URBE manifiesta

Más detalles

Ejercicio 1(12 puntos)

Ejercicio 1(12 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Primer Parcial Montevideo, 30 de mayo de 2015. Nombre: Horario del grupo: C.I.: Profesor: Ejercicio 1(12 puntos) En las elecciones departamentales se

Más detalles

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Solución. Curso 2016

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Solución. Curso 2016 ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico Solución. Curso 016 Ejercicio 1 Suponemos que hay independencia en la concurrencia o no entre las personas. Dado este supuesto y las características

Más detalles

Aplicaciones de apoyo al diagnóstico médico. Identificación de objetos amigos y enemigos. Identificación de zonas afectadas por un desastre natural.

Aplicaciones de apoyo al diagnóstico médico. Identificación de objetos amigos y enemigos. Identificación de zonas afectadas por un desastre natural. Capítulo 5 Evaluación En muchas ocasiones requerimos hacer una evaluación muy precisa de nuestros algoritmos de aprendizaje computacional porque los vamos a utilizar en algún tipo de aplicación que así

Más detalles

Métodos Estadísticos de la Ingeniería Tema 11: Contrastes de Hipótesis Grupo B

Métodos Estadísticos de la Ingeniería Tema 11: Contrastes de Hipótesis Grupo B Métodos Estadísticos de la Ingeniería Tema 11: Contrastes de Hipótesis Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Abril 2010 Contenidos...............................................................

Más detalles

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A.

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. 1 PROBABILIDAD Probabilidad de un evento es la posibilidad relativa de que este ocurra al realizar el experimento Es la frecuencia de que algo ocurra dividido

Más detalles

... *Elasticidad ingreso del gasto en electricidad (Modelo Restringido). reg lviv ling

... *Elasticidad ingreso del gasto en electricidad (Modelo Restringido). reg lviv ling ---- ---------------------------------------- log: C:\datos\docencia\econIccee\practicas2009\chowlog log type: text opened on: 17 Sep 2009, 17:58:52 use "$ruta\chowdta", clear * crear variable logaritmo

Más detalles

4. Prueba de Hipótesis

4. Prueba de Hipótesis 4. Prueba de Hipótesis Como se ha indicado anteriormente, nuestro objetivo al tomar una muestra es extraer alguna conclusión o inferencia sobre una población. En nuestro interés es conocer acerca de los

Más detalles

Universidad de la República, Facultad de Ciencias Económicas y Administración.

Universidad de la República, Facultad de Ciencias Económicas y Administración. Universidad de la República, Facultad de Ciencias Económicas y Administración. ECONOMETRIA II- CURSO 2010 Practica 5 MODELOS DE VARIABLE DEPENDIENTE TRUNCADA CENSURADA, MODELOS DE SELECTIVIDAD, MODELOS

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

Inferencia con una variable Tema 2

Inferencia con una variable Tema 2 Inferencia con una variable Tema 2 1. Contraste sobre una proporción 2. Bondad de ajuste 3. Contraste de hipótesis sobre una media 3.1. Con σ 2 conocida, prueba Z 3.2. Con σ 2 desconocida, prueba T 4.

Más detalles

1. Valoración y análisis de EDAD AL DIAGNÓSTICO. Media (D.E.) Mediana Min Max Rango R.I. Edad diagnóstico (+19.7) años

1. Valoración y análisis de EDAD AL DIAGNÓSTICO. Media (D.E.) Mediana Min Max Rango R.I. Edad diagnóstico (+19.7) años Transformar y calcular variables 1. Calcular el IMC (peso/altura 2 ). Recordar que la altura ha de ser en metros y el peso en kg. Recalcular la altura si es necesario. 2. Recodificar la edad al diagnóstico

Más detalles

Tema 4. MODELOS DE DISTRIBUCIONES DISCRETOS.

Tema 4. MODELOS DE DISTRIBUCIONES DISCRETOS. Estadística Tema 4 Curso /7 Tema 4. MODELOS DE DISTRIBUCIONES DISCRETOS. Objetivos Conceptos: Conocer los siguientes modelos discretos de probabilidad: uniforme, binomial, geométrico y Poisson. De cada

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

ANÁLISIS DESCRIPTIVO DE LOS DATOS DE VARIABLES CUANTITATIVAS

ANÁLISIS DESCRIPTIVO DE LOS DATOS DE VARIABLES CUANTITATIVAS ANÁLISIS DESCRIPTIVO DE LOS DATOS DE VARIABLES CUANTITATIVAS 3datos 2011 Variables CUANTITATIVAS Números con unidad de medida (con un instrumento, o procedimiento, de medición formal) Ej.: Tasa cardiaca;

