Temas teóricos. Lino Spagnolo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Temas teóricos. Lino Spagnolo"

Transcripción

1 1 Temas teóicos Electomagnetismo Teoema de Helmholtz. Lino Spagnolo La teoía electomagnética de Maxwell, e incluso las modenas elaboaciones como la electodinámica cuántica y la como dinámica, utilizan la teoía del campo paa defini la estuctua de las aiables físicas electomagnéticas. De ahí que se utilicen más los conceptos de campo electomagnético, densidades de coientes y densidades de caga eléctica en luga de los paámetos de la teoía de cicuitos, como coiente, tensión, potencia, esistencia, inductancia, etc. Los campos se clasifican en escalaes, ectoiales y tensoiales. Son funciones espaciales, y pueden o no se también funciones del tiempo. Su utilización pimodial es paa descibi las popiedades físicas de las entidades como campo eléctico o magnético de modo tal que esulten independientes de las tansfomaciones de coodenadas. Esta última caacteística es esencial paa adopta la teoía de campos y al mismo tiempo estinge la foma en que se tansfoman bajo una taslación y/o una otación. Sin necesidad de pofundiza estas nociones, desciptas en los textos de Análisis Vectoial, pueden enumease algunas caacteísticas: La caga eléctica Q es un campo escala popio definido po una única cantidad, (nota que la expesión impopio, como opuesto a popio, significa seudo escala, o sea una magnitud escala que cambia de signo ante una inesión de coodenadas). El campo eléctico tidimensional E es una magnitud ectoial popia definida po tes componentes espaciales y eentualmente po una tempoal adicional. El campo magnético tidimensional B es una magnitud ectoial impopia definida po tes componentes espaciales y eentualmente po una tempoal adicional. Esto significa que el campo B es seudo ectoial. Se ha isto que las ecuaciones de Maxwell definidas paa campos estáticos o cuasiestáticos, se educen a: ρ E = B 0 E ε = o B B = µ oj E 0 = Estas ecuaciones sugieen que si se conocen las fuentes de campos, o sea, la diegencia y el oto de un campo ectoial, se podá conoce todo especto a dicho campo. En efecto, el Teoema de Helmholtz sostiene pecisamente que un campo (01) ectoial F, con la condición de se finito, unifome y continuo y que además se anule en el infinito, puede se expesado como la suma del gadiente de una función potencial Ψ y el oto de un campo de potencial ectoial K de diegencia nula. (Fómula 04).

2 2 En el desaollo de la teoía se suponen conocidas aquellas aiables físicas que de foma causal dan luga a la existencia de dichos campos, que se denominan pecisamente fuentes de campo y J, tal como se e en la fómula (01). Campos escalaes. ρ Las ecuaciones de campo son genealmente difeenciales: ellas nos infoman de las difeencias infinitesimales ente el alo del campo en un punto especto a su alo en los puntos ecinos. Paa ello debemos sabe qué ecuación difeencial especifica a un campo escala., entonces su gadiente nos define Si la función escala de punto la llamaos φ ( ) un campo ectoial tal que A( ) = φ( ) con la popiedad de cumpli su auto consistencia : A = 0. De esta foma, si se conoce el campo escala φ ( ) en un punto P, paa oto punto Q genéico peteneciente al mismo espacio, queda definido su alo a taés de la ecuación Q integal: φ( Q) = φ( P) + A dl (02) P Y dado que A = 0 gaantiza que A es un campo conseatio po lo cual la ecuación integal define de foma uníoca el alo del campo en cualquie punto Q. Campos ectoiales. Paa los campos ectoiales hacen falta más condiciones paa su completa definición. Tal como demostaá el teoema de Helmholtz, hacen falta 2 ecuaciones difeenciales paa su definición. El teoema de Helmholtz dice concetamente que: Cuando se conocen las fuentes escalaes (densidad de caga eléctica, po ejemplo) y las fuentes ectoiales (densidad de coiente, como ejemplo), coespondiente a la diegencia del campo ectoial F y a su oto, espectiamente (según fómulas 03), dicho campo queda deteminado a menos de un gadiente de de una función escala f ( ) tal que: f ( ) = 0, y que no afecta al alo del campo F. Imponiendo la condición de que las dos fuentes se anulen en el infinito y que el campo ectoial F decezca de foma de anulase cuando, se define: suma de: F = λ( ) fuente escala (03) F = k ( ) fuente ectoial Entonces el teoema de Helholtz demostaá que el campo ectoial F es la F( ) = Ψ ( ) + K( ) (04)

3 3 En la cual los potenciales escalaes Ψ ( ) y ectoiales K( ) teoía electomagnética. son los definidos en la 1 λ( ) 1 k ( ) Ψ ( ) = d ; K( ) d = (05) Entonces la función ectoial F satisfaá las ecuaciones (03). Demostación del teoema de Helmholtz. De acuedo con la hipótesis que F siguientes cálculos: = Ψ + K efectuaemos los Se calculaá la diegencia: Tene en cuenta que siempe: K F = Ψ = Ψ Ψ ( ) = λ( ) Y dado que su diegencia es uno de los datos del poblema, la pimea pate queda demostada a taés de la ecuación difeencial escala de Poisson cuya solución es la función potencial: (06) 1 λ( ) Ψ ( ) = d (07) Que seá finalmente el potencial escala φ ( ) = V ( ). El cual fomaá pate del ecto F( ) como su elemento gadiente Ψ ( ). Luego se calculaá su oto: Tene en cuenta que siempe: Ψ ( ) = 0 O sea: F( ) = Ψ ( ) + ( K( )) 2 F( ) = ( K( )) = ( K) K (08) Esta ecuación difeencial es bastante complicada, una simplificación consiste en anula la diegencia K = 0, esta condición se conoce como condición de Gauge dento del electomagnetismo, o también como condición de Coulomb. Quedando en consecuencia: F = k ( ) = K K = k ( ) = ( k eˆ + k eˆ + k eˆ ) 1 x 2 y 3 z (09)

