TRANSPORTE Y TRANSBORDO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TRANSPORTE Y TRANSBORDO"

Transcripción

1 TRANSPORTE Y TRANSBORDO En ésta semana estudiaremos un modelo particular de problema de programación lineal, uno en el cual su resolución a través del método simplex es dispendioso, pero que debido a sus características especiales ha permitido desarrollar un método más práctico de solución. El modelo de transporte se define como una técnica que determina un programa de transporte de productos o mercancías desde unas fuentes hasta los diferentes destinos al menor costo posible. 1

2 Modelo General del Problema del Transporte Es un caso especial de problema de programación Lineal, en el que todos los coeficientes de las variables en las restricciones tienen coeficiente uno (1), esto es: ai,j = 1 ; para todo i, para todo j Gráficamente: Xij= Unidades a enviar desde la fuente i-ésima (i=1,...,m) al destino j-ésimo (j=1,...,n). Ci,j= Costo de enviar una unidad desde la fuente i-ésima (i=1,...,m) al destino j-ésimo (j=1,...,n). ai = Disponibilidad (oferta) en unidades, de la fuente i-ésima (i=1,...,m). bj = Requerimiento (demanda) en unidades, del destino j-ésimo (j=1,...,n). 2

3 Otra manera de formularlo 3

4 MÉTODO VOGEL Este método tiene en cuenta los costos, las ofertas y las demandas para hacer las asignaciones. Generalmente nos deja cerca al óptimo. Algoritmo 1. Construir una tabla de disponibilidades (ofertas), requerimientos (demanda) y costos. 2. Calcular la diferencia entre el costo más pequeño y el segundo costo más pequeño, para cada fila y para cada columna. 3. Escoger entre las filas y columnas, la que tenga la mayor diferencia (en caso de empate, decida arbitrariamente). 4. Asigne lo máximo posible en la casilla con menor costo en la fila o columna escogida en el punto Asigne cero (0) a las otras casillas de la fila o columna donde la disponibilidad ó el requerimiento quede satisfecho. 6. Repita los pasos del 2 al 5, sin tener en cuenta la(s) fila(s) y/o columna(s) satisfechas, hasta que todas las casillas queden asignadas. Ejemplo Tres (3) fábricas envían su producto a cinco (5) distribuidores. Las disponibilidades, los requerimientos y costos unitarios de transporte, se dan en la siguiente tabla. 4

5 Qué cantidad del producto se debe enviar desde cada fábrica a cada distribuidor para minimizar los costos del transporte? NOTA: La X significa que desde la fábrica 3 es imposible enviar unidades al distribuidor 5 Solución Observe que el modelo no es perfecto: La oferta es diferente a la demanda. Se adiciona una fábrica de relleno con costos de transporte igual a cero (0) y que ofrezca justo lo que le hace falta a la oferta para ser igual a la demanda. Formulación 5

6 Solución Básica Factible Como cada variable figura dos (2) veces en el sistema de ecuaciones, entonces tiene m+n-1 grados de libertad y el número de variables básicas debe ser igual al número de grados de libertad del sistema. Lo anterior nos asegura una solución básica factible no degenerada. Por lo tanto, aplicando el método vogel: 6

7 Fíjese que la mayor diferencia la tiene la columna 4 con un valor de 19, escogido entre 2,2,3,0,15,13,19 y 16. El menor costo de la columna 4 es cero (0), se asigna lo máximo posible entre 50 y 40, que es 40, se satisface la columna y se actualiza la oferta y la demanda. Ahora recalculamos las diferencias, sin tener en cuenta la columna 4, que está satisfecha. Una vez ejecutado todo el algoritmo hasta asignar todas las casillas, obtenemos la siguiente asignación básica y factible inicial. Fíjese que el número de variables básicas es: m+n-1=8 7

