INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3"

Transcripción

1 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía potencial elástica 7 mgsenθ

2 Movimiento vibratorio armónico simple _ 1 de 9 Movimiento Vibratorio Armónico Simple Un movimiento que repite posiciones en intervalos iguales de tiempo recibe el nombre de movimiento periódico. Ejemplos de este tipo de movimiento: rotación de la Tierra, movimiento de un punto de la periferia de un CD... El tiempo que transcurre entre la repetición consecutiva de la posición recibe el nombre de periodo. Llamaremos movimiento oscilatorio aquel en el que el móvil recorre una trayectoria en la que la posición del móvil respecto al origen pasa por un valor máximo y un valor mínimo como sucede con un movimiento de vaivén, de una forma periódica (es decir repitiendo posiciones a intervalos constantes de tiempo). MOVIMIENTO VIBRATORIO ARMONICO SIMPLE (MVAS) El movimiento vibratorio armónico simple se puede representar físicamente por el movimiento de la proyección sobre uno de los diámetros de una circunferencia de las distintas posiciones que va ocupando el móvil que la recorre con velocidad angular constante: Movemos el resorte hasta una posición inicial como la que se indica en la figura: Sobre el diámetro Y: y = A sen(ωt +φ 0) Sobre el diámetro X: x = A cos(ωt + φ 0)

3 Movimiento vibratorio armónico simple _ de 9 Vibración completa o ciclo es el movimiento desde un extremo (P) de la trayectoria hasta el otro (Q) y retorno al primero. Periodo (T) es el tiempo invertido en un ciclo. Frecuencia (f o ν) número de ciclos en la unidad de tiempo. Elongación (y ó x) la distancia que en cada momento separa al punto oscilante de la posición de equilibrio. Fase ángulo descrito por el móvil en un tiempo. En φ = φ 0 + ωt. ( φ 0 fase inicial). Pulsación (ω) velocidad angular que posee el móvil que teoricamente, recorre la circunferencia de radio A. Amplitud (A) elongación máxima. Hemos visto con anterioridad cuál era la ecuación de la elongación en función del tiempo. y = A sen(ωt +φ 0 ) o también x = A cos(ωt + φ 0 ) También se puede poner, teniendo en cuenta que ω = π/t : y = A sen[(πt/t) +φ 0 ] = A sen(π f t +φ 0 ) x = A cos[(πt/t) +φ 0 ] = A cos(π f t +φ 0 ) VELOCIDAD EN EL MVAS Hemos visto con anterioridad cuál era la ecuación de la elongación en función del tiempo: y = A sen(ωt +φ 0 ) o también: x = A cos(ωt + φ 0 ) De la misma forma se puede determinar el valor de la velocidad (su módulo) derivando la elongación con respecto al tiempo: dy dx v = = A ω cos( ωt + ϕ0) dt también: v = = A ω sen( ωt + ϕ0) dt ACELERACIÓN EN EL MVAS La aceleración en cada instante derivando la velocidad con respecto al tiempo o la elongación dos veces respecto al tiempo: dv d y a = = = A ω cos( ωt + ϕ0) dt dt = ω y = k y lo mismo que antes:

4 Movimiento vibratorio armónico simple _ 3 de 9 dv d x a = = = A ω sen( ωt + ϕ0) = ω x = k x dt dt Como se ve en este movimiento la aceleración es proporcional a la elongación y de signo opuesto a ella. Representación gráfica de la elongación (y), la velocidad (v), y la aceleración (a) frente al tiempo. DINÁMICA DEL MVAS Ya se definió anteriormente el movimiento armónico simple mediante la ecuación de la elongación: y = A cos(ωt +φ 0 ) (I) x = A cos(ωt +φ 0 ) (II) De ella se deducía la ecuación de la aceleración derivando la ecuación (I): a = dv/dt = d y / dt = A ω cos(ωt + φ 0 ) = ω y = k y Si derivamos en la ecuación (II) a = dv/dt = d x / dt = A ω cos(ωt + φ 0 ) = ω x = k x Aplicando la ecuación F = m a y sustituyendo el valor de a queda: F = m ω y = k y donde k = m ω y ω = (k/m) ½ Como se ve (*) en el movimiento armónico simple la fuerza que actúa es proporcional a la elongación y opuesta a ella, es decir, estará dirigida siempre hacia el origen o punto de equilibrio. Por tanto como en ese punto la elongación es nula (y = 0) también lo será el valor de la fuerza que actúa sobre el móvil (F= 0). Este tipo de fuerza es la que aparece cuando se deforma un cuerpo elástico (ley de Hooke). La constante K se llama constante recuperadora o elástica y sus unidades son N/m. Como se ve la constante recuperadora es igual al cuadrado de la pulsación por la masa y por tanto la pulsación es igual a la raiz cuadrada del cociente entre la constante recuperadora y la masa.

5 Movimiento vibratorio armónico simple _ 4 de 9 Teniendo en cuenta la relación entre el valor de la pulsación y el periodo se puede deducir cuál será el valor de este último en función de la masa y la constante recuperadora: T = π (m / k) ½ APLICACIÓN AL PÉNDULO SIMPLE Un péndulo simple se define como una partícula de masa m suspendida de un punto O por un hilo de longitud l y masa despreciable. Si la partícula se lleva hasta B de modo que forma un ángulo pequeño con la vertical y luego se suelta esta oscilará entre B y B'. Se puede explicar la dinámica del movimiento en la forma siguiente:

6 Movimiento vibratorio armónico simple _ 5 de 9

7 Movimiento vibratorio armónico simple _ 6 de 9 La partícula se mueve en un arco de circunferencia cuyo radio es la longitud de la cuerda. Las fuerzas que actúan sobre esta partícula serán F x que es anulada por la tensión de la cuerda T y F t cuyo valor será negativo ya que se opone al desplazamiento: F t = m g sen θ = m a t = m α l = m l (d θ / dt ) La aceleración responsable de la variación en el módulo de la velocidad es la aceleración tangencial que a su vez está relacionada con la aceleración angular del móvil con lo que se puede deducir que como la aceleración angular es la derivada segunda del ángulo con respecto al tiempo dos veces l (d θ / dt ) + g senθ = 0 Cuando el ángulo θ es muy pequeño (longitud l grande y pequeñas amplitudes de oscilación) senθ es aproximadamente θ por lo que: (d θ / dt ) + (g / l) θ = 0 Ecuación diferencial cuya solución lleva a establecer que el valor de la pulsación o frecuencia angular para el movimiento del péndulo simple es: ω = ( g / l ) ½ Dado que ω = π/t Se puede deducir: T = π( l / g ) ½ Como se ve el periodo del péndulo simple solo es función de la longitud del hilo y de g que en el campo gravitatorio terrestre es constante e igual a 9.81 m/s. ENERGIA CINETICA EN EL MVAS Por esta razón el valor máximo de la energía cinética será: Ec = (1/) m ω A

8 Movimiento vibratorio armónico simple _ 7 de 9 cuando el móvil pase por la posición de equilibrio (es decir cuando la elongación sea cero). Es entonces cuando lleva la velocidad máxima. Y el valor mínimo cero cuando el móvil se encuentre a la máxima distancia de la posición de equilibrio (x=a), es el momento en que el móvil se para un instante antes de volver a dirigirse hacia la posición de equilibrio. ENERGIA POTENCIAL ELASTICA Supongamos un resorte de constante recuperadora k, unido a una masa m, que puede deslizar sobre una superficie sin rozamientos. Aplicamos sobre esa masa una fuerza que hace que se desplace a velocidad constante desde A hasta B. El trabajo realizado para llevar m desde A hasta B vendrá dado por: W AB = Fdx Puesto que el sistema se mueve con velocidad constante F será igual y opuesta a la fuerza recuperadora del resorte, es decir, según la ley de Hooke F = Kx siendo x el desplazamiento respecto de la posición inicial de equilibrio.