4 4 Que constituye la ota ecuación difeencial ectoial de Poisson cuya solución es el potencial ectoial magnético: 1 k ( ) K( ) = d (10) Que también seá el potencial ectoial magnético del cual se obtiene la inducción magnética B ( ) = A ( ) y la caga seá el campo ectoial k ( ) = J ( ). La cual foma pate del ecto F( ) como su elemento oto K ( ). Con lo cual queda pobada la ecuación F( ) = Ψ ( ) + K( ) puesto que ambos aloes Ψ ( ) y K( ) se obtienen de las ecuaciones (07) y (10) y además se F como el demostó que tanto Quedando pendiente la siguiente demostación: F conducen a los datos de patida. Demostación que los potenciales Ψ ( ) y K( ) son solución de la ecuación F( ) = Ψ ( ) + K( ), y a su ez esos potenciales son solución de la ecuación de Poisson. 1 λ( ) Comenzaemos po demosta que el potencial Ψ ( ) = d es solución de la ecuación (07).. Paa ello se calcula la Diegencia de F( ) : 1 2 λ( ) F( ) = Ψ ( ) = d (11) Dado que la caga λ( ) es un escala constante paa el entono espacial de, educimos la integal anteio a: 2 λ( ) 2 Ψ ( ) = d 4 π (12) 2 d (13) En la cual sólo debemos ealua la integal en todo el espacio. La esolución de esta integal en cualquie luga del espacio da un esultado nulo. Sin embago, como sabemos po la Ley de Maxwell, al ealua la diegencia en el luga

5 5 ρ físico en que se encuenta la caga q, o su densidad olumética ρ, su alo es. εo Esta apaente contadicción se debe a que en el entono de = el alo de la 1 función ( ) tiende a infinito. Existen diesas técnicas paa eita esa indefinición, peo desde un aspecto matemáticamente afín al concepto de caga puntual, nos paece que la heamienta conocida como delta de Diac, o función impulso de la electónica aplicada, sea la apoximación más adecuada a la solución. Recodemos que la definición del opeado, o delta de Diac, ea una función δ ( x x) tal que su integal daba: + ϕ( x). δ ( x x ). dx = ϕ( x) (14) Esta integal asigna a la función ϕ ( x) el alo de ϕ ( x). De tal foma que, si po ejemplo, ϕ ( x) = 1 entonces δ ( x x). dx = 1 (15) + Una definición más infomal del opeado o símbolo δ ( x x) se da a taés de las popiedades: = 0 paa todo x x δ ( x x ) = paa x = x (16) Es impotante, en el uso de la delta, que deba se tomada siempe como un opeado, paticulamente siempe bajo el signo integal, y no como una función analítica. Pemite se utilizada con expesiones ectoiales y en integales oluméticas, de supeficie y lineales, siempe que se incluya en la integal el punto x = x o =. Paa una integal de olumen se tiene: ϕ( ). δ ( ) d = ϕ( ) Existen muchas funciones con las popiedades de la delta de Diac, peo paa el electomagnetismo es impotante considea la función con tales popiedades. 2 1 (17) ( ) d (13)

6 6 Aplicando el teoema de la diegencia a la expesión (13): 1 1 ˆ ˆ = =. ( ) d ( ) ( ) ds ds S S (18) 2 Peo obseando que ( ˆ ˆ ) ds = ds, es el poducto escala de los esoes que señalan la diección adial junto al elemento nomal de la supeficie esféica que enuele todo el olumen, el esultado es un poducto simple que puede combinase con la expesión del esteaían: Con lo cual, eemplazando: ds ds dω = = ˆ ˆ ( ) 4 S ds = dω = π 2 (19) S O sea, con esto se demuesta la equialencia con la función de delta de Diac: 2 1 ( ) = 4 π δ ( ) (20) Y po lo tanto el alo de la integal, tomada en en un punto que incluye la caga puntual q ρ, equiale a utiliza la ecuación (17): 1 2 λ( ) F( ) = Ψ ( ) = λ( ) d = 4π Y seá equialente a utiliza la delta de Diac ϕ( ). δ ( ) d = ϕ( ) o el funcional 1 2 ϕ( ) d ϕ( ) =. (20 ) De aplica estos esultados al campo electostático pondemos el campo ρ F = E = ectoial F E cuyas espectias fuentes son: εo (21) F = E = 0