8 Solución básica factible no degenerada: X 15 =40 ; X 21 =30 ; X 23 =20 ; X 25 =10 ; X 32 =40 ; X 33 =30 ; X 44 =40 ; X 45 =10 Z = 16(40)+15(30)+13(20)+16(10)+15(40)+18(30)+0(40)+ 0(10) = El problema del transbordo Una empresa fabrica monitores de alta resolución en dos plantas de producción P 1 y P 2. Las capacidades de producción por semana son de 80 y 60 unidades, respectivamente. Los monitores se llevan a cuatro centros de ventas Vi, i = 1, 2, 3 Y 4 que solicitan para la próxima semana 30 unidades para V 1, 20 para V 2 y 40 para V 4. V 3 no ha cuantificado su demanda indicando que va a ser muy alta y aceptaría toda la producción. La legislación vigente obliga a la empresa a transportar los monitores de las plantas a los puntos de venta a través de alguno de los dos centros de control de calidad existentes C 1 y C 2 en los que se controlan los monitores y cuya capacidad es muy grande. El costo de control por unidad en C 1 es de $4.000 y en C 2 es de $ Los costos en miles de pesos del transporte unitario de las plantas a los centros de control y de estos a los puntos de venta, aparecen en la tabla siguiente: La empresa desea distribuir toda la producción para la semana entrante, sin mostrar preferencia por la utilización de un determinado centro de control o punto de venta, pues su interés reside en minimizar el costo global de transporte. Cuál debe ser la distribución de las plantas a los puntos de venta? 8

9 Formulación Otra manera de formularlo es, convirtiéndolo en un problema clásico de transporte, así: Construimos una tabla de costos mínimos, desde cada origen Pi a cada destino Vj señalando el centro de control de calidad Ck, usado en dicha ruta de mínimo costo. Ejemplo: Para enviar monitores desde la planta P 1 al centro de ventas V 1 existen dos alternativas: 1) P 1 => C 1 => V 1 con costos por unidad de: $12 + $4 + $22 = $38 2) P 1 => C 2 => V 1 con costos por unidad de: $11 + $6 + $20 = $37* Inscribimos el menor costo de estas dos alternativas en la tabla, especificando que se hace a través del centro de investigación C 2. Por lo tanto, el planteo del modelo lleva a la siguiente tabla: 9

10 Igualamos la oferta y la demanda mediante la creación de una planta de producción ficticia. Aplicando el método vogel: 10

11 Desde la planta de producción P 1, enviar 20 monitores de alta resolución al centro de ventas V 2, a través del centro de control de calidad C 1. Desde la planta de producción P 1, enviar 60 unidades al centro de ventas V 3, a través del centro de control de calidad C 2. Desde la planta de producción P 2, enviar 60 unidades al centro de ventas V 3, a través del centro de control de calidad C 2. Gráficamente: 11

12 Costos Totales: 20(12) + 20( 4) + 20(20) = (11) + 60( 6) + 60(19) = ( 9) + 60( 6) + 60(19) = $

INVESTIGACIÓN OPERATIVA

INVESTIGACIÓN OPERATIVA FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Mg Jessica Pérez Rivera PROBLEMAS DE TRANSPORTE Y ASIGNACIÓN Las aplicaciones de la programación

Más detalles

Tema 7: Problemas clásicos de Programación Lineal

Tema 7: Problemas clásicos de Programación Lineal Tema 7: Problemas clásicos de Programación Lineal 1.- Características generales de un problema de transporte y asignación Surgen con frecuencia en diferentes contextos de la vida real. Requieren un número

Más detalles

- Contenido UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI. Carrera: Ingeniería de Sistemas

- Contenido UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI. Carrera: Ingeniería de Sistemas UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI Carrera: Ingeniería de Sistemas Nombre de la asignatura: Investigación de Operaciones I Año académico: Tercer año Semestre: Sexto - Contenido I-

Más detalles

TEMA N 1.- MODELOS EN INVESTIGACIÓN OPERATIVA

TEMA N 1.- MODELOS EN INVESTIGACIÓN OPERATIVA UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI EXTENSIÓN REGIÓN CENTRO-SUR ANACO, ESTADO ANZOÁTEGUI 1.1 Modelo de transporte Asignatura: Investigación Operativa I Docente: Ing. Jesús Alonso Campos TEMA N

Más detalles

EL PROBLEMA DE TRANSPORTE

EL PROBLEMA DE TRANSPORTE 1 EL PROBLEMA DE TRANSPORTE La TÉCNICA DE TRANSPORTE se puede aplicar a todo problema físico compatible con el siguiente esquema: FUENTES DESTINOS TRANSPORTE DE UNIDADES Donde transporte de unidades puede

Más detalles

PROGRAMACION DE REDES. MODELOS DE TRANSPORTE

PROGRAMACION DE REDES. MODELOS DE TRANSPORTE PROGRAMACION DE REDES. MODELOS DE TRANSPORTE El modelo de transporte o modelo de distribución es un ejemplo de un problema de optimización de redes. Se aplican para resolver ciertos tipos de problemas

