Conteste brevemente a las siguientes cuestiones. Justifique sus respuestas, si es necesario apoyándose en diagramas.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Conteste brevemente a las siguientes cuestiones. Justifique sus respuestas, si es necesario apoyándose en diagramas."

Transcripción

1 Universidad de Navarra Nafarroao Unibertsitatea Escuela Superior de Ingenieros Ingeniarien Goi Mailao Esola ASIGNAURA GAIA CURSO KURSOA ERMODINÁMICA º NOMBRE IZENA FECHA DAA /0/07 eoría 0 puntos) IEMO: 50 minutos 9:00-9:50). El examen continúa a las 0:0. UILICE LA ÚLIMA HOJA COMO BORRADOR. UILICE INA. Conteste brevemente a las siguientes cuestiones. Justifique sus respuestas, si es necesario apoyándose en diagramas.. Qué es el punto triple. puntos) Es el estado termodinámico presión y temperatura) en el que tres fases de una sustancia pura sólido, líquido y gas) pueden coexistir en equilibrio termodinámico. or ejemplo, en el caso del agua, el punto triple se encuentra a 7,6 K 0,0 ºC) y 0,6 a. S L Esta temperatura, debido a que es un valor constante, se utiliza para calibrar las escalas de temperatura de los termómetros de mayor precisión. En el diagrama de fases -) de una sustancia pura, es el punto donde se unen tres curvas de equilibrio bifásico.. Qué es el título de un vapor. puntos) En una mezcla bifásica líquido-vapor en equilibrio, el título es la fracción másica de vapor: V unto triple xm V /m m V /m L +m V ) Su valor puede variar entre 0 líquido saturado) y vapor saturado).. Es posible evaporar un líquido sin burbujeo? En qué condiciones? puntos) La evaporación es el paso de líquido a vapor. El burbujeo implica la existencia de una superficie de separación entre las dos fases líquido y vapor). > c : evaporación sin burbujeo A presiones mayores que la presión crítica, un líquido que se calienta isobáricamente pasa a fase gaseosa sin burbujeo. < c : evaporación con burbujeo v

2 . Demuestre que para una sustancia incompresible, los calores específicos a presión y volumen constante son iguales. puntos) Sustancia incompresible: vcte. uuv,)u), es función sólo de la temperatura. c v u/ ) v du/d. u+vu)+v,), la entalpía es función de dos variables. c / ) du/d+ v)/ ) du/dc v c. 5. Formulación matemática del enunciado de Kelvin-lanc de la Segunda Ley. Explique el significado de los términos de la expresión. 5 puntos) δ W Ciclo solo foco 0 Un sistema que interacciona con un sólo foco siguiendo un proceso cíclico no puede producir trabajo neto. La integral cíclica indica la suma total del trabajo en un proceso cíclico. El signo de esta integral no puede ser positivo, aunque sí positivo o nulo. Si el valor de la integral es nulo, se trata de un ciclo reversible. Si es negativo, es un ciclo irreversible. Si es positivo, es un ciclo imposible. 6. Un equipo frigorífico tienen un CO de para unas determinadas temperaturas de evaporación y de condensación. Estime el CO de ese equipo si lo acemos trabajar como bomba de calor, dadas las mismas temperaturas de evaporación y condensación y las mismas temperaturas de los focos). puntos) Q c c CO frigo Q f /W n Q f /Q c -Q f ) CO bomba Q c /W n Q c /Q c -Q f )Q c -Q f +Q f )/Q c -Q f )+Q f /Q c -Q f )+CO frigo W n Q f f

3 7. Deduzca una expresión del rendimiento energético de un ciclo de Brayton ideal isoentrópico) para un gas perfecto, en función del cociente de presiones r. Represente el ciclo en un diagrama -s. 0 puntos) Com- presor urbina Q c Q f v s Ciclo Brayton ideal con gas ideal: ) / ) / ) ) q w c n η En los procesos isoentrópicos - y -): 0 ln ln R c s c R p p Δ or tanto: r )/ η r / / : relación de compresión.

4 Universidad de Navarra Nafarroao Unibertsitatea Escuela Superior de Ingenieros Ingeniarien Goi Mailao Esola ASIGNAURA GAIA CURSO KURSOA ERMODINÁMICA º NOMBRE IZENA FECHA DAA /0/07 IEMO ARA LOS ROBLEMAS: oras 0:0-:0). UILICE LA ÚLIMA CARA COMO BORRADOR. ANOE LAS RESUESAS EN LOS CUADROS DE ESA HOJA, CON UNIDADES. UILICE INA. roblema 5 puntos) Las primeras máquinas de vapor estaban impulsadas por la presión atmosférica, que actuaba sobre un sistema cilindro-pistón lleno de vapor de agua saturado. Se creaba vacío en el cilindro enfriándolo externamente con agua fría, con lo que se conseguía la condensación del vapor. Se considera un sistema cilindro-pistón con una superficie del pistón de 0, m, lleno inicialmente de vapor de agua saturado a la presión atmosférica de 00 a estado ). A continuación se refrigera la superficie exterior del cilindro con agua fría fijando la posición del pistón, asta que la temperatura del interior del cilindro cae asta 0 ºC estado ). Finalmente cesa la refrigeración y se suelta el pistón, que desliza sin fricción, con lo que el vapor de agua vuelve asta la presión atmosférica estado ). Agua fría Se pide: 5 puntos cada pregunta) a) Represente el proceso experimentado por el agua en diagramas -v y -s, indicando claramente la posición de las líneas representativas isobaras, isotermas, saturación, etc.). b) Demuestre que en el proceso - se cumple que v ). c) Fuerza que debe actuar sobre el pistón en el estado, para mantenerlo en su posición. d) Calor intercambiado por el cilindro. e) Variación de entropía específica del agua en el proceso -. NOA: Si para la resolución necesita Vd. acer alguna ipótesis, indíquela claramente, y justifique los motivos. ara las operaciones, emplee cifras significativas. Indique las unidades de todas las magnitudes calculadas.