7 7 Po lo cual, según la ecuación (06) esto equiale a: F = Ψ = Ψ Ψ ( ) = λ( ) 2 ρ( ) (22) E( ) = φ( ) E( ) = φ( ) = ε Reemplazando en (07): 1 ρ( ) 1 ρ( ) φ( ) = d E( ) d 4 πε = 4 o πε (23) o O sea: 1 ρ( ) 2 ρ( ) ρ( ) E = d. δ ( ) d ε = = o (24) εo εo Con lo cual queda demostada la pimea fómula de (12). o De igual foma se pueden aplica los esultados (20) o (20 ) paa 1 k ( ) demosta que el potencial K( ) = d es solución de la ecuación de la ecuación F( ) = Ψ ( ) + K( ). ( ) ( ). Paa ello bastaá toma el oto de F = ( K ) Y aplicalo paa el caso del magnetismo donde K( ) magnético que coesponde a la ecuación de Poisson: Ahoa el campo ectoial F Peo como según se despende de 0 (25) equiale al potencial ectoial 2 A = µ J o (26) B equiale al campo magnético cuyas fuentes son: F = B = 0 (27) F = B = µ oj B = B ( ) = A ( ) po lo tanto: 2 B( ) = ( A) = ( A) A = µ oj Paa simplifica la ecuación difeencial se adopta la condición de Gauge: A = 0 (28)

8 8 Y po lo tanto se obtiene la ecuación de Poisson, cuya solución es la fómula (05): O la fómula del potencial ectoial magnético: 1 k ( ) K( ) = d 2 µ o J ( ) A = µ oj; A( ) = d (29) Nueamente la densidad ectoial J ( ) es constante paa el entono del punto, po lo que puede ponese: F( ) = ( K( )) = ( K) K = A( ) 2 µ oj ( ) 2 A( ) = A( ) = d 4 π Llegando a la misma expesión que paa el potencial escala. λ( ) 2 F( ) = d 4 π De lo cual deducimos que también la ecuación (05), y su consecuencia, la ecuación (30), es solución de la ecuación de Poisson. (30)

Teoremas Integrales. V(x j ) ds

Teoremas Integrales. V(x j ) ds Semana 2 - Clase 5 24/03/09 Tema : Algeba ectoial Teoemas Integales. Teoema de la Divegencia o de Gauss Sea = x j ) un campo vectoial definido sobe un volumen cuya fontea es la supeficie y ˆn el vecto

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

Potencial Escalar - Integrales de superposición. 2010/2011

Potencial Escalar - Integrales de superposición. 2010/2011 Potencial Escala - Integales de supeposición. / Electostática Definición os conductoes en electostática. Campo de una caga puntual. Aplicaciones de la ey de Gauss Integales de supeposición. Potencial electostático

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

Una nueva teoría electromagnetica I. Propiedades del electrón en reposo: masa, carga, spin y estabilidad.

Una nueva teoría electromagnetica I. Propiedades del electrón en reposo: masa, carga, spin y estabilidad. Una nueva teoía electomagnetica I. Popiedades del electón en eposo: masa, caga, spin y estabilidad. Manuel Henández Rosales. 18 de Junio de 215 Abstact En este atículo a pati de nuevas ecuaciones paa el

Más detalles

( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( )

( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( ) CAMPOS: OPERADOR NABLA Repesenta los campos vectoiales A i + j, B i j. Halla la divegencia el otacional de cada uno de ellos eplica el significado físico de los esultados obtenidos. Solución: I.T.I., 3,

Más detalles

Capítulo 8. Sistemas de partículas idénticas

Capítulo 8. Sistemas de partículas idénticas Capítulo 8 Sistemas de patículas idénticas 8 Indistinguibilidad 8 Funciones popias del opeado de pemutación 8 Átomo de helio 83 spín total 8 Sistemas de patículas idénticas n la mecánica clásica en una

Más detalles

Campos gravitoelectromagnéticos dependientes del tiempo

Campos gravitoelectromagnéticos dependientes del tiempo 6 Campos gavitoelectomagnéticos dependientes del tiempo 1.6 Campos gavitomagnéticos dependientes del tiempo Los campos gavitomagnéticos que hemos manejado hasta ahoa, como (.5), (4.5) y (5.5), coesponden

Más detalles

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática Tema : Pincipios de la electostática 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 4/7 Leyes de la electostática Leyes de la electostática:

Más detalles

CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS

CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS Paa los inteeses de la Física, los Campos Vectoiales se clasifican en dos gupos: -CAMPOS VECTORIALES CONSERVATIVOS.CAMPOS VECTORIALES NO CONSERVATIVOS Los de

Más detalles

UNIVERSIDAD SIMON BOLIVAR Departamento de Conversión y Transporte de Energía Sección de Máquinas Eléctricas Prof. E. Daron B.

UNIVERSIDAD SIMON BOLIVAR Departamento de Conversión y Transporte de Energía Sección de Máquinas Eléctricas Prof. E. Daron B. FUNDAMENTOS GENERALES SOBRE LAS MAQUINAS ELÉCTRICAS REPASO SOBRE LAS MAGNITUDES DEL CAMPO MAGNÉTICO Hoja Nº I- INDUCCION MAGNETICA B Definida a pati del efecto electodinámico de fueza De la fueza F ejecida

Más detalles

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo.

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo. LY D GAU La ley de Gauss es un enunciado ue es deivable de las popiedades matemáticas ue tiene el Vecto de intensidad de Campo léctico con especto a las supeficies en el espacio. ste enunciado constituye

Más detalles

Electromagnetismo II

Electromagnetismo II Electomagnetismo II emeste: 15-1 EXAMEN FINAL D. A. Reyes-oonado Ayud. J. astejón-figueoa Ayud. P. E. Roman-Taboada Elaboó: Pedo Eduado Roman Taboada 1.- Poblema: (pts) (a) Escibe las cuato ecuaciones

Más detalles

Solución al examen de Física

Solución al examen de Física Solución al examen de Física Campos gavitatoio y eléctico 14 de diciembe de 010 1. Si se mantuviea constante la densidad de la Tiea: a) Cómo vaiaía el peso de los cuepos en su supeficie si su adio se duplicaa?