Más detalles

1 $10 $0 $20 $11 15 2 $12 $7 $9 $20 25 3 $0 $14 $16 $18 10 Total demanda

1 $10 $0 $20 $11 15 2 $12 $7 $9 $20 25 3 $0 $14 $16 $18 10 Total demanda UNIDAD V. ALGORITMOS ESPECIALES 5.4. Métodos de aproximación para obtener una solución básica inicial Para resolver problemas de transporte se debe crear una solución básica inicial, la obtención de esta

Más detalles

INVESTIGACION DE OPERACIONES:

INVESTIGACION DE OPERACIONES: METODO SIMPLEX El algoritmo símplex fue descubierto por el matemático norteamericano George Bernard Dantzig en 1947, es una técnica para dar soluciones numéricas a problema de programación lineal Un problema

Más detalles

Dirección de Operaciones

Dirección de Operaciones Dirección de Operaciones 1 Sesión No. 9 Nombre: Problemas de transporte y asignación. Primera parte. Objetivo Al finalizar la sesión, el alumno será capaz de Contextualización Cuál es el valor de estudiar

Más detalles

Modelos de Transporte: Problemas de Asignación. M. En C. Eduardo Bustos Farías

Modelos de Transporte: Problemas de Asignación. M. En C. Eduardo Bustos Farías Modelos de Transporte: Problemas de asignación M. En C. Eduardo Bustos Farías as Problemas de Asignación Problemas de Asignación: Son problemas balanceados de transporte en los cuales todas las ofertas

Más detalles

Lección 8. Problemas del transporte, transbordo y asignación

Lección 8. Problemas del transporte, transbordo y asignación Lección 8. Problemas del transporte, transbordo y asignación 8.1. El problema de transporte 8.1.1.Propiedades del sistema de transporte. 8.1.2.Método general de solución- algoritmo de transporte. 8.1.3.Determinación

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

MODELOS DE TRANSPORTE

MODELOS DE TRANSPORTE Universidad Mariano Gálvez de Guatemala Centro Universitario de Escuintla Facultad de Ciencias de la Administración Maestría en Dirección y Gestión del Recurso Humano Curso Modelos para la toma de decisiones

Más detalles

Unidad 6 Método de transporte

Unidad 6 Método de transporte Unidad 6 Método de transporte Como ya se vio en la unidad 3, los problemas de transporte son problemas de programación lineal (pl), pero con una estructura muy particular de la matriz de los coeficientes

Más detalles

Fundamentos de Investigación de Operaciones Modelos de Grafos

Fundamentos de Investigación de Operaciones Modelos de Grafos Fundamentos de Investigación de Operaciones de junio de 00 Muchos problemas de optimización puedes ser analizados y resueltos a través de representaciones gráficas. Tal es el caso de los problemas de planificación

Más detalles

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES I TAREA Problemas de Transporte, transbordo y asignación Prof. :

Más detalles

La lección de hoy de febrero de Notación. Solución factible básica

La lección de hoy de febrero de Notación. Solución factible básica 1.3 1 de febrero de La lección de hoy Método simplex (continuación) Entregas: material de clase Nota: el diseño de esta presentación incluye animaciones que permiten verla en forma de diapositivas. Repaso

Más detalles

Universidad Autónoma de Sinaloa

Universidad Autónoma de Sinaloa Universidad Autónoma de Sinaloa Facultad de Ciencias Sociales Licenciatura en Economía Programa de estudios Asignatura: Investigación de operaciones. Clave: Eje de formación: Básica EFBCII Área de Conocimiento:

Más detalles

7. PROGRAMACION LINEAL

7. PROGRAMACION LINEAL 7. PROGRAMACION LINEAL 7.1. INTRODUCCION A LA PROGRMACION LINEAL 7.2. FORMULACION DE UN PROBLEMA LINEAL 7.3. SOLUCION GRAFICA DE UN PROBLEMA LINEAL 7.4. CASOS ESPECIALES DE PROBLEMAS LINEALES 7.4.1. Problemas

Más detalles

Problemas de Transbordo

Problemas de Transbordo Universidad Nacional de Ingeniería UNI-Norte Problemas de Transbordo III Unidad Temática MSc. Ing. Julio Rito Vargas II semestre 2008 El problema de transbordo Un problema de transporte permite sólo envíos

Más detalles

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo: Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones

Más detalles

Fundamentos de Investigación de Operaciones El Problema de Transporte

Fundamentos de Investigación de Operaciones El Problema de Transporte Fundamentos de Investigación de Operaciones El Problema de Transporte Septiembre 2002 El Problema de Transporte corresponde a un tipo particular de un problema de programación lineal. Si bien este tipo

Más detalles

Capítulo 4 Método Algebraico

Capítulo 4 Método Algebraico Capítulo 4 Método Algebraico Introducción En la necesidad de desarrollar un método para resolver problemas de programación lineal de más de dos variables, los matemáticos implementaron el método algebraico,

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

Figura 1: Esquema de las tablas simplex de inicio y general.