9 Movimiento vibratorio armónico simple _ 8 de 9 Deducimos por tanto que la energía mecánica del sistema suma de la energía cinética y potencial elástica es constante sea cual sea la posición del móvil e igual a (1/) k A puesto que: E = E c + E p = (1/) k [A - x ] + (1/) k x = (1/) k A Podemos representar la energía mecánica, la energía potencial y la energía cinética del movimiento armónico simple frente a la elongación obteniendo en cada caso las gráficas siguientes:

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva

Más detalles

FISICA 2º BACHILLERATO

FISICA 2º BACHILLERATO A) Definiciones Se llama movimiento periódico a aquel en que la posición, la velocidad y la aceleración del móvil se repiten a intervalos regulares de tiempo. Se llama movimiento oscilatorio o vibratorio

Más detalles

Movimiento armónico simple.

Movimiento armónico simple. 1 Movimiento armónico simple. 1.1. Concepto de movimiento armónico simple: Su ecuación. Supongamos un muelle que cuelga verticalmente, y de cuyo extremo libre pende una masa m. Si tiramos de la masa y

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.)

MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.) Clase 2-1 Clase 2-2 MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.) Cinemática de la Partícula - 1 Clase 2-3 MOVIMIENTOS PERIÓDICOS En la naturaleza hay ciertos movimientos que se producen con asiduidad. Entre ellos

Más detalles

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO.

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO. MOVIMIENTO VIBRATORIO. Movimiento vibratorio armónico simple 1. Explica como varía la energía mecánica de un oscilador lineal si: a) Se duplica la amplitud. b) Se duplica la frecuencia. c) Se duplica la

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica.

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. 1(9) Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 4 2 4 6 8 t(s) -4 Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 3 1 2 3 t(s) -3 Ejercicio

Más detalles

El oscilador armónico (I): Ecuación de oscilador Armónico

El oscilador armónico (I): Ecuación de oscilador Armónico Un movimiento que responde a la ecuación x=asen(ωt+ϕ) X es la elongación A= amplitud de la oscilación; es la elongación Máxima ω=pulsación t=tiempo ϕ=fase inicial. El movimiento vibratorio Armónico simple

Más detalles

Posición de un Cuerpo. Elementos para la descripción del movimiento. Vector de Posición y Vector Desplazamiento

Posición de un Cuerpo. Elementos para la descripción del movimiento. Vector de Posición y Vector Desplazamiento 1 Bárbara Cánovas Conesa 637 70 113 www.clasesalacarta.com 1 Cinemática Posición de un Cuerpo Coordenadas Cartesianas Coordenadas Polares Vector de Posición (,, z) r, q r Elementos para la descripción

Más detalles

TEMA 5.- Vibraciones y ondas

TEMA 5.- Vibraciones y ondas TEMA 5.- Vibraciones y ondas CUESTIONES 41.- a) En un movimiento armónico simple, cuánto vale la elongación en el instante en el que la velocidad es la mitad de su valor máximo? Exprese el resultado en

Más detalles

FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1

FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1 FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1 1. En un movimiento oscilatorio, Qué se entiende por periodo? Y por frecuencia? Qué relación existe entre ambas magnitudes? 2. Una partícula

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS INTRODUCCIÓN MÉTODO 1. En general: a) Se dibujan las fuerzas que actúan sobre el sistema. b) Se calcula cada fuerza. c) Se calcula la resultante

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

Tema 1 Movimiento Armónico Simple

Tema 1 Movimiento Armónico Simple Tema Movimiento Armónico Simple. Conceptos de movimiento oscilatorio: el movimiento armónico simple (MAS).. Ecuación general del MAS..3 Cinemática del MAS..4 Dinámica del MAS..5 Energía del MAS..6 Aplicación