Más detalles

PROBLEMAS DE DISTRIBUCIÓN NORMAL Y INTERVALOS DE CONFIANZA MATEMÁTICAS APLICADAS A LAS CC.SOCIALES II

PROBLEMAS DE DISTRIBUCIÓN NORMAL Y INTERVALOS DE CONFIANZA MATEMÁTICAS APLICADAS A LAS CC.SOCIALES II PROBLEMAS DE DISTRIBUCIÓN NORMAL Y INTERVALOS DE CONFIANZA MATEMÁTICAS APLICADAS A LAS CC.SOCIALES II 1.- Las tallas de una muestra de 1000 personas siguen una distribucióormal de media 1,76 metros y desviación

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016 Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Aniel Nieves-González Aniel Nieves-González () LSP 1 / 16 Considere el ejemplo en cual queremos modelar las ventas en una cadena de tiendas por departamento. La v.a. dependiente

Más detalles

3. Correlación. Introducción. Diagrama de dispersión

3. Correlación. Introducción. Diagrama de dispersión 1 3. Correlación Introducción En los negocios, no todo es el producto, pueden existir factores relacionados o externos que modifiquen cómo se distribuye un producto. De igual manera, la estadística no

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población),

Más detalles

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 TEMAS A ESTUDIAR En esta guía nos dedicaremos a estudiar el tema de Estimación por intervalo y comenzaremos a estudiar las pruebas de hipótesis paramétricas.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio

Más detalles

DISTRIBUCION JI-CUADRADA (X 2 )

DISTRIBUCION JI-CUADRADA (X 2 ) DISTRIBUCION JI-CUADRADA (X 2 ) En realidad la distribución ji-cuadrada es la distribución muestral de s 2. O sea que si se extraen todas las muestras posibles de una población normal y a cada muestra

Más detalles

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES TUTORÍA DE INTRODUCCIÓN A LA ESTADÍSTICA (º A.D.E.) CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES 1º) Qué ocurre cuando r = 1: a) Los valores teóricos no

Más detalles

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:

Más detalles

= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) =

= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) = SOLUCIONES AL EXAMEN DE MÉTODOS ESTADÍSTICOS 2 0 ITIE. 19 /01/2009 1. X = 132, 25 Mediana: M e = 134 + 135 2 = 134, 5 Tercer cuartil: Q 3 = 140 + 141 2 = 140, 5 11 288 12 11267 13 04566 14 0127 15 12 Pueden

Más detalles

AGRO Examen Parcial 2. Nombre:

AGRO Examen Parcial 2. Nombre: Densidad Densidad Densidad Densidad Examen Parcial 2 AGRO 5005 Nombre: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro, las tablas con fórmulas y la

Más detalles

Juan Carlos Colonia DISTRIBUCIONES MUESTRALES

Juan Carlos Colonia DISTRIBUCIONES MUESTRALES Juan Carlos Colonia DISTRIBUCIONES MUESTRALES POBLACIÓN Es el conjunto de individuos u objetos que poseen alguna característica común observable y de la cual se desea obtener información. El número de

Más detalles

TEMA 7 EL MODELO DE LA CURVA NORMAL. CONCEPTO Y APLICACIONES

TEMA 7 EL MODELO DE LA CURVA NORMAL. CONCEPTO Y APLICACIONES TEMA 7 EL MODELO DE LA CURVA NORMAL. CONCEPTO Y APLICACIONES 1. Puntuaciones diferenciales y puntuaciones típicas 2. La curva normal 3. Cálculo de áreas bajo la curva normal 3.1. Caso 1: Cálculo del número

Más detalles

Funciones de Regresión No Lineales (SW Cap. 6)

Funciones de Regresión No Lineales (SW Cap. 6) Funciones de Regresión No Lineales (SW Cap. 6) Todo anteriormente ha sido lineal en las X s La aproximación de que la función de regresión es lineal puede ser satisfactoria para algunas variables pero

Más detalles

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS UCS THS/SEM

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS UCS THS/SEM UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ciencias Básicas CODIGO SEMESTRE DENSIDAD HORARIA HT

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS VERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS Grupo

Más detalles

Curso: 2º Grupo: B Día: 18 - IV CURSO

Curso: 2º Grupo: B Día: 18 - IV CURSO 3ª EVALUACIÓN Curso: º Grupo: B Día: 18 - IV - 008 CURSO 007-08 EJERCICIO 1 (1.75 puntos) Sea la población {1, 5, 7}. Escriba todas las muestras de tamaño, mediante muestreo aleatorio simple, y calcule

Más detalles

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales ESTADISTICA GENERAL PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales OBJETIVOS Describir las características de las distribuciones de probabilidad : Normal, Ji-cuadrado, t de student