Figura 1: Esquema de las tablas simplex de inicio y general. RELACIONES PRIMAL-DUAL Los cambios que se hacen en el modelo original de programación lineal afectan a los elementos de la tabla óptima actual el que se tenga en el momento, que a su vez puede afectar

Más detalles

PROBLEMA 1. Considere el siguiente problema de programación lineal:

PROBLEMA 1. Considere el siguiente problema de programación lineal: PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el

Más detalles

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 El Problema de Transporte

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 El Problema de Transporte Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Versión 2.0 29 de septiembre de 2003 corresponde a un tipo particular de un problema de programación lineal. Si bien este tipo

Más detalles

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son:

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son: Unidad X: Programación lineal (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles

1.Restricciones de Desigualdad 2.Procedimiento algebraico

1.Restricciones de Desigualdad 2.Procedimiento algebraico Universidad Nacional de Colombia Sede Medellín 1. Restricciones de Desigualdad Clase # 6 EL MÉTODO M SIMPLEX El método m simplex es un procedimiento algebraico: las soluciones se obtienen al resolver un

Más detalles

Colección de Problemas II. mín Z = 8x 1 + 9x 2 + 7x 3 s. a: x 1 + x 2 + x x 1 + 3x 2 + x x 1 + x 2 x 3 30

Colección de Problemas II. mín Z = 8x 1 + 9x 2 + 7x 3 s. a: x 1 + x 2 + x x 1 + 3x 2 + x x 1 + x 2 x 3 30 1.- Dado el siguiente problema mín Z = 8x 1 + 9x + 7x 3 s. a: x 1 + x + x 3 40 x 1 + 3x + x 3 10 x 1 + x x 3 30 x 1 0, x 0, x 3 0 A) Plantear el problema dual y escribir las condiciones de la holgura complementaria

Más detalles

FUNDACION UNIVERSITARIA LOS LIBERTADORES DEPARTAMENTO DE CIENCIAS GUÍA INVESTIGACIÓN DE OPERACIONES

FUNDACION UNIVERSITARIA LOS LIBERTADORES DEPARTAMENTO DE CIENCIAS GUÍA INVESTIGACIÓN DE OPERACIONES FUNDACION UNIVERSITARIA LOS LIBERTADORES DEPARTAMENTO DE CIENCIAS GUÍA INVESTIGACIÓN DE OPERACIONES AUTOR: Arturo Yesid Córdoba Berrio Ing. Industrial Administrador de Empresas Especialización en Transporte

Más detalles

El Problema del Transporte

El Problema del Transporte ASIGNATURA PROGRAMACIÓN LINEAL El Problema del Transporte Maestro Ing. Julio Rito Vargas Avilés Octubre 2014 1 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

UNIDAD 7 MODELO DE TRANSPORTE

UNIDAD 7 MODELO DE TRANSPORTE UNIDAD 7 MODELO DE TRANSPORTE Obtendrá el modelo de transporte asociado a un problema. Construirá el esquema y la tabla inicial asociada al modelo de transporte. Resolverá problemas de transporte utilizando

Más detalles

FORMULACIÓN DE MODELOS DE PROGRAMACIÓN ENTERA PROBLEMAS DE REDES

FORMULACIÓN DE MODELOS DE PROGRAMACIÓN ENTERA PROBLEMAS DE REDES 19 de Marzo de 2015 FORMULACIÓN DE MODELOS DE PROGRAMACIÓN ENTERA PROBLEMAS DE REDES Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Programación Entera

Más detalles

Programación Lineal. El método simplex

Programación Lineal. El método simplex Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación

Más detalles

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Sesión 4 Objetivos: Aplicar el método simplex a la solución de problemas reales. Contenido: Introducción al método Simplex Requerimiento del método Simplex

Más detalles

Facultad de Ciencias Económicas, Jurídicas y Sociales - Métodos Cuantitativos para los Negocios

Facultad de Ciencias Económicas, Jurídicas y Sociales - Métodos Cuantitativos para los Negocios Ubicación dentro del Programa Unidad III UNIDAD II: PROGRAMACIÓN LINEAL 1. Característica. Formulación matemática de un problema de programación lineal. Planteo e interpretación de un sistema de inecuaciones.