Más detalles

Unidad 12: Oscilaciones

Unidad 12: Oscilaciones Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 12: Oscilaciones Movimiento armónico simple: x(t), v(t) y a(t) 10,0 x(t) a(t) 8,0 6,0

Más detalles

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10 PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

Problemas Movimiento Armónico Simple

Problemas Movimiento Armónico Simple Problemas Movimiento Armónico Simple 1. Una partícula describe un M.A.S de pulsación w=π rad/s. En un instante dado se activa el cronómetro. En ese momento la elongación que tiene un sentido de recorrido

Más detalles

Módulo 4: Oscilaciones

Módulo 4: Oscilaciones Módulo 4: Oscilaciones 1 Movimiento armónico simple Las vibraciones son un fenómento que podemos encontrar en muchas situaciones En este caso, en equilibrio, el muelle no ejerce ninguna fuerza sobre el

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 25 noviembre 2014

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 25 noviembre 2014 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una pared. Si en el instante inicial

Más detalles

Movimiento Armónico Simple (M.A.S.)

Movimiento Armónico Simple (M.A.S.) Anexo: Movimiento Armónico Simple (M.A.S.) 1.- Oscilaciones armónicas Los movimientos periódicos que se producen siempre sobre la misma trayectoria los vamos a denominar movimientos oscilatorios o vibratorios.

Más detalles

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de Movimiento armónico simple 1.- 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo A. Pregunta 2.- Un objeto está unido a un muelle horizontal de constante elástica 2 10 4 Nm -1. Despreciando el rozamiento: a) Qué masa ha de tener el objeto si se desea que oscile con una

Más detalles

Movimiento Oscilatorio

Movimiento Oscilatorio Movimiento Oscilatorio 1. Introducción.. El Movimiento Armónico Simple. a) Estudio cinemático. b) Estudio dinámico. c) Estudio energético. 3. Péndulos. a) Péndulo simple. b) Péndulo físico. 4. Oscilaciones

Más detalles

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2.

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2. MAS. EJERCICIOS Ejercicio 1.-Un oscilador consta de un bloque de 512 g de masa unido a un resorte. En t = 0, se estira 34,7 cm respecto a la posición de equilibrio y se observa que repite su movimiento

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m]

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m] Física º Bach. Examen de Setiembre de 005 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [1½ PUNTOS / UNO] X 1. El cuerpo de la figura tiene masa m = 500 g, está apoyado sobre una superficie horizontal

Más detalles

Aceleración n de la gravedad Péndulo simple

Aceleración n de la gravedad Péndulo simple Aceleración n de la gravedad Péndulo simple Experiencia de Laboratorio, Física F experimental I, 2007 A. Biera, G. Huck y P. Palermo Tandil - Octubre de 2007 1 Aceleración n de la gravedad - Péndulo simple

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

Fundamentos de espectroscopia: Vibraciones

Fundamentos de espectroscopia: Vibraciones Fundamentos de espectroscopia: Vibraciones Jesús Hernández Trujillo Facultad de Química, UNAM Agosto de 2017 Vibraciones/JHT 1 / 28 Oscilador armónico Movimiento oscilatorio: Una partícula describe un

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE.

MOVIMIENTO ARMÓNICO SIMPLE. MOVIMIENTO ARMÓNICO SIMPLE. JUNIO 1997. 1.- Un cuerpo de masa m = 10 kg describe un movimiento armónico simple de amplitud A = 30 mm y con un periodo de T = 4 s. Calcula la energía cinética máxima de dicho

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Slide 1 / 71 Slide 2 / 71 MS y Movimiento ircular Movimiento rmónico Simple Hay una profunda conexión entre el Movimiento armónico simple (MS) y el Movimiento ircular Uniforme (MU). Movimiento armónico