5 a) Diagramas -v y -s: El estado ) es vapor saturado a 00 a. El ) tiene el mismo volumen que ), pero a 0 ºC: vapor úmedo. El estado ) es un líquido subenfriado agua a 00 a y algo menos que 00 ºC). Cálculo de propiedades de los estados: - Estado : 0 00 a; x vapor sat.) 99,6 ºC; v,696 m /g; 675 J/g; s 7,59 J/gK. V /mv mv /v 0,098 g. - Estado : 0 ºC; v v,696 m /g vap. úmedo: v f <v <v g ) v -x )v f +x v g x v -v f )/v g -v f )0,055 -x ) f +x g 50,9 J/g; s 0,895 J/gK;,5 a. - Estado : 0 00 a; - v - ) dato del apdo. b), J/g< f líq. subenfriado); 98,6 ºC; s,9 J/gK. b) Demuestre que en el proceso - se cumple que v ) El proceso - es adiabático no estático. El pistón se desliza bajo el efecto de una fuerza exterior constante, causada por la presión atmosférica. Aplicando ): Q -W m*u -u ); Q 0; W ext dv 0 V -V )m* v - v ) Sustituyendo en ), 0-m* v - v )m*u -u ) u + v u + v - v + v - v - ) c) Fuerza que debe actuar sobre el pistón en el estado, para mantenerlo en su posición Balance de fuerzas en el pistón: A F e 0 A A+F e 0 A F e 0 - )A00-,5)0,9,58 N d) Calor intercambiado por el cilindro El proceso - es adiabático. Aplicando ) al proceso -: Q -W mu -u )m - v - + v )m - )+ - )V ; como W 0, Q-66,69 J e) Variación de entropía específica del agua en el proceso - s -s,9-0,8950,5 J/gK >0 es un proceso adiabático e irreversible).

6 Universidad de Navarra Nafarroao Unibertsitatea Escuela Superior de Ingenieros Ingeniarien Goi Mailao Esola ASIGNAURA GAIA CURSO KURSOA ERMODINÁMICA º NOMBRE IZENA FECHA DAA /0/07 IEMO ARA LOS ROBLEMAS: oras 0:0-:0). UILICE LA ÚLIMA CARA COMO BORRADOR. ANOE LAS RESUESAS EN LOS CUADROS DE ESA HOJA, CON UNIDADES. UILICE INA. roblema 5 puntos) Un ciclo de potencia con vapor de agua opera según el ciclo de Ranine con recalentamiento. El vapor sale de caldera ) a 50 ºC y 6 Ma. Se expande en la turbina de alta asta 600 a ). Luego se recalienta asta 50 ºC ) antes de entrar en la turbina de baja, donde se expande asta la presión del condensador de 7, a ). La salida del condensador 5) es líquido saturado. Finalmente, una bomba presuriza el agua 6) asta la presión de caldera. Las turbinas y la bomba tienen un rendimiento isoentrópico del 88 %. La potencia neta obtenida es de MW. La refrigeración en el condensador se realiza con agua que entra a 0 ºC y sale a 5 ºC. Se pide: 5 puntos cada pregunta) a) Represente el proceso termodinámico en un diagrama s. b) c) d) e) Rendimiento energético del ciclo. Caudal de vapor. Caudal de refrigerante necesario en el condensador. Entropía generada en el condensador. abla de valores no es necesario completarla: se incluye sólo como ayuda) Est. a) C) J/g) s J/gK) Otros , s )*η s ,56 7, 0 9 7,858 x0,9; - - s )*η s 5 7, 0 67,7 0,579 x ,6 6-5 v )/η s s ,7s x0,998 s 7, 5 7,7s x0,889 NOA: Si para la resolución necesita Vd. acer alguna ipótesis, indíquela claramente, y justifique los motivos. ara las operaciones, emplee cifras significativas. Indique las unidades de todas las magnitudes calculadas.

7 A B 6 5 a) Represente el proceso termodinámico en un diagrama s. b) Rendimiento energético del ciclo. q_f[]-[5]8 J/g. q_c[]-[6]+[]-[]86 J/g. w_nq_c-q_f05 J/g. ηw_n/q_c,55% c) Caudal de vapor. W_dot000 [W] W_dotw_n*m_dot m_dot000/059,96 g/s d) Caudal de refrigerante necesario en el condensador. Q_dot_fm_dot*q_f79 W Q_dot_fm_r*.8*5-0) m_r6,5 g/s e) Entropía generada en el condensador. s v e 5 sigma_dot_condm_dot*s[5]-s[])+m_r*.8*ln5+7)/0+7)).08 W/K

8 Universidad de Navarra Nafarroao Unibertsitatea Escuela Superior de Ingenieros Ingeniarien Goi Mailao Esola ASIGNAURA GAIA CURSO KURSOA ERMODINÁMICA º NOMBRE IZENA FECHA DAA /0/07 IEMO ARA LOS ROBLEMAS: oras 0:0-:0). UILICE LA ÚLIMA CARA COMO BORRADOR. ANOE LAS RESUESAS EN LOS CUADROS DE ESA HOJA, CON UNIDADES. UILICE INA. roblema 0 puntos) Aire del ambiente en invierno a bar, 5 ºC y 80 % de umedad relativa estado ), se acondiciona para que entre en una abitación a bar, 0 ºC y 60 % de umedad relativa estado ). El proceso de acondicionamiento del aire se realiza en dos etapas: -: Flujo a través de un calentador de resistencia eléctrica. -: Inyección de agua pulverizada a 0 ºC. En la abitación se requiere un caudal volumétrico de 90 l/min de aire. Calentador eléctrico Agua 0 C 5 C 80% AIRE bar 0 C 60% 90 dm /min Se pide: 5 puntos cada pregunta) a) Represente el proceso experimentado por el aire en un diagrama psicrométrico. b) emperatura del aire en el estado. c) Caudal de agua que ay que aportar. d) otencia del calefactor. DAOS: Calores específicos: aire,,00 J/gK; vapor de agua,,8 J/gK. NOA: Si para la resolución necesita Vd. acer alguna ipótesis, indíquela claramente, y justifique los motivos. ara las operaciones, emplee cifras significativas. Indique las unidades de todas las magnitudes calculadas.

9 a) Represente el proceso experimentado por el aire en un diagrama psicrométrico. Cálculo de las propiedades en los estados: - Estado : pi[]0,8; t[]5 [C]; 00 [a]; p_st[])0,878 [a] w[]8/9*pi[]*0,878/-pi[]*0,878)0,0059 [g v/g a.s.] []t[]+w[]*50,6+,8*t[])5,9 [J/g a.s.] - Estado : w[]w[] - Estado : pi[],6; t[]0 [C]; p_st[]), [a] w[]8/9*pi[]*,/-pi[]*,)0,06 [g v/g a.s.] []t[]+w[]*50,6+,8*t[])7, [J/g a.s.] - Estado agua líquida): t[]0 [C] [].8*t[]8,6 [J/g] b) emperatura del aire en el estado. Balance de agua en el umidificador: m[]w[]-w[]0,085 [g agua/g a.s.] Balance de energía en el umidificador: []+m[]*[][] []70, [J/g a.s.] []t[]+w[]*50,6+,8*t[]) t[]59,06 [C] c) Caudal de agua que ay que aportar. Con el caudal volumétrico en la salida se dimensiona el equipo variables extensivas): V_dot[]90*e- [m^/min] v[]/9+w[]/8)*8,*t[]+7)/0,89 [m^/g a.s.] V_dot[]/m_dotv[] m_dot0.0 [g a.s./min] m_dot[]m_dot*m[]0,085 [g agua/min] d) otencia del calefactor. Balance de energía en la calefacción: Q_dotm_dot*[]-[])5,50 [J/min]0,097 [W]9,7 [W]