Más detalles

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 5-. Ejemplo 1º. Aplicando el teoema de Gauss halla el campo eléctico ceado po una distibución esféica de

Más detalles

3. Campo eléctrico de distribuciones continuas de carga. M.A.Monge / B. Savoini Dpto. Física UC3M

3. Campo eléctrico de distribuciones continuas de carga. M.A.Monge / B. Savoini Dpto. Física UC3M Campo eléctico II: Ley de Gau 1. Intoducción 2. Ditibucione continua de caga. 3. Campo eléctico de ditibucione continua de caga. 4. Flujo del campo eléctico. 5. Ley de Gau. 6. Aplicacione de la ley de

Más detalles

LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA

LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA OBJETIVOS I.- Loga el equilibio estático de objetos que pueden ota en tono a un eje, po medio de la aplicación de fuezas y toques. INTRODUCCIÓN

Más detalles

CAMPO ELÉCTRICO Y POTENCIAL

CAMPO ELÉCTRICO Y POTENCIAL CMPO ELÉCTRICO Y POTENCIL INTERCCIONES ELECTROSTÁTICS (CRGS EN REPOSO) Caga eléctica: popiedad intínseca de la mateia ue se manifiesta a tavés de fuezas de atacción o epulsión Ley de Coulomb: expesa la

Más detalles

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

E r = 0). Un campo irrotacional proviene de un campo escalar; es el gradiente de un campo escalar. En el caso del campo electrostático,

E r = 0). Un campo irrotacional proviene de un campo escalar; es el gradiente de un campo escalar. En el caso del campo electrostático, L OTNIAL LÉTRIO l campo electostático es iotacional ( = ). Un campo iotacional poiene de un campo escala; es el gadiente de un campo escala. n el caso del campo electostático, esta función se denomina

Más detalles

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores.

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores. CAPÍTULO Campo eléctico II: distibuciones continuas de caga Índice del capítulo.1 Cálculo del campo eléctico mediante la ley de Coulomb.. La ley de Gauss..3 Cálculo del campo eléctico mediante la ley de

Más detalles

Tema 4.-Potencial eléctrico

Tema 4.-Potencial eléctrico Tema 4: Potencial eléctico Fundamentos Físicos de la Ingenieía Pime cuso de Ingenieía Industial Cuso 6/7 Dpto. Física plicada III Univesidad de Sevilla 1 Índice Intoducción: enegía potencial electostática

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

Combinación de operadores.

Combinación de operadores. Electicidad Magnetismo so / Tema : Intodcción oncepto de campo Repaso de álgeba vectoial istemas de coodenadas atesiano vilíneas genealiadas: cilíndico esféico. Opeadoes vectoiales. Gadiente Divegencia

Más detalles

Fundamentos de Química Terma3 2

Fundamentos de Química Terma3 2 Tema 3: Estuctua atómica (II): Estuctua electónica del átomo 3.1 Intoducción a la mecanica cuántica 3. Ecuación de Schödinge. 3.3 Modelo mecanocuántico del átomo 3.4 Átomos polielectónicos y configuación

Más detalles

Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice

Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice Cáteda de Física Índice Figua - Enunciado Solución Ecuación - Momento de inecia definición Figua - Sistema de estudio 3 Ecuación - Descomposición del momento de inecia3 Figua 3 - Cálculo del momento de

Más detalles

Lección 2. El campo de las cargas en reposo: campo electrostático.

Lección 2. El campo de las cargas en reposo: campo electrostático. Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés

Más detalles

Adenda Electrones en potencial periódico

Adenda Electrones en potencial periódico Adenda Electones en potencial peiódico Bandas en potencial peiódico Banda de conducción niveles atómicos Electones en un potencial peiódico ed simetía taslacional R = n1 a1 + n2a2 + n3a3; n1, n2, n3 enteos

Más detalles

Electrostática. Campo electrostático y potencial

Electrostática. Campo electrostático y potencial Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes

Más detalles

Apunte FII-1-RM: Repaso de Matemática

Apunte FII-1-RM: Repaso de Matemática Física II Física B - Electomagnetismo Pofesoa: Da. C. Caletti : Repaso de Matemática I. Gadiente A fin de compende mejo el concepto de gadiente comenzaemos po las bases, analizando, peviamente, qué tipo

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO EL POTENCIAL ELÉCTRICO. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Pofeso: José Fenando Pinto Paa UNIDAD 7 POTENCIAL ELECTROSTÁTICO Dos cagas en la misma posición tienen dos veces más enegía

Más detalles

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio. Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

Paredes Delgadas. Clase 6 Recipiente de Revolución de Paredes Delgadas. Facultad de Ingeniería - UNA

Paredes Delgadas. Clase 6 Recipiente de Revolución de Paredes Delgadas. Facultad de Ingeniería - UNA Paedes Delgadas Clase 6 Recipiente de Revolución de Paedes Delgadas Impotancia páctica de la evolución de los cálculos Catedal de San Pedo, edificada en el siglo XVI, Luz 40 m, espeso pomedio de 3 metos