Más detalles

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2016

PRUEBA ESPECÍFICA PRUEBA 2016 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2016 PRUEBA SOLUCIONARIO PROBAK 25 URTETIK Contesta 4 de los 5 ejercicios propuestos (Cada pregunta tiene un valor de 2,5 puntos, de los

Más detalles

Slide 1 / 71. Movimiento Armónico Simple

Slide 1 / 71. Movimiento Armónico Simple Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

1. Movimiento oscilatorio

1. Movimiento oscilatorio FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: VI INICADORES DE LOGRO MOVIMIENTO ARMÓNICO

Más detalles

Movimiento armónico simple. Movimiento armónico simple Cuestiones

Movimiento armónico simple. Movimiento armónico simple Cuestiones Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones.

Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones. Repaso del 1º trimestre: ondas y gravitación 11/01/08 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Elige en cada bloque una de las dos opciones. Bloque 1. GRAVITACIÓN. Elige un problema: puntuación 3 puntos

Más detalles

MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE.

MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE. FÍSICA 2º BACHILLERATO BLOQUE TEMÁTICO: VIBRACIONES Y ONDAS MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE. Contenidos: 1) Movimiento periódico. Movimiento oscilatorio. Movimiento vibratorio. 2) Movimiento

Más detalles

EJERCICIOS DE SELECTIVIDAD ONDAS

EJERCICIOS DE SELECTIVIDAD ONDAS EJERCICIOS DE SELECTIVIDAD ONDAS 1. La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (16 t - 10 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud,

Más detalles

FÍSICA. 2º BACHILLERATO. BLOQUE II. VIBRACIONES Y ONDAS. Examen 2

FÍSICA. 2º BACHILLERATO. BLOQUE II. VIBRACIONES Y ONDAS. Examen 2 Examen 2 1. Diga si es cierto o falso y razone la respuesta: La frecuencia con la que se percibe un sonido no depende de la velocidad del foco emisor. 2. Dibujar, superponiendo en la misma figura, dos

Más detalles

Movimiento armónico simple

Movimiento armónico simple Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

TEMA 6 Movimiento oscilatorio

TEMA 6 Movimiento oscilatorio TEMA 6 Movimiento oscilatorio 1.- Movimiento armónico simple (M.A.S.).- Oscilaciones amortiguadas 3.- Oscilaciones forzadas. Resonancia 1.- Movimiento armónico simple 1.1.- Estudio dinámico del M.A.S.

Más detalles

OSCILADOR ARMONICO: partícula con M.A.S. ECUACION DEL M.A.S: x = A sen (ω t+ φ 0 )

OSCILADOR ARMONICO: partícula con M.A.S. ECUACION DEL M.A.S: x = A sen (ω t+ φ 0 ) ONDAS. M.A.S: Tipo de movimiento oscilatorio que tienen los cuerpos que se mueven por acción de una fuerza restauradora: F=-k x OSCILADOR ARMONICO: partícula con M.A.S ECUACION DEL M.A.S: x = A sen (ω

Más detalles

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil. DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley

Más detalles

Solucionario de las actividades propuestas en el libro del alumno

Solucionario de las actividades propuestas en el libro del alumno Solucionario de las actividades propuestas en el libro del alumno 4.. MOVIMIENOS PERIÓDICOS Página 75. Conocido el período de rotación de la Luna en torno a la ierra y sabiendo que la Luna no emite luz

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Movimiento armónico simple M.A.S. y movimiento circular Slide 2 / 53 Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

MOVIMIENTO ARMÓNICO PREGUNTAS

MOVIMIENTO ARMÓNICO PREGUNTAS MOVIMIENTO ARMÓNICO PREGUNTAS 1. Qué ocurre con la energía mecánica del movimiento armónico amortiguado? 2. Marcar lo correspondiente: la energía de un sistema masa resorte es proporcional a : i. la amplitud

Más detalles

MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE.

MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE. FÍSICA º BACHILLERATO BLOQUE TEMÁTICO: VIBRACIONES Y ONDAS MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE. Contenidos: 1) Movimiento periódico. Movimiento oscilatorio. Movimiento vibratorio. ) Movimiento

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: FENÓMENOS ONDULATORIOS GUÍA: 1201 ESTUDIANTE: E-MAIL: FECHA: MOVIMIENTO ARMÓNICO SIMPLE En las preguntas 1 a 10, el enunciado es una afirmación seguida de la palabra

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández MAS Estudio dinámico y cinemático 1. (90-J11) Una pequeña plataforma horizontal sufre un movimiento armónico simple en sentido vertical, de 3 cm de amplitud y cuya frecuencia aumenta progresivamente. Sobre

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Slide 2 / 53 M.A.S. y movimiento circular Movimiento armónico simple Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

ONDAS. m s. ; b) 3m; 40π. SOL: a) 100 Hz; 2 π

ONDAS. m s. ; b) 3m; 40π. SOL: a) 100 Hz; 2 π ONDAS. 1. Considere la siguiente ecuación de una onda : y ( x, t ) = A sen ( b t - c x ) ; a. qué representan los coeficientes A, b, c? ; cuáles son sus unidades? ; b. qué interpretación tendría que la

Más detalles

Universidad Rey Juan Carlos. Prueba de acceso para mayores de 25 años. Física obligatoria. Año 2010. Opción A. Ejercicio 1. a) Defina el vector velocidad y el vector aceleración de un movimiento y escribe

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

PÉNDULO SIMPLE 2 (2) ( ) y el péndulo realizará oscilaciones armónicas simples (MAS) de período

PÉNDULO SIMPLE 2 (2) ( ) y el péndulo realizará oscilaciones armónicas simples (MAS) de período PÉNDULO SIMPLE 1.- OBJETIVOS 1) Estudio experimental de la ecuación de movimiento del péndulo simple. ) Cálculo de la aceleración de la gravedad terrestre..- FUNDAMENTO TEÓRICO Una masa m cuelga verticalmente

Más detalles

El movimiento Circular

El movimiento Circular El movimiento Circular Definición de movimiento circular: Se define movimiento circular como aquél cuya trayectoria es una circunferencia. Recordar: Una circunferencia es el lugar geométrico de los puntos

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

Cinemática del sólido rígido

Cinemática del sólido rígido Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω B B A A P r B AB A ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto,

Más detalles

ONDAS Y SONIDO JUNIO 1997: 1.- SEPTIEMBRE

ONDAS Y SONIDO JUNIO 1997: 1.- SEPTIEMBRE ONDAS Y SONIDO JUNIO 1997: 1.- Explica el efecto Doppler. SEPTIEMBRE 1997: 2.- La ecuación de una onda que se propaga por una cuerda es y(x,t) = 5 sen (0.628t 2.2x), donde x e y vienen dados en metros

Más detalles

Respuesta correcta: c)

Respuesta correcta: c) PRIMER EXAMEN PARCIAL DE FÍSICA I 04/11/016 MODELO 1 1.- La posición de una partícula que se mueve en línea recta está definida por la relación x=t -6t -15t+40, donde x se expresa en metros y t en segundos.

Más detalles

Un movimiento ondulatorio, una onda, es la propagación de una perturbación, sin transporte

Un movimiento ondulatorio, una onda, es la propagación de una perturbación, sin transporte Movimiento Ondulatorio 1 Movimiento Ondulatorio Un movimiento ondulatorio, una onda, es la propagación de una perturbación, sin transporte neto de materia, pero con transporte de energía. 2 Clases de Ondas

Más detalles

(99-R) Un movimiento armónico simple viene descrito por la expresión:

(99-R) Un movimiento armónico simple viene descrito por la expresión: Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

Districte universitari de Catalunya

Districte universitari de Catalunya SERIE 3 PAU. Curso 2003-2004 FÍSICA Districte universitari de Catalunya Resuelva el problema P1 y responda a las cuestiones C1 y C2. Escoja una de las opciones (A o B) y resuelva el problema P2 y responda

