3 Metodología de determinación del valor del agua cruda

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3 Metodología de determinación del valor del agua cruda"

Transcripción

1 3 Metodología de determacó del valor del agua cruda Este aexo de la metodología del valor de agua cruda (VAC), cotee el método de detfcacó de la relacó etre reco y caudal, el cálculo de los estadígrafos robustos y el detalle del eercco de Motecarlo ue debe ser realzado ara estmar la varaza (desvacó estádar) de los estadígrafos robustos. 3. Método de Idetfcacó de la relacó etre reco y caudal El método de detfcacó ue se utlzará ara determar s exste ua relacó estadístcamete sgfcatva etre reco () y caudal () corresode al test de sgfcaca estadístca del coefcete de correlacó de Kedall. El coefcete de Kedall dca la dfereca roorcoal etre los ares de datos (e este caso, trasaccoes) cocordates y los ares dscordates, comarado el reco y el caudal de cada trasaccó resecto al reco y el caudal de todas las demás trasaccoes. Los asos a segur so los sguetes: Las N trasaccoes ue comoe la base de datos deftva, resulta e N ( N ) / ar de datos osbles. Para cada ar de datos (, ) y (, ) se calcula <, <. El ar de datos es cocordate s ambas dferecas tee el msmo sgo. El ar de datos es dscordate s ambas dferecas tee sgo cotraro (uede darse co: > <, ó: < >,. Los ares cocordates corresode a auellos ares de trasaccoes dode reco y caudal tee msma relacó ordal, es decr, comarado trasaccoes A y B se obtee ue PA>PB y QA>QB ó ue PA<PB y QA<QB (tede a dcar correlacó ostva). Por el cotraro, e los ares dscordates las varables o tee la msma relacó ordal, lo ue se cumle s PA>PB y QA<QB ó PA<PB y QA>QB (tede a dcar correlacó egatva).

2 Deotado a C como el úmero de ares cocordates (dferecas co msmo sgo) y D como el úmero de ares dscordates (dferecas co sgo dstto), el coefcete de correlacó Kedall (també llamada tau de Kedall) resulta: τ ρ C N( N D ) / S N( N ) * N ( N > ) / sgo(( N( N ) )( )) Dode τ corresode a tau de Kedall o coefcete de correlacó de Kedall ( ρ ), S corresode a la dfereca etre ares cocordates y dscordates ( S C D), coocda como S de Kedall, la cual deede del úmero de ares (ue a su vez deede del úmero de trasaccoes) y or eso se ormalza co la catdad total de ares ( N ( N ) / ). El factor de correlacó de Kedall ( ) ρ varía e el tervalo [, ]. Dode s ρ 0 dca ue o exste correlacó (úmero de ares cocordates es gual al úmero de ares dscordates), ρ señala ue exste ua correlacó ostva erfecta (todos los osbles ares so cocordates), 0 ρ < señala correlacó < ostva, ρ dca ua correlacó egatva erfecta (todos los ares so dscordates) y < ρ < 0 dca correlacó egatva. El test de la sgfcaca estadístca del coefcete de correlacó de Kedall está dado or: H ρ 0 v / s H : ρ 0, co RR Z > X / 0 : : α Z ρ (N + 5) 9N( N ) ~ N(0,) Dode Z corresode al estadístco ara establecer la sgfcaca de la correlacó etre reco y caudal, ρ es el coefcete de correlacó de Kedall obtedo, N es el úmero de trasaccoes deuradas y α el vel de sgfcaca o robabldad máxma

3 ermtda del error to I: rechazar hótess ula (hay relacó reco-caudal) e caso ue sea certa (o hay relacó reco-caudal). El vel de cofaza se fa e 0,05. Así, cuado el value sea meor a 0,05 se rechaza la hótess ula, co lo ue se cocluye ue exste relacó reco-caudal. E caso cotraro, ue value sea mayor a 0,05, se cocluye ue o exste relacó reco caudal. 3. Estadígrafos Robustos El couto de estadígrafos robustos está formado or el romedo oderado robusto, la medaa, la meda Boderada y la meda de Huber. 3.. Promedo oderado robusto El romedo oderado robusto se cosgue co la alcacó del sguete rocedmeto:. Cálculo del reco romedo oderado or caudal: El reco romedo oderado or caudal resulta: N ER M Q Dode: ER Preco romedo oderado or caudal Caudal trasado e observacó Preco de observacó M Moto total de las trasaccoes deuradas