Más detalles

Interacción Electromagnética

Interacción Electromagnética Inteacción lectomagnética Campo léctico Campo Magnético Inducción lectomagnética Coulomb mpèe Faaday Lenz Maxwell La Fueza con que se ataen o epelen dos cagas es: Campo eléctico c. eléctico q 3 F 1 Una

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA ESTÁTICA

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA ESTÁTICA UNIVESIDD NCINL DEL CLL CULTD DE INGENIEÍ ELÉCTIC Y ELECTÓNIC ESCUEL PESINL DE INGENIEÍ ELÉCTIC ESTÁTIC * Equilibio de cuepos ígidos ING. JGE MNTÑ PISIL CLL, 2010 EQUILIBI DE CUEPS ÍGIDS CNCEPTS PEVIS

Más detalles

Profesor BRUNO MAGALHAES

Profesor BRUNO MAGALHAES POTENCIL ELÉCTRICO Pofeso RUNO MGLHES II.3 POTENCIL ELÉCTRICO Utilizando los conceptos de enegía impatidos en Física I, pudimos evalua divesos poblemas mecánicos no solo a tavés de las fuezas (vectoes),

Más detalles

6: PROBLEMAS METRICOS

6: PROBLEMAS METRICOS Unidad 6: PROBLEMAS METRICOS 6.1.- DIRECCIONES DE RECTAS Y PLANOS Los poblemas afines tatan de incidencias (ve si un punto está contenido en una ecta o en un plano y ve si una ecta está contenida en un

Más detalles

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un

Más detalles

Campo Estacionario. Campos Estacionarios

Campo Estacionario. Campos Estacionarios Electicidad y Magnetismo Campo Estacionaio Campo Estacionaio EyM 4- Campos Estacionaios Se denomina situación estacionaia a aquella en la que no hay vaiación con el tiempo. Existen sin embago movimientos

Más detalles

Trabajo, Energía, Potencial y Campo Eléctrico

Trabajo, Energía, Potencial y Campo Eléctrico Cáteda de Física Expeimental II Física III Tabajo, Enegía, Potencial y Campo Eléctico Pof. D. Victo H. Rios 2010 Contenidos - El concepto físico de tabajo. - Enegía potencial eléctica. - Enegía paa la

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles

DESARROLLO de Unidad VIII: Movimiento Potencial Bidimensional

DESARROLLO de Unidad VIII: Movimiento Potencial Bidimensional Depatamento de Aeonáutica : Mecánica de los Fluidos IA 7 DESARROLLO de Unidad VIII: Movimiento Potencial Bidimensional Poblema 6 : Una fuente bidimensional de intensidad q está ubicada en una esquina ectangula

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE U N IV ESID A D NACIONA de CÓ DO BA Facultad de C. E. F. y N. Depatamento de FÍSICA Cáteda de FÍSICA II caeas: todas las ingenieías auto: Ing. ubén A. OCCHIETTI Capítulo VI: Campo Magnético: SOENOIDE El

Más detalles

TEMA 3. CAMPO MAGNÉTICO.

TEMA 3. CAMPO MAGNÉTICO. Física º Bachilleato TEMA 3. CAMPO MAGNÉTICO. 0. INTRODUCCIÓN. NATURALEZA DEL MAGNETISMO. Hasta ahoa en el cuso hemos estudiado dos tipos de inteacciones: gavitatoia y electostática. La pimea se manifestaba

Más detalles

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando MECNIC PLICD I. EXMEN PCIL. 17-04-99. PIME EJECICI TIEMP: 75 1. btene la expesión de la velocidad de ω V s ω V s sucesión del cento instantáneo de otación cuando =. 2 2. Indica qué afimaciones son cietas

Más detalles

CLASE 1. Fuerza Electrostática LEY DE COULOMB

CLASE 1. Fuerza Electrostática LEY DE COULOMB CLASE Fueza Electostática LEY DE COULOMB FQ Fisica II Sem.0- Definiciones Qué es ELECTRICIDAD?. f. Fís. Popiedad fundamental de la mateia que se manifiesta po la atacción o epulsión ente sus pates, oiginada

Más detalles

CAMPO MAGNÉTICO. El campo magnético B, al igual que el campo eléctrico, es un campo vectorial.

CAMPO MAGNÉTICO. El campo magnético B, al igual que el campo eléctrico, es un campo vectorial. CAMPO MAGNÉTICO Inteacciones elécticas Inteacciones magnéticas Una distibución de caga eléctica en eposo genea un campo eléctico E en el espacio cicundante. El campo eléctico ejece una fueza qe sobe cualquie

Más detalles

Ecuaciones generales Modelo de Maxwell

Ecuaciones generales Modelo de Maxwell Electomagnetismo 212/213 Ecuaciones geneales Modelo de Maxwell Intoducción Fuentes de campo: aga eléctica. oiente eléctica. Ecuación de continuidad. Definición del campo electomagnético. Ecuaciones de

Más detalles

ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas

ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas ELECTROSTTIC La electostática es la pate de la física que estudia las cagas elécticas en equilibio. Cagas elécticas Existen dos clases de cagas elécticas, llamadas positiva y negativa, las del mismo signo

Más detalles

CAMPOS ELECTROMAGNÉTICOS Tema 3 Ecuaciones de Maxwell

CAMPOS ELECTROMAGNÉTICOS Tema 3 Ecuaciones de Maxwell CAMPOS ELECTROMAGNÉTICOS Tema Ecuaciones de Mawell P.- En una egión totalmente vacía ha un campo eléctico E = kt uˆ oto magnético con B B =. La magnitud k es constante. Calcula B. = B = ε µ + k k ' P.-