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo:

Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo: Mapa conceptual Determinante de segundo orden Dada una matriz cuadrada de segundo orden: a a 11 12 A = a a 21 22 se llama determinante de A al número real: det (A)= A = a11 a 12 = a a a a a21 a22 11 22

Más detalles

RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY

RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY 25 de Junio de 2012 RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Programación

Más detalles

La Dualidad en el Problema de Transporte

La Dualidad en el Problema de Transporte II Conferencia de Ingeniería de Organización Vigo, 5-6 Septiembre 2002 La Dualidad en el Problema de Transporte Francisco López Ruiz, Germán Arana Landín 2 Doctor Ingeniero Industrial, Departamento Organización

Más detalles

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba

Más detalles

Modelos de Transporte: método de la esquina noroeste. M. En C. Eduardo Bustos Farías

Modelos de Transporte: método de la esquina noroeste. M. En C. Eduardo Bustos Farías Modelos de Transporte: método de la esquina noroeste M. En C. Eduardo Bustos Farías as LA REGLA DE LA ESQUINA NOROESTE 2 Esta regla nos permite encontrar una solución n factible básica b inicial (SFBI),

Más detalles

Optimización de redes

Optimización de redes UNIVERSIDAD DE MANAGUA Al más alto nivel Optimización de redes Problema de la Ruta más corta Problema del Árbol de expansión mínima Problema del Flujo máximo Problema de Flujo de costo mínimo Maestro Ing.

Más detalles

Programación lineal: Algoritmo del simplex

Programación lineal: Algoritmo del simplex Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b

Más detalles

NOMBRE DE LA ASIGNATURA: MÉTODOS CUANTITATIVOS PARA ADMINISTRACIÓN. ESCUELA: DEPARTAMENTO: ADMINISTRACIÓN

NOMBRE DE LA ASIGNATURA: MÉTODOS CUANTITATIVOS PARA ADMINISTRACIÓN. ESCUELA: DEPARTAMENTO: ADMINISTRACIÓN CODIGO: 092-4883 HORAS SEMANALES 4 HORAS TEORICAS: 2 UNIVERSIDAD DE ORIENTE COMISIÓN CENTRAL DE CURRÍCULA PROGRAMA DE ASIGNATURA NOMBRE DE LA ASIGNATURA: MÉTODOS CUANTITATIVOS PARA ADMINISTRACIÓN. ESCUELA:

Más detalles

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas.

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas. Tema 3 Dualidad En el desarrollo de la programación lineal la teoria de la dualidad es importante, tanto desde el punto de vista teórico como desde el punto de vista práctico. Para cada modelo lineal se

Más detalles

Universidad Nacional de Ingeniería

Universidad Nacional de Ingeniería Universidad Nacional de Ingeniería Recinto Universitario Augusto Cesar Sandino Uni - RUACS Trabajo de Investigación de Operaciones Orientado Por: Ing. Mario Pastrana Moreno Carrera: Ingeniería de Sistemas

Más detalles

Parte 2 / 3 Programación lineal, método Simplex:

Parte 2 / 3 Programación lineal, método Simplex: Parte 2 / 3 Programación lineal, método Simplex: Programación lineal, método Simplex: Típico ejemplo de maximizar los beneficios o producción de una empresa: la inyectora de plástico Zonda, que produce

Más detalles

NUEVOS METODOS PARA LA OBTENCION DE SOLUCIONES INICIALES EN EL PROBLEMA DE TRANSPORTE

NUEVOS METODOS PARA LA OBTENCION DE SOLUCIONES INICIALES EN EL PROBLEMA DE TRANSPORTE Revista de Dirección y Administración de Empresas. Número 10, diciembre 00 págs. 19-17 Enpresen Zuzendaritza eta Administraziorako Aldizkaria. 10. zenbakia, 00 abendua 19-17 orr. NUEVOS METODOS PARA LA

Más detalles

Programación Lineal Modelo de transporte Asignación

Programación Lineal Modelo de transporte Asignación Programación Lineal Modelo de transporte Asignación Curso: Investigación de Operaciones Ing. Javier Villatoro MODELO DE ASIGNACIÓN Modelo de Asignación Consiste en asignar al mínimo costo los requerimientos

Más detalles

2) Existen limitaciones o restricciones sobre las variables de la función objetivo.