4 Q Caudal total de las trasaccoes deuradas N Número de trasaccoes deuradas. Deteccó y elmacó de valores atícos: Se calcula el romedo oderado sesblzado ara cada trasaccó medate el cómuto del romedo oderado elmado esa observacó, lo ue cosdera todas las trasaccoes exceto la trasaccó asocada al romedo oderado sesblzado, de la sguete forma: ER M Q m Este cálculo dca el valor ue resultaría el romedo oderado s la trasaccó o hubera ocurrdo. Dode: ER - Promedo Poderado Sesblzado e la stuacó e ue la trasaccó o hubese ocurrdo. M Moto total de las trasaccoes deuradas m Moto de la trasaccó. Q Caudal total de las trasaccoes deuradas Caudal trasado e observacó La desvacó estádar del romedo oderado sesblzado corresode a: Dode: S ( ER ER ) ER Corresode al romedo de los romedos oderados sesblzados.

5 ER - Promedo Poderado Sesblzado e la stuacó e ue la trasaccó o hubese ocurrdo. Obteda la desvacó estádar del romedo oderado sesblzado, se establece u rago ermtdo del romedo oderado sesblzado gual a [ ER 3 S; ER + 3S]. odas las trasaccoes asocadas a u romedo oderado sesblzado ue se ubue fuera del rago ermtdo so valores atícos or lo ue so descartadas del cálculo deftvo.. Promedo oderado robusto: El romedo oderado robusto se cosgue como el romedo oderado alcado sobre las trasaccoes ue o so detectadas como valor atíco: Dode: * m ER rob * ER 3 S ER ER + 3S ER rob Promedo Poderado Robusto. m Moto e $ corresodete a la trasaccó ue o fue descartada como valor atíco. Caudal e l/s corresodete a la trasaccó ue o fue descartada como valor atíco. * es el úmero de trasaccoes ue o se detecta como valor atíco. 3.. Medaa La medaa euvale al reco utaro cetral e la base de datos ordeada (ascedetemete) cuado el úmero de trasaccoes deuradas es mar, o el

6 romedo smle de los datos cetrales e muestra de recos ordeada e caso ue la catdad de observacoes sea ar. La fórmula resulta: Med (P) s s N N es es mar ar Dode: Med (P) Medaa de todos los recos utaros ordeados ascedetemete obtedos de las trasaccoes ue tervee e la determacó del reco. + Preco ubcado e el lugar (+)/ de la base de datos de tamaño mar ordeada ascedetemete. P Preco ubcado e el lugar / de la base de datos de tamaño ar, ordeada ascedetemete. P + Preco ubcado e el lugar / + de la base de datos de tamaño ar, ordeada ascedetemete Meda Boderada La meda boderada se defe como la meda de reco oderada decrecetemete or la dstaca de la observacó resecto al rago cetral de la muestra de reco. La fórmula geeral de la meda boderada es: Dode: MB Meda boderada. MB

7 Preco -ésmo meor (la sere de reco se debe ordear ascedetemete), y los oderadores ( ) está dados or: ( z ) 0 s z z > Co z med ( ). 3RIC( ) Dode: med ( ) Medaa del reco. RIC ( ) Rago tercuartílco, el ue corresode al rago dode se ubca el 50% cetral de las observacoes y se obtee or la dfereca etre el tercer y rmer cuartl. z Varable strumetal. Poderador del reco -ésmo Meda de Huber La meda de Huber se defe como la meda de reco oderada gradual y decrecetemete resecto a la dstaca co el rago cetral de los datos. La fórmula geeral es: Dode: MH Meda de Huber. MH Preco -ésmo meor (la sere de recos utaros se debe ordear ascedetemete). y los oderadores ( ) está dados or:

8 ,345 u s u u,345 >,345, dode u está dado or: u 0,6745 med med( ) med ( ) Medaa del reco u Varable strumetal. Poderador del reco -ésmo. 3.3 Estmacó de Varaza de estadígrafos robustos Para estmar la varaza de los estadígrafos robustos se debe realzar el sguete exermeto de Motecarlo: Sea N el úmero de trasaccoes de la base deurada. a) Se seleccoa al azar (usado u geerador de úmeros aleatoros) N observacoes de la muestra deurada. Note ue la seleccó es co reemlazo, or lo ue muy robablemete habrá observacoes reetdas. b) A artr de esta muestra, se calcula los sguetes estadígrafos robustos: romedo oderado robusto, medaa, medaa boderada y meda de Huber. c) Se rete las etaas ) y ) hasta obteer.000 muestras y, or lo tato,.000 resultados ara cada estadígrafo. d) Para cada estadígrafo se estma la varaza (y or ede la desvacó estádar) cosderado a los.000 resultados obtedos e la etaa ).

3 Metodología de determinación del valor del agua cruda

3 Metodología de determinación del valor del agua cruda 3 Metodología de determacó del valor del agua cruda 3. Aspectos Geerales La valorzacó del agua cruda cosste e la determacó de la versó e derechos de aprovechameto de agua, requerdos para abastecer la demada

Más detalles

Tema 12: Modelos de distribución de probabilidad: Variables Continuas

Tema 12: Modelos de distribución de probabilidad: Variables Continuas Aálss de Datos I Esquema del Tema Tema : Modelos de dstrbucó de robabldad: Varables Cotuas. EL MODELO RECTANGULAR. EL MODELO NORMAL, N(; ) 3. MODELO CHI-CUADRADO DE PEARSON, k 4. MODELO t DE STUDENT, t

Más detalles

Tema 16: Modelos de distribución de probabilidad: Variables Continuas

Tema 16: Modelos de distribución de probabilidad: Variables Continuas Aálss de Datos I Esquema del Tema 6 Tema 6: Modelos de dstrbucó de robabldad: Varables Cotuas. EL MODELO RECTANGULAR. EL MODELO NORMAL, N(μ, σ) 3. MODELO CHI-CUADRADO DE PEARSON, χ k 4. MODELO t DE STUDENT,

Más detalles

En esta sección estudiaremos el caso en que se usa un solo "Predictor" para predecir la variable de interés ( Y )

En esta sección estudiaremos el caso en que se usa un solo Predictor para predecir la variable de interés ( Y ) Regresó Leal mple. REGREIÓN IMPLE El aálss de regresó es ua herrameta estadístca la cual utlza la relacó, etre dos o más varables de modo que ua varable pueda ser predcha desde la (s) otra (s). Por ejemplo

Más detalles

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

Análisis de Regresión

Análisis de Regresión Aálss de Regresó Ig. César Augusto Zapata Urqujo Ig. José Alejadro Marí Del Río Facultad de Igeería Idustral Uversdad Tecológca de Perera 0-05 Modelo de Regresó Leal Smple Y Dados A (, ) =,,. Gráfco o

Más detalles

X / n : proporción de caras ( = frecuencia relativa del suceso A = f A = n A / n ) Se espera que a medida que n crece la frecuencia relativa de cara

X / n : proporción de caras ( = frecuencia relativa del suceso A = f A = n A / n ) Se espera que a medida que n crece la frecuencia relativa de cara 95 Teoremas límte Cosderemos el exermeto aleatoro que cosste e arrojar ua moeda equlbrada veces. Suogamos que se regstra la roorcó de caras. U resultado coocdo es que esta roorcó estará cerca de /. Formalzado

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacoes y muestras Varables. Tablas de frecuecas Meddas de: tedeca cetral-dspersó ESTADÍSTICA DESCRIPTIVA: Tee por objetvo recoplar, orgazar y aalzar formacó referda a datos de u

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

La inferencia estadística es primordialmente de naturaleza

La inferencia estadística es primordialmente de naturaleza VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A Febrero 20 EAMEN MODELO A Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 620137 FEBRERO 20 EAMEN MODELO A Tabla 1: Para estudar la relacó etre las putuacoes e u test () y el redmeto

Más detalles

Comparación de Proporciones

Comparación de Proporciones Comaracó de Proorcoes Resume El rocedmeto Comaracó de Proorcoes esta dseñado ara comarar las roorcoes observadas de u eveto etre muestras. Este realza ua rueba ch-cuadrada ara determar s hay o o dferecas