Más detalles

Teorema del límite central

Teorema del límite central TEMA 6 DISTRIBUCIONES MUESTRALES Teorema del límite central Si se seleccionan muestras aleatorias de n observaciones de una población con media y desviación estándar, entonces, cuando n es grande, la distribución

Más detalles

a. N(19 5, 1 2) P(19 X 21) = P( Z ) = = P = P P = = P P = P = = = El 55 72% no son adecuados.

a. N(19 5, 1 2) P(19 X 21) = P( Z ) = = P = P P = = P P = P = = = El 55 72% no son adecuados. El diámetro de los tubos de cartón para un envase ha de estar entre 19 y 21mm. La maquina prepara tubos cuyos diámetros están distribuidos como una manual de media 19 5mm y desviación típica 1 2mm. Qué

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

Prueba de hipótesis para la diferencia de medias

Prueba de hipótesis para la diferencia de medias Estadística Técnica Prueba de hipótesis para la diferencia de medias Cladera Ojeda, Fernando Conceptos previos Inferencia estadística Población Muestra Parámetro Estadístico Hipótesis estadística Pruebas

Más detalles

Estimaciones puntuales. Estadística II

Estimaciones puntuales. Estadística II Estimaciones puntuales Estadística II Estimación Podemos hacer dos tipos de estimaciones concernientes a una población: una estimación puntual y una estimación de intervalo. Una estimación puntual es un

Más detalles

Posibles escenarios. (a) ESTADO REAL (VERDAD) desconocido. (Error tipo II) EVIDENCIA ( DATOS) observados. Error Tipo I NO HAY ERROR NO HAY ERROR (ß)

Posibles escenarios. (a) ESTADO REAL (VERDAD) desconocido. (Error tipo II) EVIDENCIA ( DATOS) observados. Error Tipo I NO HAY ERROR NO HAY ERROR (ß) Hipótesis Pruebas de hipótesis Son enunciados formulados como respuestas tentativas a preguntas de investigación. Walter Valdivia Miranda Instituto de investigaciones de la Altura Universidad Peruana Cayetano

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

DIFERENCIAS EN LA UTILIZACIÓN DE LA BIBLIOTECA DEL IIESCA ANTE UN CAMBIO DE INFORMACIÓN

DIFERENCIAS EN LA UTILIZACIÓN DE LA BIBLIOTECA DEL IIESCA ANTE UN CAMBIO DE INFORMACIÓN DIFERENCIAS EN LA UTILIZACIÓN DE LA BIBLIOTECA DEL IIESCA ANTE UN CAMBIO DE INFORMACIÓN Beatriz Meneses A. de Sesma * I. INTRODUCCIÓN En todo centro educativo, es de suma importancia el uso que se haga

Más detalles

Examen de Grado Sección de Econometría Agosto y se obtienen los siguientes resultados. Observe que parte de la información ha sido omitida.

Examen de Grado Sección de Econometría Agosto y se obtienen los siguientes resultados. Observe que parte de la información ha sido omitida. Examen de Grado Sección de Econometría Agosto 2015 Pregunta 1. (40 puntos). Suponga que estamos interesados en determinar cuáles características del colegio y/o del hogar determinan el resultado de una

Más detalles

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) 2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL

PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL 1 PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL Prof.: MSc. Julio R. Vargas A. I. INTRODUCCION El presente trabao está orientado a aplicar los conocimientos de estadística inferencial a un caso práctico

Más detalles

Tema: Análisis de regresión y análisis de varianza. La tabla ANOVA tiene la siguiente representación: CMR F c CME SCE CME=SCE/GLE

Tema: Análisis de regresión y análisis de varianza. La tabla ANOVA tiene la siguiente representación: CMR F c CME SCE CME=SCE/GLE Clase de economería 1: Universidad Cenroamericana UCA Tema: Análisis de regresión y análisis de varianza La abla ANOVA iene la siguiene represenación: Fuenes de variación Grados de liberad uma de cuadrados

Más detalles

1. Ordena los datos en una tabla de contingencia. Economía Matemáticas Literatura Biología

1. Ordena los datos en una tabla de contingencia. Economía Matemáticas Literatura Biología Exemple Examen Part II (c) Problema 1 - Solución. En un estudio sobre la elección de la carrera universitaria entre envió cuestionarios a una muestra aleatoria simple de estudiantes preguntando la carrera

Más detalles

PARTE IV: RESULTADOS CAPÍTULO 13:

PARTE IV: RESULTADOS CAPÍTULO 13: PARTE IV: RESULTADOS CAPÍTULO 13: CONTRASTACIÓN DE HIPÓTESIS Y DISCUSIÓN DE RESULTADOS 251 13. Contrastación de hipótesis y discusión de resultados La contrastación de las hipótesis se ha llevado a cabo

