Matemáticas Financieras. Notas de Clase Carlos Mario Morales C

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas Financieras. Notas de Clase -2010 Carlos Mario Morales C"

Transcripción

1 Matemáticas Financieras Notas de Clase Carlos Mario Morales C

2 Introducción La Matemática Financiera es una derivación de las matemáticas aplicadas que estudia el valor del dinero en el tiempo. La disciplina a través de una serie de modelos matemáticos sirve de apoyo a las personas, administradores y comerciantes en la toma racional de decisiones al momento de escoger la mejor alternativa de inversión. De esta forma, la matemática financiera es una herramienta básica para la Gestión y Administración Financiera; actividad está en la cual directa o indirectamente está involucrado todo el staff administrativo de la empresa que tiene a su cargo asegurar los resultados; es decir la generación de valor del negocio. Así, el texto ofrece a los estudiantes y profesionales con orientación a los negocios los fundamentos básicos para el ejercicio de la administración financiera. En la primera parte se estudia el tema de las matemáticas financieras; la segunda analiza la evaluación financiera de proyectos y finalmente en la tercera, se hace una introducción a los indicadores financieros. El texto propone el estudio de las matemáticas financieras desde la dimensión práctica, sin dejar de realizar las conceptualizaciones necesarias; es decir, a partir de los elementos teóricos se realizan aplicaciones orientadas a situaciones empresariales, permitiendo a los estudiantes, de esta forma, desarrollar las habilidades requeridas para una práctica profesional financiera. Para procurar lo anterior, la exposición de cada tema se inicia con los elementos teóricos ilustrando su aplicación con ejemplos o situaciones de la práctica empresarial; en cada unidad de aprendizaje se presentan ejercicios resueltos y se proponen casos para su solución. Para la solución de los ejemplos, casos y ejercicios aplicamos en forma combinada las fórmulas y las funciones financieras de Excel o simplemente la función, utilizando el siguiendo procedimiento 1 básico: 1. Identificación del problema y ordenamiento de los datos, 2. Aplicación del modelo apropiado para el caso identificado (fórmula o fórmulas) y, 3. Empleo de las funciones financieras de Excel. 1 ACHING GUZMAN, Cesar. Aplicación Financieras de Excel. Editorial: Prociencia y Cultura S.A. Bogotá: Carlos Mario Morales C

3 Conceptos Generales Algunas definiciones Matemáticas financieras Conjunto de herramientas matemáticas, que permiten analizar cuantitativamente la viabilidad o factibilidad económica y financiera de los proyectos de inversión. Analiza el valor del dinero en el tiempo Interés El interés es la cantidad que se paga o se cobra por el uso del dinero. Cuando alguien toma prestado dinero, este debe pagar por su uso; en dicho pago debe estar incluido tanto la pérdida del valor del dinero; como también la renta por el uso del dinero. De igual manera, si en vez de un crédito lo que se hace es prestar dinero (invertir), entonces se querrá recibir, aparte de lo invertido, un monto a través del cual se recupere el valor que ha perdido el dinero en el tiempo y una renta por el préstamo del dinero. Tasa de interés Es el porcentaje al que está invertido un capital en una unidad de tiempo, determinando lo que se refiere como "el precio del dinero en el mercado financiero". La tasa de interés (expresada en porcentajes) representa un balance entre el riesgo y la posible ganancia (oportunidad) de la utilización de una suma de dinero en una situación y tiempo determinado. En este sentido, la tasa de interés es el precio del dinero, el cual se debe pagar/cobrar por tomarlo prestado/cederlo en préstamo en una situación determinada. Porcentajes Cuando se opera con porcentajes en este texto, se hace con la expresión decimal (0.20), por ejemplo 20% = 0.20 = (20/100), que es la forma correcta de trabajar con las fórmulas. Los resultados de las operaciones lo expresamos generalmente con cuatro decimales, en el caso de los factores o índices. Las respuestas finales de los ejercicios se expresan en con dos decimales. En ambos casos los resultados son redondeados por exceso o por defecto Interés Simple Si una operación es a interés simple, entonces el interés es calculado sobre el capital original para el periodo completo de la transacción y los interés son pagados al prestamista, sin que estos se reinviertan. Es decir, al cabo del periodo se reconoce al prestamista los intereses; iniciándose a partir de allí una nueva liquidación solo sobre el monto original; sin que los intereses se capitalicen para generar nuevos sobre ellos nuevos intereses. Capitalización de intereses 3 Carlos Mario Morales C