Más detalles

PROBABILIDAD Y ESTADISTICA

PROBABILIDAD Y ESTADISTICA 1. Es u cojuto de procedmetos que srve para orgazar y resumr datos, hacer ferecas a partr de ellos y trasmtr los resultados de maera clara, cocsa y sgfcatva? a) La estadístca b) Las matemátcas c) La ceca

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia

Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca La meda Sea u cojuto de observacoes x 1,..., x, o agrupados. Se defe la meda o promedo, medate: x 1 La meda utlza todas las observacoes,

Más detalles

6.1. Solución. P( de que falle un televisor) = 1/5000 = p X = Número de televisores averiados de entre los asegurados.

6.1. Solución. P( de que falle un televisor) = 1/5000 = p X = Número de televisores averiados de entre los asegurados. Estadístca ara geeros Ejerccos resueltos TEMA 6- CONVERGENCIA DE VARIABE AEATORIA 6 olucó ( de que falle u televsor) / Núero de televsores averados de etre los asegurados B ( ) ( 9 ) Alcado el Teorea Cetral

Más detalles

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Capítulo 2. Medidas de posición y dispersión

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Capítulo 2. Medidas de posición y dispersión Estadístca I Capítulo. Meddas de poscó y dspersó Carme Trueba Salas Lorea Remuzgo Pérez Vaesa Jordá Gl José María Saraba Alegría DPTO. DE ECOOMÍA Este tema se publca bajo Lceca: Creatve Commos BY-C-SA

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

MEDIDAS DE CENTRALIZACIÓN

MEDIDAS DE CENTRALIZACIÓN Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca

Más detalles

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción.

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción. TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO 5..- Itroduccó. Stuacoes segú el vel de formacó: Certeza. Icertdumbre parcal o resgo: (Iversoes co resgo) Icertdumbre total: (Iversoes co certdumbre)

Más detalles

TEMAS CUESTIONARIO DE AUTOEVALUACIÓN

TEMAS CUESTIONARIO DE AUTOEVALUACIÓN TEMAS 1-2-3 CUESTIOARIO DE AUTOEVALUACIÓ 2.1.- Al realzar los cálculos para obteer el Ídce de G se observa que: p 3 > q 3 y que p 4 >q 4 etoces: La prmera desgualdad es falsa y la seguda certa. La prmera

Más detalles

4º MEDIO: MEDIDAS DE POSICIÓN

4º MEDIO: MEDIDAS DE POSICIÓN 4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co

Más detalles

PARÁMETROS ESTADÍSTICOS ... N

PARÁMETROS ESTADÍSTICOS ... N el blog de mate de ada: ESTADÍSTICA pág. 6 PARÁMETROS ESTADÍSTICOS MEDIDAS DE CENTRALIZACIÓN Las tablas estadístcas y las represetacoes grácas da ua dea del comportameto de ua dstrbucó, pero ese cojuto

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA 3.5 Ojvas Este tpo de represetacó gráfca se costruye a partr de las frecuecas acumuladas (absolutas o relatvas) para varables cotuas o dscretas, co muchos

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética Objetvos Itroduccó a las meddas de poscó (tedeca cetral o tpsmo): Moda y Medaa Meda artmétca tca Cuartles,, decles y percetles Meddas de poscó Defcó: : refereca a u lugar específco de ua dstrbucó, epresado

Más detalles

Experimento: TEORÍA DE ERRORES. UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física I. OBJETIVOS

Experimento: TEORÍA DE ERRORES. UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física I. OBJETIVOS Epermeto: I. OJETIVOS UNIVERSIDD DE TM Facultad de ecas Naturales Departameto de Físca TEORÍ DE ERRORES Idetfcar errores sstemátcos y accdetales e u proceso de medcó. ompreder los coceptos de eacttud y

Más detalles

Aplicación de Boostrapping en Regresión I

Aplicación de Boostrapping en Regresión I Aplcacó de Boostrappg e Regresó I U modelo de regresó leal basado e observacoes (x,y ) es de la forma y =x β+e (=,,..) dode y so los valores observados de la varable de respuesta y, y los x so vectores