1. Qué es el punto triple. (3 puntos) 2. Qué es el título de un vapor. (3 puntos)

1. Qué es el punto triple. (3 puntos) 2. Qué es el título de un vapor. (3 puntos) Teoría (30 puntos) TIEMPO: 50 minutos (9:00-9:50). El examen continúa a las 10:10. UTILICE LA ÚLTIMA HOJA COMO BORRADOR. Conteste brevemente a las siguientes cuestiones. Justifique sus respuestas, si es

Más detalles

1. La variación de entropía de un fluido que circula por un compresor irreversible refrigerado puede ser negativa.

1. La variación de entropía de un fluido que circula por un compresor irreversible refrigerado puede ser negativa. ASIGNAURA GAIA ermodinámica 2º CURSO KURSOA eoría (30 puntos) IEMPO: 45 minutos UILICE LA ÚLIMA CARA COMO BORRADOR eoría 1 (10 puntos) FECHA DAA + + = Lea las 10 cuestiones y escriba dentro de la casilla

Más detalles

1. Señale como verdadero (V) o falso (F) cada una de las siguientes afirmaciones. (Cada acierto = +1 punto; fallo = 1 punto; blanco = 0 puntos)

1. Señale como verdadero (V) o falso (F) cada una de las siguientes afirmaciones. (Cada acierto = +1 punto; fallo = 1 punto; blanco = 0 puntos) Universidad de Navarra Nafarroako Unibertsitatea Escuela Superior de Ingenieros Ingeniarien Goi Mailako Eskola ASIGNATURA GAIA CURSO KURTSOA TERMODINÁMICA 2º NOMBRE IZENA FECHA DATA 15/09/07 Teoría (40

Más detalles

Cuestión 1. (10 puntos)

Cuestión 1. (10 puntos) ASIGNAURA GAIA CURSO KURSOA ERMODINÁMICA 2º eoría (30 puntos) IEMPO: 45 minutos FECHA DAA + + = Cuestión 1. (10 puntos) Lea las 15 cuestiones y escriba dentro de la casilla a la derecha de cada cuestión

Más detalles

3. Indique cuáles son las ecuaciones de estado térmica y energética que constituyen el modelo de sustancia incompresible.

3. Indique cuáles son las ecuaciones de estado térmica y energética que constituyen el modelo de sustancia incompresible. TEORÍA (35 % de la nota) Tiempo máximo: 40 minutos 1. Enuncie la Primera Ley de la Termodinámica. 2. Represente esquemáticamente el diagrama de fases (P T) del agua; indique la posición del punto crítico,

Más detalles

1. (a) Enunciar la Primera Ley de la Termodinámica.

1. (a) Enunciar la Primera Ley de la Termodinámica. ESCUELA SUPERIOR DE INGENIEROS Universidad de Navarra Examen de TERMODINÁMICA II Curso 2000-200 Troncal - 7,5 créditos 7 de febrero de 200 Nombre y apellidos NOTA TEORÍA (30 % de la nota) Tiempo máximo:

Más detalles

1. Señale como verdadero (V) o falso (F) cada una de las siguientes afirmaciones. (Cada acierto = +1 punto; fallo = 1 punto; blanco = 0 puntos)

1. Señale como verdadero (V) o falso (F) cada una de las siguientes afirmaciones. (Cada acierto = +1 punto; fallo = 1 punto; blanco = 0 puntos) Teoría (30 puntos) TIEMPO: 50 minutos 1. Señale como verdadero (V) o falso (F) cada una de las siguientes afirmaciones. (Cada acierto = +1 punto; fallo = 1 punto; blanco = 0 puntos) 1. La Primera Ley afirma

Más detalles

(f) Si la velocidad de transferencia de calor con ambos focos es [ ] [ ]

(f) Si la velocidad de transferencia de calor con ambos focos es [ ] [ ] ESCUELA SUPERIOR DE INGENIEROS INDUSRIALES Universidad de Navarra Examen de ERMODINÁMICA I Curso 996-97 roncal - 4,5 créditos 7 de enero de 997 PROBLEMAS RESUELOS Problema (obligatorio; puntos) Para el

Más detalles

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica Trabajo Práctico N : PROCESOS Y CICLOS DE POTENCIA DE VAPOR Procesos con vapor ) En un cierto proceso industrial se comprimen

Más detalles

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen.

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. 8.1* El compresor en un refrigerador recibe refrigerante R-134a a 100 kpa y 20 ºC, y lo comprime a 1 MPa y 40 ºC. Si el cuarto

Más detalles

Tema 3. Máquinas Térmicas II

Tema 3. Máquinas Térmicas II Asignatura: Tema 3. Máquinas Térmicas II 1. Motores Rotativos 2. Motores de Potencia (Turbina) de Gas: Ciclo Brayton 3. Motores de Potencia (Turbina) de Vapor: Ciclo Rankine Grado de Ingeniería de la Organización

Más detalles

Indice1. Cap.1 Energía. Cap. 2 Fuentes de Energía. Indice - Pág. 1. Termodinámica para ingenieros PUCP

Indice1. Cap.1 Energía. Cap. 2 Fuentes de Energía. Indice - Pág. 1. Termodinámica para ingenieros PUCP Indice1 Cap.1 Energía INTRODUCCIÓN... 1 La Energía en el Tiempo... 2 1.1 Energía... 5 1.2 Principio de conservación de energía... 5 1.3 Formas de energía... 7 1.4 Transformación de energía... 9 1.5 Unidades

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA GUIA DE CICLOS DE POTENCIA DE VAPOR Ejercicios resueltos

Más detalles

Resumen Cap. 7 - Felder Mercedes Beltramo 2ºC 2015 Resumen Cap. 7

Resumen Cap. 7 - Felder Mercedes Beltramo 2ºC 2015 Resumen Cap. 7 Resumen Cap. 7 7.1 Formas de energía: La primera ley de la termodinámica La energía total de un sistema consta de: Energía cinética: debida al movimiento traslacional del sistema como un todo en relación

Más detalles

Examen Final. a) identifique qué partes del diagrama corresponden al compresor, al condensador y a la válvula, (1 pto.)