2) Existen limitaciones o restricciones sobre las variables de la función objetivo. 1 Introducción La programación lineal es un método de resolución de problemas que se ha desarrollado para ayudar a profesionales de distintos ambitos a tomar mejores decisiones Desde su aparición a finales

Más detalles

Tema 2: Optimización lineal. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga

Tema 2: Optimización lineal. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Tema 2: Optimización lineal Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Sumario El modelo de programación lineal Formulación de modelos Método gráfico

Más detalles

I N T >. y y

I N T >. y y I N T - 1 7 5 3 >. y y S Santiago, octubre de 1963 MODELOS DE TRANSPORTE (Programa especial) * Apuntes del Sr. Norman Gillmore, Consultor en Transporte. Utilizado como material de estudio y referencia

Más detalles

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

TEMA 2: PROGRAMACIÓN LINEAL.

TEMA 2: PROGRAMACIÓN LINEAL. TEMA : PROGRAMACIÓN LINEAL.. 1. INTRODUCCIÓN. La Programación Lineal (PL) puede considerarse como uno de los grandes avances científicos habidos durante la primera mitad del siglo XX y sin duda es una

Más detalles

EJERCICIO 1. Max Z = 6 x x 2 s.r. (1) 4 x x 2 12 (2) 2 x x 2 16 (3) 2 x 1 6 x 1, x 2 0

EJERCICIO 1. Max Z = 6 x x 2 s.r. (1) 4 x x 2 12 (2) 2 x x 2 16 (3) 2 x 1 6 x 1, x 2 0 Considere el Programa Lineal siguiente: EJERCICIO Max Z 6 x + 9 x 2 s.r. () 4 x + 6 x 2 2 (2) 2 x + 8 x 2 6 (3) 2 x 6 x, x 2 0 (.a) 3 2 0 2 3 4 5 6 7 8 El Problema tiene una Región Factible delimitada

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 3 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

UNIDAD III. INVESTIGACIÓN DE OPERACIONES

UNIDAD III. INVESTIGACIÓN DE OPERACIONES UNIDAD III. INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El alumno resolverá problemas utilizando la programación lineal y de proyectos para sugerir cursos de acción de mejora en las empresas turísticas

Más detalles

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El estudiante, conocerá los fundamentos en que se basan las herramientas de la investigación de operaciones para la toma de decisiones.

Más detalles

Métodos de distribución

Métodos de distribución Métodos de distribución Ejercicios: 1)Que es una red de distribución. Describa sus componentes. 2)Enuncie las condiciones que debe satisfacer una solución inicial factible básica. 3)Detalle el procedimiento

Más detalles

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,

Más detalles

Universidad Autónoma de Guadalajara 3.1 Modelo de Transporte. Nomenclatura

Universidad Autónoma de Guadalajara 3.1 Modelo de Transporte. Nomenclatura UNIDAD III. ANÁLISIS DE REDES OBJETIVO DE APRENDIZAJE: El alumno identificará y analizará problemas de optimización de funciones y recursos para mejorar la operación de una organización. Modelos de transporte

Más detalles

MÉTODOS DETERMINÍSTICOS DE OPTIMIZACIÓN

MÉTODOS DETERMINÍSTICOS DE OPTIMIZACIÓN UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN DIVISIÓN DE MATEMÁTICAS E INGENIERÍA LICENCIATURA EN INGENIERÍA CIVIL ACATLÁN PROGRAMA DE ASIGNATURA CLAVE: 1412 SEMESTRE:

Más detalles

Para que un problema pueda ser solucionado por el método de transporte, este debe reunir tres condiciones:

Para que un problema pueda ser solucionado por el método de transporte, este debe reunir tres condiciones: MÉTODO DE TRANSPORTE Es un método de programación lineal para la asignación de artículos de un conjunto de origines a un conjunto de destinos de tal manera que se optimice la función objetivo. Esta técnica

Más detalles

3.1 Por inspección del tablero óptimo genere las respuestas a los numerales dados. X 1 = Cantidad de tarjetas de invitación a producir semanalmente en Kimberly Colpapel y X 2 = Cantidad de tarjetas de

Más detalles

POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES.

POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES. POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES. Una de las hipótesis básicas de los problemas lineales es la constancia de los coeficientes que aparecen en el problema. Esta hipótesis solamente

Más detalles

Matrices 2º curso de Bachillerato Ciencias y tecnología

Matrices 2º curso de Bachillerato Ciencias y tecnología MATRICES Índice:. Introducción-------------------------------------------------------------------------------------- 2. Definición de matriz-----------------------------------------------------------------------------

Más detalles

TOMA DE DECISIONES EN LA EMPRESA DE PRODUCTOS LÁCTEOS DE COLÓN CON APOYO DE LA INVESTIGACIÓN DE OPERACIONES.

TOMA DE DECISIONES EN LA EMPRESA DE PRODUCTOS LÁCTEOS DE COLÓN CON APOYO DE LA INVESTIGACIÓN DE OPERACIONES. TOMA DE DECISIONES EN LA EMPRESA DE PRODUCTOS LÁCTEOS DE COLÓN CON APOYO DE LA INVESTIGACIÓN DE OPERACIONES. Ing. Manuel Domínguez Alejo 1, MSc. Adriana Delgado Landa 2. 1. Universidad de Matanzas Sede

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3 UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3 Matriz unitaria "I" de base con variables artificiales. Cuando el problema de programación lineal se expresa en la forma canónica de maximizar, las variables de holgura

Más detalles

Parcial. Martes 12 de marzo de (sin textos)

Parcial. Martes 12 de marzo de (sin textos) 5.53 Parcial Martes 2 de marzo de 2 (sin textos). Responda a todas las preguntas en los cuadernillos de examen. 2. Controle el tiempo. Si un problema (o uno de sus apartados) le lleva mucho tiempo, le

Más detalles

PROBLEMAS RESUELTOS DE ASIGNACIÓN POR EL MÉTODO HUNGARO INVESTIGACIÓN DE OPERACIONES I

PROBLEMAS RESUELTOS DE ASIGNACIÓN POR EL MÉTODO HUNGARO INVESTIGACIÓN DE OPERACIONES I PROBLEMAS RESUELTOS DE ASIGNACIÓN POR EL MÉTODO HUNGARO INVESTIGACIÓN DE OPERACIONES I Prof.: MSc. Julio Rito Vargas Avilés. Método Húngaro: Los problemas de asignación incluyen aplicaciones tales como

Más detalles

ANALISIS DE LOS METODOS DE TRANSPORTE EN LA LOCALIZACION DE EMPRESAS Y SU APLICACION EN LA INCERTIDUMBRE

ANALISIS DE LOS METODOS DE TRANSPORTE EN LA LOCALIZACION DE EMPRESAS Y SU APLICACION EN LA INCERTIDUMBRE ANALISIS DE LOS METODOS DE TRANSPORTE EN LA LOCALIZACION DE EMPRESAS Y SU APLICACION EN LA INCERTIDUMBRE Dunia Durán Juvé Universidad de Barcelona (España) 1 de marzo de 1999 RESUMEN En el presente trabajo

Más detalles

Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones.

Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones. A partir del planteamiento del problema de Programación Lineal expresado en su formulación estándar, vamos a estudiar las principales definiciones y resultados que soportan el aspecto teórico del procedimiento

Más detalles

FACULTAD DE CIENCIAS EMPRESARIALES ESCUELA PROFESIONAL DE ADMINISTRACIÓN Y NEGOCIOS INTERNACIONALES SÍLABO

FACULTAD DE CIENCIAS EMPRESARIALES ESCUELA PROFESIONAL DE ADMINISTRACIÓN Y NEGOCIOS INTERNACIONALES SÍLABO FACULTAD DE CIENCIAS EMPRESARIALES ESCUELA PROFESIONAL DE ADMINISTRACIÓN Y NEGOCIOS INTERNACIONALES SÍLABO 1. DATOS INFORMATIVOS 1.1 Asignatura: Investigación Operativa 1.2 Código: 3501-35309 1.3 Requisito:

Más detalles

SONIA I. CABRERA RODRÍGUEZ APLICACIÓN DE LA PROGRAMAC. LINEAL A LA AGRONOMÍA

SONIA I. CABRERA RODRÍGUEZ APLICACIÓN DE LA PROGRAMAC. LINEAL A LA AGRONOMÍA ÍNDICE DE MATERIAS. PROGRAMACIÓN LINEAL 1. Optimización de proyectos 2. Simplificación del modelo matemático 3. Modelización 3.1. Modelo de transporte 3.2. Modelo de asignación 3.3. Modelo de ordenación