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por: Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral

Más detalles

Estadística Contenidos NM 4

Estadística Contenidos NM 4 Cetro Educacoal Sa Carlos de Aragó. Sector: Matemátca. Prof.: Xmea Gallegos H. 1 Estadístca Cotedos NM 4 Udad: Estadístca y Probabldades. Apredzajes Esperados: * Recooce dferetes formas de orgazar formacó:

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central Meddas de Tedeca Cetral Ua edda de tedeca cetral es u valor que se calcula a partr de u cojuto de datos y que se utlza para descrbr los datos e algua fora. Geeralete quereos que el valor sea represetatvo

Más detalles

TRABAJO 2: Variables Estadísticas Bidimensionales (Tema 2).

TRABAJO 2: Variables Estadísticas Bidimensionales (Tema 2). TRABAJO : Varables Estadístcas Bdmesoales (Tema ). Téccas Cuattatvas I. Curso 07/08. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: E los eucados de los ejerccos que sgue aparece los valores

Más detalles

Análisis de la Varianza

Análisis de la Varianza Descrpcó breve del tema Aálss de la Varaza Tema. troduccó al dseño de expermetos. El modelo. Estmacó de los parámetros. Propedades de los estmadores 5. Descomposcó de la varabldad 6. Estmacó de la dfereca

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

ANÁLISIS DE REGRESIÓN. Departamento de Matemáticas Universidad de Puerto Rico Recinto Universitario de Mayagüez

ANÁLISIS DE REGRESIÓN. Departamento de Matemáticas Universidad de Puerto Rico Recinto Universitario de Mayagüez ANÁLISIS DE REGRESIÓN Feradez Departameto de Matemátcas Uversdad de Puerto Rco Recto Uverstaro de Mayagüez REGRESIÓN LINEAL SIMPLE Regresó: cojuto de téccas que so usadas para establecer ua relacó etre

Más detalles

UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro)

UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro) UIDAD.- Dstrbucoes bdmesoales. Correlacó regresó (tema del lbro). VARIABLES ESTADÍSTICAS BIDIMESIOALES Vamos a trabajar sobre ua sere de feómeos e los que para cada observacó se obtee u par de meddas.

Más detalles

1. Introducción 1.1. Análisis de la Relación

1. Introducción 1.1. Análisis de la Relación . Itroduccó.. Aálss de la Relacó Ejemplos: Relacoes fucoales de terés Redmeto Doss de fertlzate Redmeto hortícola Desdad de platacó Volume de madera a cortar Desdad de platacó Catdad de suplemeto dado

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGNIFICADO.

Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGNIFICADO. Tema 60.Parámetros estadístcos. Calculo propedades y sgfcado Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGIFICADO.. Itroduccó. Defcó de estadístca. Estadístca descrptva y estadístca ferecal.

Más detalles

CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA. Los datos sintéticos son elementos de suma importancia en los sistemas de diseño en

CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA. Los datos sintéticos son elementos de suma importancia en los sistemas de diseño en CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA 3. Itroduccó Los datos stétcos so elemetos de suma mportaca e los sstemas de dseño e presas de almaceameto, ya que se evalúa el propósto del sstema co sumo

Más detalles

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Capítulo 9 MEDIDAS DE TENDENCIA CENTRAL Ua medda de tedeca cetral, es u resume estadístco que muestra el cetro de ua dstrbucó; es decr, por lo geeral, busca el cetro de esa dstrbucó. Exste dferetes tpos

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES

Más detalles

Probabilidad y estadística

Probabilidad y estadística Probabldad y estadístca Grupo PM4 Trabajado gráfcas,meddas de tedeca cetral, meddas de dspersó e terpretado resultados Prof. Mguel Hesquo Garduño. Depto. De Igeería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.m

Más detalles

EJERCICIOS RESUELTOS TEMA 3.

EJERCICIOS RESUELTOS TEMA 3. INTRODUCCIÓN AL ANÁLII DE DATO EJERCICIO REUELTO TEMA 3. 3.1. La ampltud total de la dstrbucó de frecuecas de la tabla 1. es: A) 11; B) 1; C). Tabla 1. Estatura e cetímetros de ños de 1 meses de edad.