Examen Final. a) identifique qué partes del diagrama corresponden al compresor, al condensador y a la válvula, (1 pto.) Pontificia Universidad Católica de Chile Instituto de Física FIS1523 Termodinámica 30 de noviembre del 2016 Tiempo: 120 minutos Se puede usar calculadora. No se puede usar celular. No se puede prestar

Más detalles

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot)

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) 1. Deducir qué forma adopta la primera ley de la termodinámica aplicada a un gas ideal para

Más detalles

Unidad Propiedades de las sustancias puras

Unidad Propiedades de las sustancias puras Unidad 2 2.1.- Propiedades de las sustancias puras 2.1.1.- Sustancias puras PLANIFICACIÓN Certámenes: Certamen 1 15 de mayo Certamen 2 12 de junio. Certamen 3 6 de julio 2.1.- Propiedades de las sustancias

Más detalles

2. LA PRIMERA LEY DE LA TERMODINÁMICA

2. LA PRIMERA LEY DE LA TERMODINÁMICA 1. CONCEPTOS BÁSICOS Y DEFINICIONES l. 1. Naturaleza de la Termodinámica 1.2. Dimensiones y unii2acles 1.3. Sistema, propiedad y estado 1.4. Densidad, volumen específico y densidad relativa 1.5. Presión

Más detalles

TEMA 3: CIRCUITO FRIGORÍFICO. BOMBA DE CALOR

TEMA 3: CIRCUITO FRIGORÍFICO. BOMBA DE CALOR TEMA 3: CIRCUITO FRIGORÍFICO. BOMBA DE CALOR 1. Introducción a. Ecuación de los gases perfectos b. Principios de la termodinámica y ley de Joule de los gases ideales 2. Principio de funcionamiento de los

Más detalles

Física Térmica - Práctico 5

Física Térmica - Práctico 5 - Práctico 5 Instituto de Física, Facultad de Ingeniería, Universidad de la República La numeración entre paréntesis de cada problema, corresponde a la numeración del libro Fundamentos de Termodinámica

Más detalles

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS 1. LA MÁQUINA TÉRMICA MÁQUINA DE FLUIDO: Es el conjunto de elementos mecánicos que permite intercambiar energía mecánica con el exterior, generalmente a través de un eje, por variación de la energía disponible

Más detalles

(a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada en el segundo término.

(a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada en el segundo término. PROBLEMA 1. Fórmulas para el calor específico Deduzca una expresión para el como función de y evalúela para: (a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada

Más detalles

Código: Titulación: INGENIERO TÉCNICO INDUSTRIAL Curso: 2º. Descriptores de la asignatura según el Plan de Estudios:

Código: Titulación: INGENIERO TÉCNICO INDUSTRIAL Curso: 2º. Descriptores de la asignatura según el Plan de Estudios: ASIGNATURA: TERMOTECNIA Código: 128212010 Titulación: INGENIERO TÉCNICO INDUSTRIAL Curso: 2º Profesor(es) responsable(s): - JOAQUÍN ZUECO JORDÁN (TEORÍA Y PRÁCTICAS) - FERNANDO ILLÁN GÓMEZ (TEORÍA) - JOSÉ

Más detalles

TABLAS Y GRÁFICOS DE PROPIEDADES TERMODINÁMICAS

TABLAS Y GRÁFICOS DE PROPIEDADES TERMODINÁMICAS Departamento de Física Aplicada I INGENIERÍA ENERGÉTICA TABLAS Y GRÁFICOS DE PROPIEDADES TERMODINÁMICAS Tabla 1. Masas atómicas o moleculares y propiedades críticas de elementos y compuestos frecuentes.

Más detalles

Sílabo de Termodinámica

Sílabo de Termodinámica Sílabo de Termodinámica I. Datos generales Código ASUC 00887 Carácter Obligatorio Créditos 4 Periodo académico 2017 Prerrequisito Ninguno Horas Teóricas 2 Prácticas 4 II. Sumilla de la asignatura La asignatura

Más detalles

INGENIERO EN ENERGÍAS RENOVABLES TERMODINÁMICA RESOLUCIÓN DE PROBLEMAS CURSO TEMA 6 LA ENTROPÍA Y SU UTILIZACIÓN. I. Resolución de problemas

INGENIERO EN ENERGÍAS RENOVABLES TERMODINÁMICA RESOLUCIÓN DE PROBLEMAS CURSO TEMA 6 LA ENTROPÍA Y SU UTILIZACIÓN. I. Resolución de problemas INGENIERO EN ENERGÍAS RENOABLES TERMOINÁMIA RESOLUIÓN E PROBLEMAS URSO 2017 TEMA 6 LA ENTROPÍA Y SU UTILIZAIÓN. I. Resolución de problemas a. Problemas de Nivel I 1. Un dispositivo cilindro pistón contiene

Más detalles

Tema 4. Máquinas Térmicas III

Tema 4. Máquinas Térmicas III Asignatura: Tema 4. Máquinas Térmicas III 1. Máquinas Frigoríficas 2. Ciclo de refrigeración por compresión de vapor 3. Ciclo de refrigeración por absorción 4. Ciclo de refrigeración por compresión de

Más detalles

Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Termodinámica Básica Prof. Ing. Isaac Hernández. Ejercicios Tema III

Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Termodinámica Básica Prof. Ing. Isaac Hernández. Ejercicios Tema III Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Termodinámica Básica Prof. Ing. Isaac Hernández Ejercicios Tema III 1) Un cilindro provisto de un pistón, tiene un volumen de 0.1

Más detalles

FORMATO CONTENIDO DE CURSO O SÍLABO

FORMATO CONTENIDO DE CURSO O SÍLABO 1. INFORMACIÓN GENERAL DEL CURSO Facultad Ingeniería Fecha de Actualización 30/01/2017 Programa Ingeniería Química Semestre V Nombre Termodinámica Aplicada Código 72114 Prerrequisitos 72102, 721030 Créditos

Más detalles

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21*

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21* Nota: Los ejercicios 7.14, 7.20, 7.21. 7.26, 7.59, 7.62, 7.67, 7.109 y 7.115 tienen agregados y/o sufrieron modificaciones respecto al Van Wylen. 7.2* Considere una máquina térmica con ciclo de Carnot

Más detalles

SEGUNDA LEY DE LA TERMODINAMICA

SEGUNDA LEY DE LA TERMODINAMICA U n i v e r s i d a d C a t ó l i c a d e l N o r t e E s c u e l a d e I n g e n i e r í a Unidad 4 SEGUNDA EY DE A ERMODINAMICA Segunda ey a 2 ey de la ermodinámica nos permite establecer la direc ción

Más detalles

Ejemplos del temas VII

Ejemplos del temas VII 1. Metano líquido es comúnmente usado en varias aplicaciones criogénicas. La temperatura crítica del metano es de 191 K, y por lo tanto debe mantenerse por debajo de esta temperatura para que este en fase

Más detalles

Capítulo 5: La segunda ley de la termodinámica.