4 Si al final del periodo de inversión en vez de devolver los intereses devengados al prestamista, estos se suman al capital original, para a partir de ahí, calcular un nuevo interés, se dice que los intereses se capitalizan. Interés Compuesto Si una operación es a interés compuesto, entonces el interés es calculado sobre el capital para un periodo reinvirtiéndose los intereses; es decir, al cabo del periodo los intereses se capitalicen para calcular sobre dicho monto los nuevos intereses. Proyecto de Inversión Son oportunidades de desembolsos de dinero del cual se espera obtener rendimientos (flujos de efectivo o retornos) de acuerdo a unas condiciones particulares de riesgo. Los rendimientos deben permitir recuperar las inversiones, cubrir los gastos operacionales y además obtener una rentabilidad de acuerdo al nivel de riesgo. Riesgo El riesgo se describe como la posibilidad de que un resultado esperado no se produzca. Cuanto más alto sea el nivel de riesgo, tanto mayor será la tasa de rendimiento y viceversa. Factibilidad Económica Tiene que ver con determinar la bondad de invertir o no los recursos económicos en una alternativa de inversión proyecto-; sin importar el origen de dichos recursos. Factibilidad Financiera Tiene que ver con determinar si el retorno es atractivo o no para los dueños del dinero, para el inversionista. Es decir, lo que interesa es determinar si la inversión efectuada exclusivamente por el dueño, obtiene la rentabilidad esperada por él. Factibilidad económica versus factibilidad financiera En el ámbito de la evaluación de proyecto es de vital importancia comprender que a cada decisión de inversión, corresponde una decisión de financiación. Con la condición fundamental de que la rentabilidad de la inversión, debe satisfacer la estructura financiera de la empresa. La decisión de inversión, como ya se menciono, tiene que ver con la estructura operativa de la empresa y con una de las funciones de la Administración financiera que es definir donde invertir. Para poder tomar la decisión de invertir hay necesidad de definir los indicadores de gestión financiera que permitan establecer si la empresa cumple con su objetivo financiero básico y si los proyectos de inversión que enfrenta cotidianamente la acercan a su meta. La decisión de financiación, otra de las decisiones fundamentales de la administración, tienen que ver con la estructura financiera de la empresa o proyecto, esta estructura se refiere a los dueños de los recursos (deuda o recursos propios), la cual tiene un costo que se denomina el costo de capital promedio ponderado. Al evaluar la estructura financiera del proyecto, interesa diseñar indicadores financieros que permitan identificar si los inversionistas o dueños de la empresa 4 Carlos Mario Morales C

5 están alcanzando la meta financiera, la cual en empresas que tengan ánimo de lucro, es ganar más dinero ahora y en el futuro. Valor Económico Agregado Si la rentabilidad de una inversión supera el costo de capital promedio ponderado entonces se puede afirmar que se generara valor económico para los propietarios de la empresa. Solamente en este caso se puede decir que los inversionistas están satisfaciendo sus expectativas y alcanzando sus objetivos financieros. Inflación Se define como inflación al aumento generalizado del nivel de precios de bienes y servicios en una economía. También se puede definir como la caída del poder adquisitivo de una moneda en una economía en particular. Esto significa que, en una economía con inflación, la cantidad de productos que se pueden comprar con una cantidad determinada de dinero hoy es mayor a cantidad de productos que se podría comprar dentro de un tiempo. Deflación Contrario a la inflación, la deflación es la disminución generalizada del nivel de los precios de los bienes y servicios en una economía; es decir, es el aumento del poder adquisitivo de la moneda. Esto significa que, en una economía con deflación, la cantidad de productos que se pueden comprar con una cantidad determinada de dinero hoy es menor a la cantidad de productos que se podría comprar dentro de un tiempo. Devaluación No se puede confundir con la inflación, la devaluación es la pérdida del valor del dinero con respecto a otra moneda, por ejemplo el dólar. La devaluación puede ser causada por muchos factores: la falta de demanda de la moneda o una mayor demanda de la moneda con la cual se le compara. Reevaluación Es lo contrario a la devaluación, es decir es la valorización de una moneda, con respecto a otra. Nomenclatura básica VP: Capital principal; valor presente, expresado en valores monetarios VF: Capital más interés; valor futuro expresado en valores monetarias j: Tasa nominal o la tasa de interés anual t: Número de años (tiempo) m: Número de capitalizaciones por año n: Número de períodos de composición i: Tasa de interés efectiva i EA : Tasa de interés efectiva anual I: Interés VPN: Valor Presente Neto TIR: Tasa Interna de Retorno 5 Carlos Mario Morales C