Más detalles

MUESTREO EN POBLACIONES FINITAS (1) Dos aspectos básicos de la inferencia estadística, no vistos aún:

MUESTREO EN POBLACIONES FINITAS (1) Dos aspectos básicos de la inferencia estadística, no vistos aún: A. Morllas - p. - MUESTREO E POBLACIOES FIITAS () Dos aspectos báscos de la fereca estadístca, o vstos aú: Proceso de seleccó de la muestra Métodos de muestreo Tamaño adecuado e poblacoes ftas Fabldad

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ TEOREMA DE BERNOULLI GENERALIZADO > 0 Dada ua sucesó x1, x, x3,... x dos a dos depedetes, co ua msma dstrbucó de probabldad y co esperaza µ y varaza lím Se verfca que P x µ = 1 ó lím P x µ > = 0 El límte,

Más detalles

CAPITULO TRES MEDIDAS DE TENDENCIA CENTRAL

CAPITULO TRES MEDIDAS DE TENDENCIA CENTRAL CAPITULO TRES MEDIDAS DE TENDENCIA CENTRAL 3. CARACTERISTICAS NUMERICAS DE UNA VARIABLE S tratamos de represetar uestras edades medate u polígoo de frecuecas, y os ubcamos e el tempo: hace 0 años, hoy

Más detalles

Regresión y correlación lineal.

Regresión y correlación lineal. Regresó y correlacó leal. Este procedmeto proporcoa medos legítmos, modelos matemátcos a trabes de los cuales, se puede establecer asocacoes etre varables de terés e las cuales la relacó usual o es casual.

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

Formulación precisa de la(s) pregunta(s) de investigación. Planeación: Comunicación usuario/estadístico

Formulación precisa de la(s) pregunta(s) de investigación. Planeación: Comunicación usuario/estadístico Esquema estadístco Problema de vestgacó Preguta de vestgacó Formulacó precsa de la(s) preguta(s) de vestgacó Plaeacó Dseño Muestra Feómeo Aleatoro Aálss y presetacó de la formacó Iferecas Toma de decsoes

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

DISTRIBUCIÓN DE LA MEDIA Y EL TEOREMA DEL LÍMITE CENTRAL

DISTRIBUCIÓN DE LA MEDIA Y EL TEOREMA DEL LÍMITE CENTRAL Smposo de Metrología 4 al 7 de Octubre DISTRIBUCIÓ DE LA MEDIA Y EL TEOREMA DEL LÍMITE CETRAL Wolfgag A. Schmd Cetro acoal de Metrología Tel.: (44) 4, e-mal: wschmd@ceam.mx Resume: De acuerdo al Teorema

Más detalles

ANÁLISIS DE LA VARIANZA Es coocdo que ua varable aleatora Y se puede cosderar como suma de ua costate μ de ua varable aleatora ε, que represeta el error aleatoro: μ ε Este modelo se adapta be a datos de

Más detalles

6- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE

6- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE arte Suma de varables aleatoras y Teorema cetral del límte rof. María B. tarell 3 6- SUMA DE VARIABLES ALEATORIAS TEOREMA CENTRAL DEL LÍMITE 6. Suma de varables aleatoras deedetes Cuado se estudaro las

Más detalles

Regresión Simple. Resumen. Ejemplo de StatFolio: simple reg.sgp

Regresión Simple. Resumen. Ejemplo de StatFolio: simple reg.sgp STATGRAPHICS Rev. 4/5/7 Regresó Smple Resume El procedmeto de Regresó Smple está dseñado para costrur u modelo estadístco que descrba el mpacto de u solo factor cuattatvo X sobre ua varable depedete Y.