Capítulo 5: La segunda ley de la termodinámica. Capítulo 5: La segunda ley de la termodinámica. 5.1 Introducción Por qué es necesario un segundo principio de la termodinámica? Hay muchos procesos en la naturaleza que aunque son compatibles con la conservación

Más detalles

Programa Regular. Abordar y profundizar el análisis de principios y leyes de la Termodinámica.

Programa Regular. Abordar y profundizar el análisis de principios y leyes de la Termodinámica. Programa Regular Curso: Termodinámica A Carga horaria: 6hs. Modalidad de la asignatura: teórico-práctica Objetivos. Abordar y profundizar el análisis de principios y leyes de la Termodinámica. Adquirir

Más detalles

Ciclos de fuerza de vapor. Jazmín Palma Campos Daniela Torrentes Díaz

Ciclos de fuerza de vapor. Jazmín Palma Campos Daniela Torrentes Díaz Ciclos de fuerza de vapor Jazmín Palma Campos Daniela Torrentes Díaz Ciclos de fuerza de vapor El vapor es el fluido de trabajo más empleado en los ciclos de potencia de vapor gracias a sus numerosas ventajas,

Más detalles

Tarea I. Repaso para el Primer Parcial (2pts) Estimación de Propiedades por Tablas, GI y FI Aplicaciones de la Primera Ley y Segunda Ley

Tarea I. Repaso para el Primer Parcial (2pts) Estimación de Propiedades por Tablas, GI y FI Aplicaciones de la Primera Ley y Segunda Ley Universidad Simón Bolívar Departamento de Termodinámica y Fenómenos de Transferencia Termodinámica de Materiales (TF-1122) Prof: Susana Curbelo y Sylvana Derjani ABR-JUL 2012 Tarea I. Repaso para el Primer

Más detalles

Ciclo de Brayton. Integrantes: Gabriela Delgado López Isamar Porras Fernández

Ciclo de Brayton. Integrantes: Gabriela Delgado López Isamar Porras Fernández Ciclo de Brayton Integrantes: Gabriela Delgado López Isamar Porras Fernández Ciclo de Brayton? Es un proceso cíclico asociado generalmente a una turbina a gas. Al igual que otros ciclos de potencia de

Más detalles

FÍSICA Usando la convención gráfica según la cual una máquina simple que entrega trabajo positivo se representa como en la figura:

FÍSICA Usando la convención gráfica según la cual una máquina simple que entrega trabajo positivo se representa como en la figura: FÍSICA 4 PRIMER CUARIMESRE DE 05 GUÍA : SEGUNDO PRINCIPIO, MÁUINAS ÉRMICAS. Demostrar que: (a) Los postulados del segundo principio de Clausius y de Kelvin son equivalentes (b) Ninguna máquina cíclica

Más detalles

Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles.

Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 4: PRIMER PRINCIPIO Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles. 1) Se enfría a volumen

Más detalles

Capítulo 4 Ciclos Termodinámicos. M del Carmen Maldonado Susano

Capítulo 4 Ciclos Termodinámicos. M del Carmen Maldonado Susano Capítulo 4 Ciclos Termodinámicos Objetivo El alumno conocerá los ciclos termodinámicos fundamentales empleados en la transformación de la energía. Contenido Ciclos de generación de potencia mecánica. Ciclos

Más detalles

Tema 12: Circuito frigorífico y bombas de calor Guion

Tema 12: Circuito frigorífico y bombas de calor Guion Guion 1. Máquina frigorífica de compresión. 2. Elementos fundamentales de un circuito frigorífico. 3. Máquinas frigoríficas de absorción. 4. Diagrama general de una máquina frigorífica. 4.1 Foco caliente,

Más detalles

TERMODINÁMICA - PREGUNTAS DE TEST

TERMODINÁMICA - PREGUNTAS DE TEST TERMODINÁMICA - PREGUNTAS DE TEST Grupo A: DEFINICIONES DE VARIABLES. CONCEPTOS GENERALES Grupo B: MAQUINAS TÉRMICAS: Grupo C: PRIMER PRINCIPIO: Grupo D: SEGUNDO PRINCIPIO: Grupo E: ESPONTANEIDAD DE LAS

Más detalles

2.- A qué se considera como eficiencia en las máquinas? Considera un proceso (no un ciclo) y compara la trayectoria real con la isentrópica

2.- A qué se considera como eficiencia en las máquinas? Considera un proceso (no un ciclo) y compara la trayectoria real con la isentrópica CUESTIONARIO UNIDAD 5 1.- Qué es la eficiencia? Es la relación entre la energía útil y la energía invertida 2.- A qué se considera como eficiencia en las máquinas? Considera un proceso (no un ciclo) y

Más detalles

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la parte de la física que se ocupa de las relaciones existentes entre el calor y el trabajo. El calor es una

Más detalles

Problema 1. Problema 2

Problema 1. Problema 2 Problemas de clase, octubre 2016, V1 Problema 1 Una máquina frigorífica utiliza el ciclo estándar de compresión de vapor. Produce 50 kw de refrigeración utilizando como refrigerante R-22, si su temperatura

Más detalles

F. Tipos de transformaciones. Ciclos termodinámicos. Rendimientos de una máquina térmica

F. Tipos de transformaciones. Ciclos termodinámicos. Rendimientos de una máquina térmica F. Tipos de transformaciones. Ciclos termodinámicos. Rendimientos de una máquina térmica El trabajo no depende solamente del estado energético inicial y final del sistema, sino también depende del camino

Más detalles

TERMODINÁMICA DEL AGUA I SUSTANCIAS PURAS CURVAS DEL AGUA

TERMODINÁMICA DEL AGUA I SUSTANCIAS PURAS CURVAS DEL AGUA TERMODINÁMICA DEL AGUA I SUSTANCIAS PURAS CURVAS DEL AGUA ELABORÓ MSc. EFRÉN GIRALDO TORO REVISÓ PhD CARLOS A. ACEVEDO Contenido Sustancia pura Fase Curvas del agua Curvas del agua: Tv, Pv,PT Calor sensible

Más detalles

PROBLEMAS Propiedades termodinámicas de los fluidos. La energía interna es 32 J bar

PROBLEMAS Propiedades termodinámicas de los fluidos. La energía interna es 32 J bar 242 6. Propiedades termodinámicas de los fluidos La energía interna es 34 10 bar 32 J Estos resultados concuerdan mucho más con los valores experimentales que los del supuesto caso del vapor de l-buteno