Más detalles

Opción B ANDALUCÍA CONVOCATORIA JUNIO GM T m s (3R T ) 2 Despejando la velocidad orbital: m s v 0 (3R T ) F g F c

Opción B ANDALUCÍA CONVOCATORIA JUNIO GM T m s (3R T ) 2 Despejando la velocidad orbital: m s v 0 (3R T ) F g F c Física 1 Física SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: Tomás Caballero Rodríguez Opción A a) I 1 B B 1 F 1, F, 1 Vemos que la lente divergente desvía los rayos paralelos al eje óptico y que los rayos que

Más detalles

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Materiales * Varilla delgada con orificios practicados

Más detalles

INSTITUCIÓN EDUCATIVA PEDRO ESTRADA FÍSICA GRADO 11 PROFESOR: ELVER RIVAS

INSTITUCIÓN EDUCATIVA PEDRO ESTRADA FÍSICA GRADO 11 PROFESOR: ELVER RIVAS INSTITUCIÓN EDUCATIVA PEDRO ESTRADA FÍSICA GRADO PROFESOR: ELVER RIVAS PRIMER PERIODO MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.).- Movimiento osciatorio..- Cinemática de movimiento armónico simpe. 3.- Dinámica

Más detalles

CONTENIDO INFORMATIVO

CONTENIDO INFORMATIVO FISVIR Física virtual al alcance de todos DOCUMENTO - CONTENIDO INFORMATIVO OBJETOS VIRTUALES DE APRENDIZAJE OVA s CONTENIDO INFORMATIVO CINEMATICA DEL MOVIMIENTO ARMONICO SIMPLE. ELONGACION: Cuando el

Más detalles

Fuerza de roce. Multiplicación de vectores. Impulso Momentum Torque Trabajo Potencia

Fuerza de roce. Multiplicación de vectores. Impulso Momentum Torque Trabajo Potencia Multiplicación de vectores Fuerza de roce Impulso Momentum Torque Trabajo Potencia Disipación de energía y roce. Coeficientes de roce estático y dinámico. Magnitud y dirección de la fuerza de roce en cada

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2 FÍSICA GENERAL I - 2017 GUIA DE TRABAJOS PRÁCTICOS Nº 2 Problema 1: Dos cuerdas A y B soportan un cuerpo cúbico de 20 cm de lado y una masa de 100 kg. Un extremo de la cuerda A está unido a una pared y

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS ÍSICAS II TÉRMINO 2010-2011 PRIMERA EALUACIÓN DE ÍSICA A SOLUCIÓN Pregunta 1 (12 puntos) La trayectoria de un móvil viene descrita por las

Más detalles

Física y Química 4º ESO Apuntes de Cinemática página 1 de 6 CINEMATICA

Física y Química 4º ESO Apuntes de Cinemática página 1 de 6 CINEMATICA Física y Química 4º ESO Apuntes de Cinemática página 1 de 6 CINEMATICA CONCEPTOS BÁSICOS Se dice que un objeto está en movimiento cuando su posición cambia respecto a un sistema de referencia que se considera

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 3 DE 2014 SOLUCIÓN Pregunta 1 (2 puntos) Un grifo

Más detalles

VIBRACIONES Y ONDAS 1. 2.

VIBRACIONES Y ONDAS 1. 2. VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es

Más detalles

ESTUDIO DEL PÉNDULO SIMPLE Página 1

ESTUDIO DEL PÉNDULO SIMPLE Página 1 ESTUDIO DE PÉNDUO SIMPE Página 1 1. OBJETIVOS a. Estudiar la dependencia entre el período de oscilación y * la masa del péndulo. * la amplitud del movimiento. * la longitud del péndulo b. Medir el valor

Más detalles

1. Se aplica un M.A.S. a una determinada masa sobre un resorte. Cómo se denomina el máximo desplazamiento desde el punto de balance?