Más detalles

INGENIERÍA INDUSTRIAL DISEÑO EXPERIMENTAL LEOPOLDO VIVEROS ROSAS

INGENIERÍA INDUSTRIAL DISEÑO EXPERIMENTAL LEOPOLDO VIVEROS ROSAS INGENIERÍA INDUTRIAL A meudo, e la práctca, se requere resolver prolemas que clue cojutos de varales, cuado se sae que este algua relacó herete etre ellas, esa relacó se puede ecotrar a partr de la formacó

Más detalles

Ensayos de control de calidad

Ensayos de control de calidad Esayos de cotrol de caldad Fecha: 0170619 1. lcace. Este procedmeto es aplcable e la evaluacó del desempeño del persoal que ejecuta pruebas e la Dvsó de Laboratoros de Ifraestructura de la Coordacó de

Más detalles

Incertidumbre en las mediciones directas e indirectas

Incertidumbre en las mediciones directas e indirectas Icertdumbre e las medcoes drectas e drectas Comezaremos por dstgur dos dferetes tpos de medcoes: Medcoes drectas: La medda de la cota se obtee e ua úca medcó co u strumeto de lectura drecta. Medcoes drectas:

Más detalles

4 METODOLOGIA ADAPTADA AL PROBLEMA

4 METODOLOGIA ADAPTADA AL PROBLEMA 4 MEODOLOGA ADAPADA AL PROBLEMA 4.1 troduccó Báscamete el problema que se quere resolver es ecotrar la actuacó óptma sobre las tesoes de los geeradores, la relacó de tomas de los trasformadores y el valor

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

REDES DE DISTRIBUCIÓN REDES DE DISTRIBUCIÓN REDES DE DISTRIBUCIÓN REDES DE DISTRIBUCIÓN

REDES DE DISTRIBUCIÓN REDES DE DISTRIBUCIÓN REDES DE DISTRIBUCIÓN REDES DE DISTRIBUCIÓN .4 Cálculo de Redes Cerradas El roblea que se latea es calcular los caudales que escurre e cada trao de ua red, alla o crcuto, de odo que se cula certas codcoes hdráulcas coo las resoes exstetes e los

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

Correlación y regresión lineal. Ejemplos

Correlación y regresión lineal. Ejemplos Correlacó y regresó leal. Ejemplos Problema Nro. 0 Las estaturas (mts.) y los pesos (Kg) de 0 jugadores de Balocestos so: Estatura X Pesos Y(Kg) (mts) 86 85 89 85 90 86 9 90 93 87 98 93 0 03 03 00 93 9

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA

MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA ema ta zabal zazu EUSKAL HERRIKO UNIBERTSITATEA UNIVERSIDAD DEL AIS VASCO MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA Resolucó del ejercco fal. rmera covocatora. Curso INDUSTRIA INGENIARITZA TEKNIKOKO UNIBERTSITATE

Más detalles

Qué es la estadística? presentación, análisis e interpretación de datos numéricos con e fin de realizar una toma de decisión más efectiva.

Qué es la estadística? presentación, análisis e interpretación de datos numéricos con e fin de realizar una toma de decisión más efectiva. Estadístca Alguos Coceptos Itroduccó Qué es la estadístca? La estadístca, e geeral, es la ceca que trata de la recoplacó, orgazacó presetacó, aálss e terpretacó de datos umércos co e f de realzar ua toma

Más detalles

Intensificación en Estadística

Intensificación en Estadística GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro

Más detalles

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada

Más detalles

Colegio Sagrada Familia Matemáticas 4º ESO ESTADÍSTICA DESCRIPTIVA

Colegio Sagrada Familia Matemáticas 4º ESO ESTADÍSTICA DESCRIPTIVA Colego Sagrada Famla Matemátcas 4º ESO 011-01 1.- TERMIOLOGÍA. TABLAS Y GRÁFICOS ESTADÍSTICOS ESTADÍSTICA DESCRIPTIVA La poblacó es el cojuto de de todos los elemetos, que cumpledo ua codcó, deseamos estudar.

Más detalles

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto:

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto: Curso: Estadístca Iferecal (ICO 8306) Profesores: Esteba Calvo, Pablo Huechapa y Omar Ramos Ayudates: José T. Meda, Fabo Salas y Daela Vlches PROBLEMA Cosdere que Ud. es dueño de u campo que produce mazaas,

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple 1 Curso de Estadístca Udad de Meddas Descrptvas Leccó 2: Meddas de Tedeca Cetral para Datos Agrupados por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor 2 Objetvos 1. Calcular

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Parcalmete facado a través del PIE-04 (UMA). Promedos y meddas de poscó. Meddas de dspersó. Meddas de asmetría. Valores atípcos..4 Meddas de desgualdad..5 Valores atípcos: Dagrama