Más detalles

Ciclo de Otto (de cuatro tiempos)

Ciclo de Otto (de cuatro tiempos) Admisión Inicio compresión Fin de compresión Combustión Expansión Escape de gases 0 Admisión (Proceso Isobárico): Se supone que la circulación de los gases desde la atmósfera al interior del cilindro se

Más detalles

INTRODUCCIÓN A LA INGENIERÍA QUÍMICA I. MÓDULO 10: Las relaciones termodinámicas y los diagramas

INTRODUCCIÓN A LA INGENIERÍA QUÍMICA I. MÓDULO 10: Las relaciones termodinámicas y los diagramas 76.01 - INTRODUCCIÓN A LA INGENIERÍA QUÍMICA I GUÍA DE TRABAJOS PRÁCTICOS MÓDULO 10: Las relaciones termodinámicas y los diagramas LAS RELACIONES TERMODINÁMICAS Y LOS DIAGRAMAS - desarrollos prácticos

Más detalles

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA OBJETIVO GENERAL: Familiarizar al alumno con los sistemas de torres de refrigeración para evacuar el calor excedente del agua. OBJETIVOS ESPECÍFICOS: Investigar

Más detalles

Ejemplos de temas V, VI, y VII

Ejemplos de temas V, VI, y VII 1. Un sistema de aire acondicionado que emplea refrigerante R-134a como fluido de trabajo es usado para mantener una habitación a 23 C al intercambiar calor con aire exterior a 34 C. La habitación gana

Más detalles

República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo

República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo Guía de Ejercicios de Primera Ley de Termodinámica 1.- Entra agua a los tubos de

Más detalles

SEGUNDA LEY DE LA TERMODINÁMICA

SEGUNDA LEY DE LA TERMODINÁMICA Tema 2 SEGUNDA EY DE A TERMODINÁMICA ING. JOANNA KRIJNEN CONTENIDO 1. Introducción a la segunda ley de la termodinámica. 2. Máquinas térmicas (MT) Concepto Descripción del ciclo termodinámico. Eficiencia

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE CIENCIAS. NOMBRE DE LA UNIDAD DE APRENDIZAJE: FÍSICA TÉRMICA

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE CIENCIAS. NOMBRE DE LA UNIDAD DE APRENDIZAJE: FÍSICA TÉRMICA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE CIENCIAS. NOMBRE DE LA UNIDAD DE APRENDIZAJE: FÍSICA TÉRMICA UNIDAD DE COMPETENCIA V: MÁQUINAS TÉRMICAS, ENTROPÍA Y SEGUNDA LEY DE LA TERMODINÁMICA.

Más detalles

-MAQUINA FRIGORÍFICA-

-MAQUINA FRIGORÍFICA- -MAQUINA FRIGORÍFICA- 0.-OBJETIVOS: 1º Ciclo real en un proceso frigorífico midiendo presión y temperatura. 2º Cálculo de la potencia calorífica en compresor y evaporador. 1.-INTRODUCCION: Las máquinas

Más detalles

Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas

Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl

Más detalles

Facultad de Ingeniería - Universidad Nacional de Cuyo PROGRAMA DE ASIGNATURA

Facultad de Ingeniería - Universidad Nacional de Cuyo PROGRAMA DE ASIGNATURA Facultad de Ingeniería - Universidad Nacional de Cuyo PROGRAMA DE ASIGNATURA Asignatura: Termodinámica y Máquinas Térmicas Carrera: Ingeniería Industrial Profesor Titular: MAMANI, Manuel Año: 2010 Semestre:

Más detalles

PROGRAMA DE CURSO PROPÓSITO DEL CURSO

PROGRAMA DE CURSO PROPÓSITO DEL CURSO PROGRAMA DE CURSO CÓDIGO IQ3201 NOMBRE DEL CURSO Termodinámica Aplicada HORAS DE NÚMERO DE UNIDADES HORAS DE CÁTEDRA DOCENCIA DOCENTES AUXILIAR 10 3 1,5 5,5 REQUISITOS CM2004, EI2001 REQUISITOS DE ESPECÏFICOS

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

Termodinámica y Máquinas Térmicas

Termodinámica y Máquinas Térmicas Termodinámica y Máquinas Térmicas Tema 04. Funciones de Estado Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica

Más detalles

Nombre... Contestar TODAS las preguntas. Tienen el mismo valor. Tiempo máximo: 1 hora. Sea conciso.

Nombre... Contestar TODAS las preguntas. Tienen el mismo valor. Tiempo máximo: 1 hora. Sea conciso. Examen de TERMODINÁMICA I Curso 1998-99 Troncal - 4,5 créditos 1 de febrero de 1999 Nombre... NOTA Contestar TODAS las preguntas. Tienen el mismo valor. Tiempo máximo: 1 hora. Sea conciso. Teoría 1 (10

Más detalles

Asignatura: TERMODINÁMICA APLICADA

Asignatura: TERMODINÁMICA APLICADA Asignatura: TERMODINÁMICA APLICADA Titulación: I. T. R.E.E. C. y E. Curso (Cuatrimestre): 2º - 2º C Profesor(es) responsable(s): Francisco Montoya Molina Ubicación despacho: Edif. Esc. INGENIERIA AGRONOMICA

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Unidad I: ropiedades y Leyes de la ermodinámica! Ciclos de potencia! Ciclo de refrigeración 8/7/0 Ctenido! Ciclos termodinámicos!! Ciclo Rankine! ariantes del Ciclo Rankine! Ciclos

Más detalles

Primera Ley Sistemas Abiertos

Primera Ley Sistemas Abiertos Cap. 10 Primera Ley Sistemas Abiertos INTRODUCCIÓN Este capìtulo complementa el anterior de Sistemas Cerrados para tener toda la gama de màquinas termodinàmicas; tambièn contiene teorìa de las válvulas

Más detalles

GASES IDEALES, REALES, MEZCLAS 3.1 El gas ideal o perfecto. Ecuación de estado para los gases ideales. Superficie de estado para el gas ideal.