1. Se aplica un M.A.S. a una determinada masa sobre un resorte. Cómo se denomina el máximo desplazamiento desde el punto de balance? Física de PSI - movimiento armónico simple (M.A.S.) Preguntas de múltiple opción 1. Se aplica un M.A.S. a una determinada masa sobre un resorte. Cómo se denomina el máximo desplazamiento desde el punto

Más detalles

1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100

1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 ONDAS 1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 Å. a) Calcular la longitud de onda; b) Escribir la ecuación de onda correspondiente. (1 Å = 10-10 m; v sonido = 340

Más detalles

Movimientos vibratorio y ondulatorio.-

Movimientos vibratorio y ondulatorio.- Movimientos vibratorio y ondulatorio.- 1. Una onda armónica, en un hilo tiene una amplitud de 0,015 m. una longitud de onda de 2,4 m. y una velocidad de 3,5 m/s. Determine: a) El período, la frecuencia

Más detalles

Tema 1: Oscilaciones

Tema 1: Oscilaciones 1/42 Fátima Masot Conde Ing. Industrial 2006/07 2/42 Índice: 1.. Características. Representación Matemática. 2. Energía del M.A.S. 3. Algunos Sistemas Oscilantes. Péndulo Simple. Péndulo Físico. Masa+Muelle

Más detalles

Laboratorio dé Estática y Dinámica. Péndulo Simple Fis. Martín Pérez Díaz

Laboratorio dé Estática y Dinámica. Péndulo Simple Fis. Martín Pérez Díaz Laboratorio dé Estática y Dinámica. Péndulo Simple Fis. Martín Pérez Díaz PENDULO SIMPLE: OBJETIVOS: 1) El alumno podrá representar gráficamente el Movimiento de un Péndulo. 2) Comprobará el principio

Más detalles

1. Las gráficas nos informan

1. Las gráficas nos informan Nombre y apellidos: Puntuación: 1. Las gráficas nos informan Una partícula de 50 g de masa está realizando un movimiento armónico simple. La figura representa la elongación en función del tiempo. 0,6 0,5

Más detalles

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω Suponiendo un cuerpo rígido que gira con velocidad angular ω alrededor del eje Z que permanece fijo al cuerpo. dl = ( dm R 2

Más detalles

TEMA 1 Parte I Vibraciones libres y amortiguadas

TEMA 1 Parte I Vibraciones libres y amortiguadas TEMA 1 Parte I Vibraciones libres y aortiguadas 1.1. Introducción: grados de libertad y agnitudes características VIBRACIÓN MECÁNICA: Oscilación repetida en torno a una posición de equilibrio - Vibraciones

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

DINÁMICA. Física 1º bachillerato Dinámica 1

DINÁMICA. Física 1º bachillerato Dinámica 1 DINÁMICA 1. Fuerzas. 2. Principios de la dinámica. 3. Momento lineal (o cantidad de movimiento). 4. Impulso mecánico. 5. Interacción gravitatoria. 6. Fuerza centrípeta. 7. Fuerza elástica. 8. Fuerza de

Más detalles

1 Movimiento Oscilatorio

1 Movimiento Oscilatorio 1 Movimiento Oscilatorio 1.1 El Resorte Ley de Hooke: F = kx k: constante del resorte, se mide en N/m. 1.2 Movimiento Oscilatorio La solución de la ecuación de movimiento: ma = kx 1 es: x(t) = A cos(!t

Más detalles

Dinámica en dos o tres dimensiones

Dinámica en dos o tres dimensiones 7.0.2. Dinámica en dos o tres dimensiones Ejercicio 7.27 Un cuerpo de masa 8kg, describe una trayectoria cuyas ecuaciones paramétrica son: x =2+5t 2t 2 m e y = t 2 m.determinela fuerza aplicada sobre el

Más detalles