Más detalles

Problemas de transporte, asignación y trasbordo

Problemas de transporte, asignación y trasbordo Problemas de transporte, asignación y trasbordo 1. Plantear un problema de transporte Tiene como objetivo encontrar el mejor plan de distribución, generalmente minimizando el coste. Un problema está equilibrado

Más detalles

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

MÉTODO DEL DUAL (TEORIA DE DUALIDAD) MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado

Más detalles

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERÍA DE SISTEMAS ASIGNATURA

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERÍA DE SISTEMAS ASIGNATURA PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERÍA DE SISTEMAS SEMESTRE ASIGNATURA 5to INVESTIGACION DE OPERACIONES CÓDIGO HORAS

Más detalles

Matrices. Observación: Es usual designar una matriz por letras mayúsculas: A, B, C,... 3 B =

Matrices. Observación: Es usual designar una matriz por letras mayúsculas: A, B, C,... 3 B = Definición: A una ordenación o arreglo rectangular de ciertos objetos se define como matriz (en este curso nos interesa que los objetos de la matriz sean numeros reales. Observación: Es usual designar

Más detalles

SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE TRANSPORTE Y ASIGNACION.

SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE TRANSPORTE Y ASIGNACION. UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA DE LA PRODUCCIÓN INGENIERÍA INDUSTRIAL SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías 1 EL METODO SIMPLEX Es un procedimiento general para resolver problemas de programación lineal. Fue desarrollado en el año de 1947 por George

Más detalles

CAPÍTULO 3 ESTRUCTURAS DE DATOS ESTÁTICAS

CAPÍTULO 3 ESTRUCTURAS DE DATOS ESTÁTICAS CAPÍTULO 3 ESTRUCTURAS DE DATOS ESTÁTICAS Capítulo 3 Estructuras de datos estáticas 1/37 1. INTRODUCCIÓN Las estructuras de datos se utilizan, generalmente, para procesar una colección de valores que están

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Investigación de Operaciones I. Problemas de Asignación

Investigación de Operaciones I. Problemas de Asignación Investigación de Operaciones I Problemas de Asignación MSc. Ing. Julio Rito Vargas II cuatrimestre Introducción Los problemas de asignación incluyen aplicaciones tales como asignar personas a tareas. Aunque

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Presentación del Programa de Investigación de Operaciones Estudiantes:

Más detalles

EJERCICIO DE MAXIMIZACION

EJERCICIO DE MAXIMIZACION PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación

Más detalles

UNIDAD 4 Programación Lineal

UNIDAD 4 Programación Lineal MATEMÁTICAS APLICADAS A LAS C. SOCIALES 2 Unidad 4 UNIDAD 4 Programación Lineal TEORÍA (Editorial Editex) Repaso de 1º Inecuaciones lineales con dos incógnitas (Repaso de 1º)(Pág. 80) Actividad resuelta:

Más detalles

CAPITULO III. Determinación de Rutas de Entregas

CAPITULO III. Determinación de Rutas de Entregas CAPITULO III Determinación de Rutas de Entregas Un importante aspecto en la logística de la cadena de abastecimiento (supply chain), es el movimiento eficiente de sus productos desde un lugar a otro. El

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

INVERSA DE UNA MATRIZ

INVERSA DE UNA MATRIZ INVERSA DE UNA MATRIZ Profesores Omar Darío Saldarriaga Ortíz Ivan Darío Gómez Hernán Giraldo 2009 Definición Sean x = x 1 x n y y = y 1 y n vectores de n componentes, definimos el producto interno o producto

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante

Más detalles

UNIDAD 5. Problema de Transporte

UNIDAD 5. Problema de Transporte UNIDAD 5 Problema de Transporte En matemáticas y economía, un problema de transporte es un caso particular de problema de programación lineal en el cual se debe minimizar el coste del abastecimiento a

Más detalles

Programación Lineal Continua

Programación Lineal Continua Elisenda Molina Universidad Carlos III de Madrid elisenda.molina@uc3m.es 8 de octubre de 2008 Esquema 1 Formulación y Ejemplos 2 3 Ejemplo: Producción de carbón Una empresa minera produce lignito y antracita.

Más detalles

PROBLEMAS DE PROGRAMACIÓN ENTERA I

PROBLEMAS DE PROGRAMACIÓN ENTERA I Problemas de Programación Entera I 1 PROBLEMAS DE PROGRAMACIÓN ENTERA I 1. Un departamento ha dispuesto 2 millones de pesetas de su presupuesto general para la compra de material informático, con el que

Más detalles