Más detalles

Figura 1

Figura 1 Regresó Leal Smple 7 Regresó Leal Smple 7. Itroduccó Dra. Daa Kelmasky 0 E muchos problemas cetífcos teresa hallar la relacó etre ua varable (Y), llamada varable de respuesta, ó varable de salda, ó varable

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

TEMA 6 MUESTREO POR CONGLOMERADOS MONOETÁPICO

TEMA 6 MUESTREO POR CONGLOMERADOS MONOETÁPICO TEA 6 UESTREO POR COGLOERADOS OOETÁPICO Cotedo 1- Defcó. Aplcacó. Seleccó de ua muestra por Coglomerados. Etapas. otacó. - uestreo mooetápco co coglomerados de gual tamaño. Estmacó de la meda, el total

Más detalles

CAPITULO II. Medidas estadísticas. Objetivo. Contenido. Calcular las medidas posición, de tendencia central, de dispersión y de forma.

CAPITULO II. Medidas estadísticas. Objetivo. Contenido. Calcular las medidas posición, de tendencia central, de dispersión y de forma. CAPITULO II Meddas estadístcas Objetvo Calcular las meddas poscó, de tedeca cetral, de dspersó y de forma. Cotedo * * * * * * Itroduccó Meddas de poscó Meddas de tedeca cetral Meddas de dspersó Meddas

Más detalles

G - Métodos de Interpolación

G - Métodos de Interpolación ESCUELA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS G - Métodos de Iterpolacó Polomo de terpolacó de Lagrage. Polomo de terpolacó

Más detalles

Análisis de Regresión y Correlación. Material Preparado por Olga Susana Filippini y Hugo Delfino 1

Análisis de Regresión y Correlación. Material Preparado por Olga Susana Filippini y Hugo Delfino 1 Aálss de Regresó y Correlacó Materal Preparado por Olga Susaa Flpp y Hugo Delfo ORIGEN HISTÓRICO DEL TÉRMINO REGRESlÓN El térmo regresó fue troducdo por Fracs Galto. E u famoso artículo Galto platea que,

Más detalles

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente.

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente. Sere de radete (eométrco y rtmétco) y su Relacó co el resete. Certos proyectos de versó geera fluos de efectvo que crece o dsmuye ua certa catdad costate cada período. or eemplo, los gastos de matemeto

Más detalles

Estadística descriptiva

Estadística descriptiva Estadístca descrptva PARAMETROS Y ESTADISTICOS Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca Meddas de tedeca cetral: Moda, Medaa, Meda

Más detalles

Regresión lineal simple

Regresión lineal simple Descrpcó breve del tema Regresó leal smple Tema. Itroduccó. El modelo de regresó smple 3. Hpótess del modelo Lealdad, homogeedad, homocedastcdad, depedeca ormaldad 4. Estmacó de los parámetros Mímos cuadrados,

Más detalles

Análisis estadístico de datos muestrales

Análisis estadístico de datos muestrales Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo

Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo Estadístca Tema 6: Aálss de Regresó. Estadístca. UNITEC Tema 6: Aálss de Regresó Modelos de Regresó E muchos problemas este ua relacó herete etre dos o mas varables, resulta ecesaro eplorar la aturaleza

Más detalles

1 Estadística. Profesora María Durbán

1 Estadística. Profesora María Durbán Tema 5: Estmacó de Parámetros Tema 5: Estmacó de Parámetros 5. Itroduccó y coceptos báscos 5. Propedades de los estmadores 5.4 Dstrbucó de u estmador e el muestreo Objetvos del tema: Al fal del tema el

Más detalles

x x x x x Y se seguía operando

x x x x x Y se seguía operando . INTRODUCCIÓN. DEFINICIONES UNIDAD : Números complejos Cuado se teta resolver ecuacoes de segudo grado como por ejemplo x 4x 0, se observa que o 4 6 5 4 6 tee solucoes reales x x, pues o exste raíces

Más detalles

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS Sugerecas para que mparte el curso Ha llegado el mometo e que es coveete resolver ejerccos aplcado

Más detalles

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2

Más detalles