Más detalles

la radiación lección 2 Teledetección Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz 1 Ingeniería Técnica en Topografía

la radiación lección 2 Teledetección Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz 1 Ingeniería Técnica en Topografía Dpto. de Ingenieía Catogáfica la adiación Calos Pinilla Ruiz 1 lección 2 Ingenieía Técnica en Topogafía la adiación Calos Pinilla Ruiz 2 Dpto. de Ingenieía Catogáfica sumaio Ingenieía Técnica en Topogafía

Más detalles

Reflexiones sobre las Leyes de la ELECTROSTÁTICA

Reflexiones sobre las Leyes de la ELECTROSTÁTICA Reflexiones sobe las Leyes de la ELECTROSTÁTICA todo empezo con la le Ley de Coulomb... eceta paa calcula E: dada la densidad de caga ρ, se puede (en pincipio) intega y obtene E Luego, desaollamos dos

Más detalles

4.5 Ley de Biot-Savart.

4.5 Ley de Biot-Savart. 4.5 Ley de Biot-Savat. Oto expeimento que puede ealizase paa conoce más sobe el oigen y compotamiento de las fuezas de oigen magnético es el mostado en la siguiente figua. Consiste de un tubo de ayos catódicos,

Más detalles

4. APLICACIONES LINEALES

4. APLICACIONES LINEALES Heamientas infomáticas paa el ingenieo en el estudio del algeba lineal 4. APLICACIONES LINEALES 4.1. DEFINICION DE APLICACIÓN LINEAL 4.2. EXPRESIÓN MATRICIAL DE UNA APLICACIÓN LINEAL 4.3. NÚCLEO E IMAGEN

Más detalles

Campos eléctricos y Magnéticos

Campos eléctricos y Magnéticos Campos elécticos y Magnéticos Fueza eléctica: es la fueza de atacción ejecida ente dos o más patículas cagadas. La fueza eléctica no sólo mantiene al electón ceca del núcleo, también mantiene a los átomos

Más detalles

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo Cuso: FISICA II CB 3U 1I Halla el CE de una esfea hueca con caga Q adio a. ad a d asen P de a Las componentes en el eje Y se anulan El CE esultante de la esfea hueca se encontaa sobe el eje X. El áea de

Más detalles

Leyes de Kepler. Antes de demostrar las tres leyes de Kepler, haré un análisis matemático de lo que es una elipse.

Leyes de Kepler. Antes de demostrar las tres leyes de Kepler, haré un análisis matemático de lo que es una elipse. Leyes de Keple. Antes de demosta las tes leyes de Keple, haé un análisis matemático de lo que es una elipse. Una elipse (Fig.) es el luga geomético de un punto que se mueve en un plano de tal manea que

Más detalles

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide egio Yansen Núñez Teoema de tokes y Gauss Actividad Nº Considee el campo vectoial F( x, y, z) ( y, x, z ). Calcule F d donde C es C la intesección ente el plano x + y + z y el cilindo x + y. Actividad

Más detalles

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( )

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( ) CÁLCULO VECTOIAL Opeaciones con vectoes libes Suma de vectoes libes La suma de n vectoes libes P P P n es un vecto libe llamado esultante = i j k la suma de las componentes espectivas, siendo las componentes

Más detalles

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1 PAUTA CONTROL CÁLCULO EN VARIAS VARIABLES, 14/1 (1) (a) Demueste que el máximo de la función x y z sobe la esfea x + y + z = a es (a /) y que el mínimo de la función x + y + z sobe la supeficie x y z =

Más detalles

CANARIAS / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un punto. Poblemas OPCIÓN A.- Un satélite descibe una óbita

Más detalles

Potencial eléctrico. Presentación PowerPoint de Paul E. Tippens, Profesor de Física Southern Polytechnic State University

Potencial eléctrico. Presentación PowerPoint de Paul E. Tippens, Profesor de Física Southern Polytechnic State University Potencial eléctico Pesentación PowePoint de Paul E. Tippens, Pofeso de Física Southen Polytechnic State Univesity 2007 Objetivos: Después de completa este módulo debeá: Compende y aplica los conceptos

Más detalles

Laboratorio de Técnicas Experimentales II - 2º Física Laboratorio L1 - "Osciloscopio"

Laboratorio de Técnicas Experimentales II - 2º Física Laboratorio L1 - Osciloscopio Laboatoio de Técnicas Expeimentales II - º Física Laboatoio L - "Osciloscopio" Páctica L- - Estudio de un cicuito : estado de caga de un condensado y filtos de fecuencia - Inducción electomagnética Objetivo

Más detalles

Antes de ver la definición, estudiemos unos ejemplos de espacios vectoriales para ver las propiedades comunes.