GASES IDEALES, REALES, MEZCLAS 3.1 El gas ideal o perfecto. Ecuación de estado para los gases ideales. Superficie de estado para el gas ideal. Programa Analítico de: TERMODINÁMICA TÉCNICA Especialidad: INGENIERIA ELECTROMECANICA Nivel: Tercer año. UNIDAD I 1. 1 1. 2 1. 3 1. 4 CONTENIDOS IMPORTANCIA DE LA TERMODINÁMICA EN INGENIERÍA Termodinámica

Más detalles

XII. - PROPIEDADES TERMODINÁMICAS DEL VAPOR DE AGUA

XII. - PROPIEDADES TERMODINÁMICAS DEL VAPOR DE AGUA XII. - PROPIEDADES TERMODINÁMICAS DEL VAPOR DE AGUA XII.1.- ESTUDIO DE LOS FLUIDOS CONDENSABLES La necesidad de los fluidos condensables en general y de los vapores en particular, para su utilización industrial,

Más detalles

Termodinámica: Segunda Ley

Termodinámica: Segunda Ley Termodinámica: Segunda Ley Presenta: M. I. Ruiz Gasca Marco Antonio Instituto Tecnológico de Tláhuac II Octubre, 2015 Marco Antonio (ITT II) México D.F., Tláhuac Octubre, 2015 1 / 20 1 Introducción y objetivo

Más detalles

Introducción a la Termodinámica

Introducción a la Termodinámica Introducción a la Termodinámica Consulte nuestra página web: www.sintesis.com En ella encontrará el catálogo completo y comentado Introducción a la Termodinámica Cristóbal Fernández Pineda y Santiago Velasco

Más detalles

TERMODINÁMICA. Fundamentos Físicos de la Ingeniería ETS Ingenieros Agrónomos UCLM (Albacete)

TERMODINÁMICA. Fundamentos Físicos de la Ingeniería ETS Ingenieros Agrónomos UCLM (Albacete) Fundamentos Físicos de la Ingeniería ES Ingenieros Agrónomos UCLM (Albacete) ERMODINÁMICA Equipo docente Antonio J. Barbero García Alfonso Calera Belmonte Mariano Hernández uche (Dpto. Física Aplicada)

Más detalles

Programa Regular. Abordar y profundizar el análisis de principios y leyes de la Termodinámica.

Programa Regular. Abordar y profundizar el análisis de principios y leyes de la Termodinámica. Programa Regular Curso: Termodinámica B Carga horaria: 6 hs. Modalidad de la asignatura: teórico-práctica Objetivos. Abordar y profundizar el análisis de principios y leyes de la Termodinámica. Adquirir

Más detalles

FUNDAMENTOS SISTEMAS TRITÉRMICOS EYECCION

FUNDAMENTOS SISTEMAS TRITÉRMICOS EYECCION SISTEMAS TRITÉRMICOS EYECCION LAS MÁQUINAS DE EYECCIÓN FUNDAMENTOS Como en el sistema de compresión, la máquina de eyección es un sistema basado en la vaporización de un líquido a baja presión. Las funciones

Más detalles

UNIVERSIDAD NACIONAL SAN LUIS GONZAGA DE ICA

UNIVERSIDAD NACIONAL SAN LUIS GONZAGA DE ICA UNIVERSIDAD NACIONAL SAN LUIS GONZAGA DE ICA Facultad de Ingeniería Mecánica y Eléctrica Escuela Académico Profesional de Ingeniería Mecánica y Eléctrica Departamento de Energía y Producción S Í L A B

Más detalles

Programa Regular. Asignatura: Termodinámica A. Carrera: Ingeniería Electromecánica. Ciclo Lectivo: Coordinador/Profesor: Omar Mosquera.

Programa Regular. Asignatura: Termodinámica A. Carrera: Ingeniería Electromecánica. Ciclo Lectivo: Coordinador/Profesor: Omar Mosquera. Programa Regular Asignatura: Termodinámica A Carrera: Ingeniería Electromecánica Ciclo Lectivo: 2016 Coordinador/Profesor: Omar Mosquera. Carga horaria semanal: 6 hs. Modalidad de la Asignatura: Teórico

Más detalles

TEMA 9. CICLOS DE POTENCIA DE VAPOR

TEMA 9. CICLOS DE POTENCIA DE VAPOR Termodinámica Aplicada Ingeniería Química TEMA 9. CICLOS DE POTENCIA DE VAPOR TEMA 9: CICLOS DE POTENCIA DE VAPOR BLOQUE II. Análisis termodinámico de procesos industriales ANÁLISIS PROCESOS CALOR GENERALIDADES

Más detalles

TEMA1: GUIA 1 CICLO RANKINE

TEMA1: GUIA 1 CICLO RANKINE UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO PUNTO FIJO PROGRAMA DE INGENIERÍA INDUSTRIAL CÁTEDRA: CONVERSION DE ENERGIA TEMA: GUIA CICLO RANKINE Ciclo Rankine. Efectos de

Más detalles

Facultad de Ingeniería División de Ciencias Básicas. Ciclo de Diesel. Martín Bárcenas

Facultad de Ingeniería División de Ciencias Básicas. Ciclo de Diesel. Martín Bárcenas Admisión Inicio compresión Fin de compresión Combustión Expansión Escape de gases 0 Admisión (Proceso Isobárico): Se supone que la circulación de los gases desde la atmósfera al interior del cilindro se

Más detalles

1 V (m 3 ) EXAMEN TERMODINÁMICA / FÍSICA FORESTALES /

1 V (m 3 ) EXAMEN TERMODINÁMICA / FÍSICA FORESTALES / EXAMEN TERMODINÁMICA / FÍSICA FORESTALES / 26-02-2013 TEORÍA (3 p) La gráfica adjunta es la representación en coordenadas presión-volumen de un ciclo frigorífico de Carnot 1 2 3 4, siendo reversibles todas

Más detalles

Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos

Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos El segundo principio de la termodinámica Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos Dirección de los procesos Q T i >T o Tiempo T T o Los procesos inversos no son posibles espontáneamente

Más detalles

Ejemplos de máquina térmica son: los motores de combustión interna, las plantas de potencia de vapor, entre otras.

Ejemplos de máquina térmica son: los motores de combustión interna, las plantas de potencia de vapor, entre otras. TERMODINÁMICA II Unidad : Ciclos de potencia y refrigeración Objetivo: Estudiar los ciclos termodinámicos de potencia de vapor UNEFA Ext. La Isabelica Ing. Petroquímica 5to Semestre Materia: Termodinámica

Más detalles

LABORATORIO DE TERMODINÁMICA PRÁCTICA 1: TÍTULO DE UN VAPOR HÚMEDO

LABORATORIO DE TERMODINÁMICA PRÁCTICA 1: TÍTULO DE UN VAPOR HÚMEDO LABORATORIO DE TERMODINÁMICA PRÁCTICA 1: TÍTULO DE UN VAPOR HÚMEDO 1. OBJETIVO Determinar la calidad de un vapor húmedo 2. MATERIAL - Calderín para producir el vapor (p atmosférica = constante) - Calorímetro

Más detalles

Módulo 2: Termodinámica Segundo principio de la Termodinámica

Módulo 2: Termodinámica Segundo principio de la Termodinámica Módulo 2: Termodinámica Segundo principio de la Termodinámica 1 Transferencias de energía Sabemos por el primer principio de la Termodinámica que la energía de un sistema se conserva. Sólo que en diferentes