Más detalles

Contrastes de hipótesis. 1: Ideas generales

Contrastes de hipótesis. 1: Ideas generales Contrastes de hipótesis 1: Ideas generales 1 Inferencia Estadística paramétrica población Muestra de individuos Técnicas de muestreo X 1 X 2 X 3.. X n Inferencia Estadística: métodos y procedimientos que

Más detalles

Es una proposición o supuesto sobre los parámetros de una o más poblaciones

Es una proposición o supuesto sobre los parámetros de una o más poblaciones HIPOTESIS ESTADISTICA Es una proposición o supuesto sobre los parámetros de una o más poblaciones http://www.itch.edu.mx/academic/industrial/estadistica1/cap02.html POR LUIS M. BAQUERO ROSAS, MBA JUNIO

Más detalles

ANÁLISIS ESTADÍSTICO DE LAS PUNTUACIONES PARA ASCENSOS DOCENTES

ANÁLISIS ESTADÍSTICO DE LAS PUNTUACIONES PARA ASCENSOS DOCENTES ANÁLISIS ESTADÍSTICO DE LAS PUNTUACIONES PARA ASCENSOS DOCENTES - Informe sometido y presentado a la Junta Administrativa del RUM en su reunión ordinaria del día jueves de 20 enero de 2011. El informe

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

Tema 1: Distribuciones en el muestreo

Tema 1: Distribuciones en el muestreo Tema 1: Distribuciones en el muestreo 1 (transparencias de A. Jach http://www.est.uc3m.es/ajach/) Muestras aleatorias Estadísticos Concepto de distribución muestral Media muestral Distribución muestral

Más detalles

Pruebas de Hipótesis H0 : μ = 6 H1 : μ 6 α = 0.05 zα/2 = 1.96 (6-1,96 0,4 ; 6+1,96 0,4) = (5,22 ; 6,78) 5,6 Aceptamos la hipótesis nula H 0 2.

Pruebas de Hipótesis H0 : μ = 6 H1 : μ 6 α = 0.05 zα/2 = 1.96 (6-1,96 0,4 ; 6+1,96 0,4) = (5,22 ; 6,78) 5,6 Aceptamos la hipótesis nula H 0 2. Pruebas de Hipótesis 1. Se sabe que la desviación típica de las notas de cierto examen de Matemáticas es,4. Para una muestra de 6 estudiantes se obtuvo una nota media de 5,6. Sirven estos datos para confirmar

Más detalles

POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN

POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN Adela del Carpio Rivera Doctor en Medicina UNIVERSO Conjunto de individuos u objetos de los que se desea conocer algo en una investigación Población o universo

Más detalles

CURSO: ANALISIS ESTADISTICO DE RIESGOS

CURSO: ANALISIS ESTADISTICO DE RIESGOS MANAGEMENT CONSULTORES CURSO: ANALISIS ESTADISTICO DE RIESGOS Cnel. R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-11-15-5468-3369 Fax: 054-11-4433-4202 Mail: acaminos@mgmconsultores.com.ar

Más detalles

Coeficiente de Correlación

Coeficiente de Correlación Coeficiente de Correlación Al efectuar un análisis de regresión simple (de dos variables) necesitamos hacer las siguientes suposiciones. Que las dos variables son mensurables Que la relación entre las

Más detalles

Facultat de Ciències Poĺıtiques i de l Administració, UPF Estadística. Curs Examen en convocatòria. 4 d Abril de 2008.

Facultat de Ciències Poĺıtiques i de l Administració, UPF Estadística. Curs Examen en convocatòria. 4 d Abril de 2008. Codi del centre: Professors: Ines Buono i Gloria García Codi de l assignatura: 12051 Facultat de Ciències Poĺıtiques i de l Administració, UPF Estadística. Curs 2007-2008. Examen en convocatòria. 4 d Abril

Más detalles

Contraste de hipótesis paramétricas

Contraste de hipótesis paramétricas Contraste de hipótesis paramétricas Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Proceso de la investigación estadística Etapas PROBLEMA HIPÓTESIS DISEÑO RECOLECCIÓN

Más detalles

Contrastes de hipótesis paramétricos

Contrastes de hipótesis paramétricos Estadística II Universidad de Salamanca Curso 2011/2012 Outline Introducción 1 Introducción 2 Contraste de Neyman-Pearson Sea X f X (x, θ). Desonocemos θ y queremos saber que valor toma este parámetro,

Más detalles

Pruebas de Hipótesis

Pruebas de Hipótesis Pruebas de Hipótesis Tipos de errores Se pueden cometer dos tipos de errores: Decisión Población Ho es erdadera Ho es falsa No rechazar Ho Decisión correcta. Error tipo II Rechazar Ho Error tipo I Decisión

Más detalles