Antes de ver la definición, estudiemos unos ejemplos de espacios vectoriales para ver las propiedades comunes. Espacios vectoiales. Popiedades. Antes de ve la definición, estudiemos unos ejemplos de espacios vectoiales paa ve las popiedades comunes. R 2 =RxR={(x,y)/x,y R} conjunto de todos los paes de númeos eales

Más detalles

Series de Polinomios Ortogonales

Series de Polinomios Ortogonales Semana - Clase 6 9/0/0 Tema : Seies Seies de Polinomios Otogonales Enunciaemos un teoema debido a Weiestass el cual gaantiza que una función contínua en un intevalo [a, b puede se apoximada unifomemente

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

Introducción a la Física moderna

Introducción a la Física moderna Intoducción a la Física modena A comienzos del siglo XX, dos evoluciones en Física la Teoía de la Relatividad y la Física uántica. La pimea extiende su ámbito de aplicación a la física de las altas velocidades,

Más detalles

FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO

FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO Los campos magnéticos pueden genease po imanes pemanentes, imanes inducidos y po coientes elécticas. Ahoa inteesaá enconta la fueza sobe una

Más detalles

XIII.- TEOREMA DEL IMPULSO

XIII.- TEOREMA DEL IMPULSO XIII.- TEOREMA DEL IMPULSO http://libos.edsauce.net/ XIII.1.- REACCIÓN DE UN FLUIDO EN MOVIMIENTO SOBRE UN CANAL GUÍA El cálculo de la fueza ejecida po un fluido en movimiento sobe el canal que foman los

Más detalles

2º de Bachillerato Campo Eléctrico

2º de Bachillerato Campo Eléctrico Física TEM 6 º de achilleato ampo Eléctico.- Tes cagas elécticas puntuales iguales, de n, están situadas en el vacío ocupando los puntos cuyas coodenadas en metos son (,, (,4 y (,. alcula la fueza que

Más detalles

z a3 Ecuaciones continuas de la recta: eliminando el parámetro de (2) = = u u u

z a3 Ecuaciones continuas de la recta: eliminando el parámetro de (2) = = u u u Geometía. Puntos, ectas y planos en el espacio. Poblemas méticos en el espacio Pedo Casto Otega. Coodenadas o componentes de un vecto Sean dos puntos ( a, a ) y ( ) uuu uuu vecto son: = ( b a, b a, b a

Más detalles

EL MODELO CUÁNTICO PARA ÁTOMOS HIDROGENOIDES

EL MODELO CUÁNTICO PARA ÁTOMOS HIDROGENOIDES EL MODELO CUÁNTICO PARA ÁTOMOS HIDROGENOIDES De su cota y espectacula existencia (1911-1927 el átomo de Boh dejó una imagen simple del átomo y vaios conceptos nuevos y fundamentales, como el de númeos

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

Definiciones. Estática de fluidos

Definiciones. Estática de fluidos MECÁNICA DE FLUIDOS Definiciones La mecánica de fluidos es una ama de la mecánica acional que estudia el compotamiento de los mismos tanto en eposo (estática de fluidos), como en moimiento (dinámica de

Más detalles

Consideremos dos placas paralelas en contacto, con sus correspondientes espesores y conductividades.

Consideremos dos placas paralelas en contacto, con sus correspondientes espesores y conductividades. Continuación: Tansfeencia de calo a tavés de placas compuestas: Consideemos dos placas paalelas en contacto, con sus coespondientes espesoes y conductividades. En la supeficie de contacto la tempeatua

Más detalles

CAPÍTULO III EL POTENCIAL ELÉCTRICO. El trabajo que se realiza al llevar la carga prueba positiva

CAPÍTULO III EL POTENCIAL ELÉCTRICO. El trabajo que se realiza al llevar la carga prueba positiva Tópicos de Electicidad y Magnetismo J.Pozo y.m. Chobadjian. CPÍTULO III EL POTENCIL ELÉCTICO.. Definición de difeencia de potencial El tabajo ue se ealiza al lleva la caga pueba positiva del punto al punto

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009

Selectividad Septiembre 2009 SEPTIEMBRE 2009 Selectividad Septiembe 9 OPCIÓN A PROBLEMAS SEPTIEMBRE 9 1.- Sea la función f () =. + 1 a) Halla el dominio, intevalos de cecimiento y dececimiento, etemos elativos, intevalos de concavidad y conveidad,

Más detalles

z Región III Región II Región I

z Región III Región II Región I Capacito de placas ciculaes - solución completa amos a calcula el potencial electostático en todo el espacio paa un capacito de placas ciculaes y paalelas. Las placas conductoas están ubicadas en z = ±l/2,

Más detalles

CATALUÑA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CATALUÑA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CATALUÑA / SEPTIEMBRE 0. LOGSE / FÍSICA / EXAMEN COMPLETO Resuelva el poblema P1 y esponde a las cuestiones C1 y C Escoge una de las opciones (A o B) y esuelva el poblema P y esponda a las cuestiones C3

Más detalles

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula.

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula. Junio OPCÓN Poblema. a) Si obsevamos los desaollos de ) ( y ) ( vemos que se difeencian en el cuadado de la matiz unitaia. Dado que en este caso se veifica: ) ( ) ( ) ( ) ( + + ) ( ) ( ) ( b) b.) Paa que

Más detalles

ELECTRICIDAD Y MAGNETISMO

ELECTRICIDAD Y MAGNETISMO INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA QUÍNICA E INDUSTRIAS EXTRACTIVAS ELECTRICIDAD Y MAGNETISMO UNIDAD I. ELECTRICIDAD EN REPOSO Antecedentes Los antiguos giegos obsevaon los fenómenos

Más detalles

En relación con los problemas 12, 13 y 14 Partícula en una caja unidimensional de lado L: V=0 dentro de la caja e infinito en las paredes.