Más detalles

UNIDAD II: CICLOS DE POTENCIA DE VAPOR

UNIDAD II: CICLOS DE POTENCIA DE VAPOR UNIDAD II: CICLOS DE POTENCIA DE VAPOR 1. Expansion isotermica. Expansion adiabatica 3. Compresion isotermica 4. Compresión adiabatica ETAPAS DEL CICLO DE CARNOT 1. Expansión isotérmica. Expansión adiabática

Más detalles

TEMA 1 Cambios de fase

TEMA 1 Cambios de fase TEMA 1 Cambios de fase 1.1. Introducción CLIMATIZACIÓN: crear y mantener un ambiente térmico en un espacio para desarrollar eficientemente una determinada actividad CONFORT O BIENESTAR: - Térmico - Lumínico

Más detalles

Modelo del Desarrollo del Programa de una Asignatura

Modelo del Desarrollo del Programa de una Asignatura 2005-2006 Hoja 1 de,centro: TITULACIÓN: ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS DIPLOMADO EN MÁQUINAS NAVAIS Código: 631111209 Denominación: ASIGNATURA: Curso: 2º 1 er Cuatrimestre X 2º Cuatrimestre

Más detalles

CICLOS DE POTENCIA DE VAPOR

CICLOS DE POTENCIA DE VAPOR UNEFM COMPLEJO ACADÉMICO EL SABINO AREA DE TECONOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA DEPARTAMENTO: ENERGÉTICA PROGRAMA: ING MECÁNICA CICLOS DE POTENCIA DE VAPOR PUBLICADO POR: ING GELYS GUANIPA

Más detalles

Tema 2. Primer Principio

Tema 2. Primer Principio ema. rimer rincipio.- Un sistema cerrado inicialmente en reposo sobre la tierra es sometido a un proceso en el que recibe una transferencia neta de energía por trabajo igual a 00KJ. Durante este proceso

Más detalles

Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos

Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos Propiedades de una sustancia pura Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos Principio de estado Objetivo de la Termodinámica es relacionar las variables termodinámicas de un sistema,

Más detalles

Ayudas visuales para el instructor. Contenido

Ayudas visuales para el instructor. Contenido Page 1 of 7 UN PANORAMA DE LA TERMODINÁMICA ENERGÍA, TRABAJO Y CALOR Por F. A. Kulacki Profesor de ingeniería mecánica Laboratorio de Termodinámica y Transferencia de Calor Departamento de Ingeniería Mecánica

Más detalles

Física 2 (Biólogos y Geólogos) SERIE 8

Física 2 (Biólogos y Geólogos) SERIE 8 Física 2 (Biólogos y Geólogos) SERIE 8 i) Máquinas térmicas 1. Un mol de gas ideal (C v = 3 / 2 R) realiza el siguiente ciclo: AB) Se expande contra una presión exterior constante, en contacto térmico

Más detalles

2.2 SISTEMAS TERMODINÁMICOS

2.2 SISTEMAS TERMODINÁMICOS 2.2 SISTEMAS TERMODINÁMICOS En termodinámica se puede definir como sistema a toda aquella parte del universo que se separa para su estudio. Esta separación se hace por medio de superficies que pueden ser

Más detalles

FICHA DE RED Nº 5.07 EL EVAPORADOR

FICHA DE RED Nº 5.07 EL EVAPORADOR Definición El evaporador se encuentra localizado en el conjunto de distribución de trampillas, después del impulsor y antes del radiador de calefacción. El evaporador del circuito frigorífico es un intercambiador

Más detalles

Año Describa el funcionamiento de una bomba de calor. (septiembre-97).

Año Describa el funcionamiento de una bomba de calor. (septiembre-97). 1.- Describir el funcionamiento de un ciclo frigorífico-bomba de calor. Nombrar los componentes, definir y explicar cada uno de ellos. ( andaluza) 2.- a) Se podría utilizar mercurio en una máquina frigorífica

Más detalles

Máquinas térmicas y Entropía

Máquinas térmicas y Entropía Física 2 (Biólogos y Geólogos) SERIE 10 Máquinas térmicas y Entropía 1. Un mol de gas ideal (C v = 3 / 2 R) realiza el siguiente ciclo: AB) Se expande contra una presión exterior constante, en contacto

Más detalles

Ciclo de refrigeración por la compresión de un vapor. M del Carmen Maldonado Susano

Ciclo de refrigeración por la compresión de un vapor. M del Carmen Maldonado Susano Ciclo de refrigeración por la compresión de un vapor 1 Depósito térmico Es un sistema incapaz de recibir o efectuar trabajo, mantiene su temperatura constante y cuenta solamente con la transmisión de calor

Más detalles

JOHN ERICSSON ( )

JOHN ERICSSON ( ) FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE FÍSICA GENERAL Y QUÍMICA DEPARTAMENTO DE TERMODINÁMICA PRIMER EXAMEN FINAL COLEGIADO 2010-1 JUEVES 3 DE DICIEMBRE DE 2009, JOHN ERICSSON

Más detalles

(Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 2: Segundo principio de la termodinámica. Entropía.

(Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 2: Segundo principio de la termodinámica. Entropía. Física 3 (Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 2: Segundo principio de la termodinámica. Entropía. 1. Demostrar que: (a) Los postulados del segundo principio de Clausius

Más detalles

Ciclo Rankine. Cap. 12 INTRODUCCIÓN. Termodinámica para ingenieros PUCP

Ciclo Rankine. Cap. 12 INTRODUCCIÓN. Termodinámica para ingenieros PUCP Cap. Ciclo Rankine INTRODUCCIÓN Ahora entramos en la parte práctica del curso, empezaremos a conocer las Centrales Térmicas a Vapor que utilizan como combustible carbón, leña, petròleo, biogas o cualquier

Más detalles

UNEFA Ext. La Isabelica TERMODINÁMICA I. Ing. Petroquímica Unidad 4: Segunda ley de la termodinámica

UNEFA Ext. La Isabelica TERMODINÁMICA I. Ing. Petroquímica Unidad 4: Segunda ley de la termodinámica UNEFA Ext. La Isabelica TERMODINÁMICA I Ing. Petroquímica Unidad 4: Segunda ley de la termodinámica 4to Semestre Objetivo: Interpretar la segunda ley de la termodinámica. Materia: Termodinámica I Docente:

Más detalles

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA Diagrama simplificado de los equipos componentes de una central termo-eléctrica a vapor Caldera (Acuotubular): Quemadores y cámara de combustión (hogar): según el tipo de combustible o fuente de energía

Más detalles