6 A: Anualidad o cuota uniforme VPA: Valor presente de una anualidad VFA: Valor futuro de una anualidad i a : Tasa de interés anticipada i v : Tasa de interés vencida Funciones Financieras de Excel Las funciones financieras más utilizadas en el texto son: NPER Devuelve el número de períodos de una inversión basándose en los pagos periódicos constantes y en la tasa de interés constante. Sintaxis: NPER(tasa; pago; va; vf; tipo) Tasa: tasa de interés por período. Pago: pago efectuado en cada período; debe permanecer constante durante la vida de la anualidad. Por lo general, pago incluye el capital y el interés, pero no incluye ningún otro arancel o impuesto. Va: Valor actual o la suma total de una serie de futuros pagos. Vf: es el valor futuro o un saldo en efectivo que se desea lograr después de efectuar el último pago. Si el argumento vf se omite, se supone que el valor es 0 (por ejemplo, el valor futuro de un préstamo es 0). Tipo: es el número 0 ó 1 e indica cuándo vencen los pagos (0=final del periodo; 1=inicio del periodo) PAGO Calcula el pago de un préstamo basándose en pagos constantes y en una tasa de interés constante. Sintaxis: PAGO(tasa;nper;va;vf;tipo) Tasa: es el tipo de interés del préstamo. Nper: es el número total de pagos del préstamo. Va: es el valor actual, o la cantidad total de una serie de futuros pagos. También se conoce como valor bursátil. Vf: es el valor futuro o un saldo en efectivo que se desea lograr después de efectuar el último pago. Si el argumento vf se omite, se supone que el valor es 0 (es decir, el valor futuro de un préstamo es 0). Tipo: es el número 0 o 1, e indica cuándo vencen los pagos (0=final del periodo; 1=inicio del periodo) TASA 6 Carlos Mario Morales C

7 Devuelve la tasa de interés por período de una anualidad. TASA se calcula por iteración y puede tener cero o más soluciones. Si los resultados sucesivos de TASA no convergen dentro de 0, después de 20 iteraciones, TASA devuelve el valor de error # NUM! Sintaxis: TASA(nper;pago;va;vf;tipo;estimar) Nper: es el número total de períodos de pago en una anualidad. Pago: es el pago efectuado en cada período, que no puede variar durante la vida de la anualidad. Generalmente el argumento pago incluye el capital y el interés, pero no incluye ningún otro arancel o impuesto. Si se omite el argumento pago, deberá incluirse el argumento vf. Va: es el valor actual, es decir, el valor total que tiene actualmente una serie de pagos futuros. Vf: es el valor futuro o un saldo en efectivo que se desea lograr después de efectuar el último pago. Si el argumento vf se omite, se supone que el valor es 0 (por ejemplo, el valor futuro de un préstamo es 0). Tipo: es el número 0 ó 1 e indica cuándo vencen los pagos. (0=final del periodo; 1=inicio del periodo) VA Devuelve el valor actual de una inversión. El valor actual es el valor que tiene actualmente la suma de una serie de pagos que se efectuarán en el futuro. Por ejemplo, cuando pide dinero prestado, la cantidad del préstamo es el valor actual para el prestamista. Sintaxis: VA(tasa;nper;pago;vf;tipo) Tasa: es la tasa de interés por período. Por ejemplo, si obtiene un préstamo para un automóvil con una tasa de interés anual del 10 por ciento y efectúa pagos mensuales, la tasa de interés mensual será del 10%/12 o 0,83%. En la fórmula escribiría 10%/12, 0,83% ó 0,0083 como tasa. Nper: es el número total de períodos de pago en una anualidad. Por ejemplo, si obtiene un préstamo a cuatro años para comprar un automóvil y efectúa pagos mensuales, el préstamo tendrá 4*12 (ó 48) períodos. La fórmula tendrá 48 como argumento nper. Pago: es el pago efectuado en cada período, que no puede variar durante la anualidad. Generalmente el argumento pago incluye el capital y el interés, pero no incluye ningún otro arancel o impuesto. Por ejemplo, los pagos mensuales sobre un préstamo de $ a cuatro años con una tasa de interés del 12 por ciento para la compra de un automóvil, son de 263,33 $. En la fórmula escribiría -263,33 como argumento pago. Si se omite el argumento pago, deberá incluirse el argumento vf. Vf: es el valor futuro o un saldo en efectivo que se desea lograr después de efectuar el último pago. Si el argumento vf se omite, se supone que el valor es 0 (por ejemplo, el valor futuro de un préstamo es 0). Si desea ahorrar $ para pagar un proyecto especial en 18 años, $ sería el valor futuro. De esta forma, es posible hacer una estimación 7 Carlos Mario Morales C