En relación con los problemas 12, 13 y 14 Partícula en una caja unidimensional de lado L: V=0 dentro de la caja e infinito en las paredes. En elación con los poblemas 1, 1 14 Patícula en una caja unidimensional de lado : V0 dento de la caja e infinito en las paedes. Una dimensión: HΨ( EΨ( paa siendo contono: p H m m m Ψ( 0 0 a solución es:

Más detalles

Conceptos centrales. Tema 1. Cadenas. Alfabetos. Cadenas. Cadenas. Nociones Preliminares y Lenguajes. Dr. Luis A. Pineda ISBN:

Conceptos centrales. Tema 1. Cadenas. Alfabetos. Cadenas. Cadenas. Nociones Preliminares y Lenguajes. Dr. Luis A. Pineda ISBN: Tema Nociones Peliminaes y Lenguajes D. Luis A. Pineda ISBN: 0--- Alfabetos Lenguajes Repesentación Intepetación Poblemas Conceptos centales Funciones, algoitmos y fómulas Alfabetos Conjunto finito (no

Más detalles

LECCION 8. ESTATICA DEL SOLIDO

LECCION 8. ESTATICA DEL SOLIDO LECCION 8. ESTATICA DEL SOLIDO 8.1. Intoducción. 8.2. Fuezas actuantes sobe un sólido. Ligaduas. 8.3. Pincipio de aislamiento. Diagama de sólido libe y de esfuezos esultantes. 8.4. Ligaduas de los elementos

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FÍSICA GENERAL II GUÍA - Campo eléctico: Ley de Gauss Objetivos de apendizaje Esta guía es una heamienta que usted debe usa paa loga los siguientes objetivos: Defini el concepto de Flujo de Campo Eléctico.

Más detalles

FLUJO ELÉCTRICO. representa una integral sobre una superficie cerrada,

FLUJO ELÉCTRICO. representa una integral sobre una superficie cerrada, FLUJO ELÉCTRICO La definición de fluj de camp eléctic E a tavés de una supeficie ceada (Fig. 1) es Φ = E d s, dnde, E (Fig. 1) a) el símbl epesenta una integal sbe una supeficie ceada, b) d s es un vect

Más detalles

Campos eléctricos generados por elipsoides uniformemente polarizados

Campos eléctricos generados por elipsoides uniformemente polarizados ENSEÑANZA REVISTA MEXICANA DE FÍSICA E 54 (2) 20 207 DICIEMBRE 2008 Campos elécticos geneados po elipsoides unifomemente polaizados C.E. Soliéez Suiza 096, 8400 Bailoche (Río Nego), Agentina, e-mail: csolieez@gmail.com

Más detalles

ÁLGEBRA LINEAL I LISTA DE EJERCICIOS 3. Página para el curso:

ÁLGEBRA LINEAL I LISTA DE EJERCICIOS 3. Página para el curso: ÁLGEBRA LINEAL I LISTA DE EJERCICIOS 3 DANIEL LABARDINI FRAGOSO DANIEL BALAM CRUZ HUITRÓN Página paa el cuso: www.matem.unam.mx/labadini/teaching.html A lo lago de los siguientes ejecicios, seá un campo.

Más detalles

FIS Moléculas Y Sólidos

FIS Moléculas Y Sólidos FIS-433- Moléculas Y Sólidos Moléculas: Gupos de átomos unidos o pegoteados po algun tipo de enlace. Los átomos que se encuenta en una molécula se mantienen unidos debido a que compaten o intecambian electones.

Más detalles

Capitulo III. Capítulo III

Capitulo III. Capítulo III Cinemática y Dinámica de Máquinas. III. Métodos analíti de análisis cinemático Capitulo III Métodos analíti de análisis cinemático. 1 R Sancibián y. de Juan. Ing. Mecánica Cinemática y Dinámica de Máquinas.

Más detalles

2 - Campos Cuasi-Estáticos 1

2 - Campos Cuasi-Estáticos 1 Electomagnetismo 4-1 - Campos Cuasi-Estáticos 1 Campo Electostático en el vacío En este Capítulo veemos caacteísticas y aplicaciones de campos electostáticos en el vacío. En el caso estático los campos

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

Dieléctricos Campo electrostático

Dieléctricos Campo electrostático Dielécticos Campo electostático 1. Modelo atómico de un dieléctico. 2. Dielécticos en pesencia de campos elécticos:, D y. 4. negía en pesencia de dielécticos. 3. Ruptua dieléctica. BIBLIOGRAFÍA: Tiple.

Más detalles

87. Un cierto campo de fuerzas viene dado por la expresión F 4y

87. Un cierto campo de fuerzas viene dado por la expresión F 4y Campos 5 81. El témino potencial, es elativamente modeno, dado que tampoco existía el de enegía potencial, que Helmholtz, denominaba tensión. Fue Rankine el que en 1842 (algunos histoiadoes de la ciencia,

Más detalles

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo: MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,

Más detalles

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS 1. Dado un campo vectoial v = ( x + y ) i + xy j + ϕ( x, y, k en donde ϕ es una función tal que sus deivadas paciales son las funciones

Más detalles

PROPIEDADES GENERALES DE ANTENAS

PROPIEDADES GENERALES DE ANTENAS PROPIEDADES GENERALES DE ANTENAS ANTENAS MAGNÉTICAS Y ELÉCTRICAS 1 ANTENAS LINEALES Dipolo eléctico hetziano: antena lineal pequeña en vacío (de longitud ). L E λ E H ILe cos( θ ) j j( ωt β) = jβ + ωε

Más detalles