8 conservadora a cierta tasa de interés y determinar la cantidad que deberá ahorrar cada mes. Si se omite el argumento vf, deberá incluirse el argumento pago. Tipo: es el número 0 ó 1 e indica cuándo vencen los pagos. (0=final del periodo; 1=inicio del periodo) VF Devuelve el valor futuro de una inversión basándose en pagos periódicos constantes y en una tasa de interés constante. Sintaxis: VF(tasa;nper;pago;va;tipo) Tasa: es la tasa de interés por período. Nper: es el número total de períodos de pago en una anualidad. Pago: es el pago que se efectúa cada período y que no puede cambiar durante la vigencia de la anualidad. Generalmente, el argumento pago incluye el capital y el interés pero ningún otro arancel o impuesto. Si se omite el argumento pago, se deberá incluir el argumento va. Va: es el valor actual o el importe total de una serie de pagos futuros. Si se omite el argumento va, se considerará 0 (cero) y se deberá incluir el argumento pago. Tipo: es el número 0 ó 1 e indica cuándo vencen los pagos. Si se omite el tipo, se calculará como 0. (0=final del periodo; 1=inicio del periodo) 8 Carlos Mario Morales C

9 1 Unidad de Aprendizaje Interés Simple Contenido Introducción 1. Concepto del interés simple 2. Formula de interés simple 3. Clases de interés simple 4. Capital Final Valor futuro 5. Capital inicial Valor presente 6. Representación gráfica Flujo de Caja- 7. Interés Anticipado - Descuento simple. 8. Tasa realmente cobrada en una operación de descuento 9. Descuentos en cadena 10. Ejercicios resueltos 11. Ejercicios propuestos 9 Carlos Mario Morales C

10 Introducción Si se considera el dinero como un bien es de esperarse en una economía de mercado, que el costo que se paga por su uso sufra altas y bajas, como cualquier mercancía. De esta forma el costo del dinero dependerá de las condiciones de oferta y demanda del mercado y otras variables como la inflación, devaluación y revaluación. Por eso la expresión: No es lo mismo un millón de pesos de hoy, que un millón de pesos dentro de un año, se utiliza para significar que el poseedor del dinero espera que se le recompense por no utilizar el dinero y ponerlo a disposición de otro, por un tiempo. De esta forma, para las personas no es igual recibir una misma cifra de dinero hoy que un tiempo después; es decir, no se puede decir que dichos valores sean equivalentes. Dos cifras de dinero son equivalentes cuando a una persona le es indiferente recibir una suma de dinero hoy (VP) y recibir otra suma diferente (VF) al cabo de un periodo. El Interés es el monto de dinero que permite hacer equivalente una cifra pasada, con una cifra futura; es decir, el interés permite hacer equivalente cifras de dinero en el tiempo. El concepto de interés es de uso amplio en la vida comercial y financiera; esto ha conducido a que tenga múltiples acepciones, entre otras: - El valor del dinero en el tiempo - Valor recibido o entregado por el uso del dinero - Utilidad o ganancia que genera un capital - Precio que se paga por el uso del dinero - Rendimiento de una inversión - Entre otros. 1. Concepto de Interés Simple Es el canon de arrendamiento que se paga por hacer uso de un monto de dinero llamado principal o capital, durante un periodo de tiempo determinado. Se dice que el interés es Simple cuando se paga dicho canon de arrendamiento al momento de liquidarse, es decir al final del periodo. 2. Formula de interés simple El interés simple es el resultado de calcular el capital por la tasa periódica de interés por el número de periodos, es decir: I = VP * i * n (1) VP: Capital o monto principal 10 Carlos Mario Morales C

11 i: Tasa de interés periódica n: Número de periodos. 3. Clases de interés simple No existe un criterio único para aplicar el interés simple; la aplicación depende de la operación comercial o financiera o incluso muchas veces del sector económico o las costumbres comerciales. Por lo anterior, dependiendo de la base en días para el cálculo, se puede hacer distinción de dos clases de aplicaciones: Interés Ordinario, que es aquel donde se toma como base para el cálculo, un año de 360 días e Interés Exacto, cuando se toma como base para el cálculo, años de 365 días; los cuales a su vez pueden llegar a tomar algunas de las variantes que se muestran en la siguiente tabla: Interés Ordinario (Base de Cálculo 360) Interés Exacto (Base de Calculo 365) Con tiempo exacto (Interés Bancario) (Considera los días exactos en los cuales se ha utilizado el préstamo y una base de 360 días al año) Con tiempo aproximado (Interés Comercial) (Considera indistintamente meses de 30 días y una base de 360 días al año) Exacto o Verdadero (Interés Racional) (Considera los días exactos en los cuales se ha utilizado el préstamo y la base son los días exactos del año) Exacto sin Bisiesto (Interés base 365 días) (Considera los días exactos en los cuales se ha utilizado el préstamo y una base de 365 días al año (No considera bisiestos)) Con tiempo aproximado (Considera meses de 30 días y la base son los días exactos del año (No tiene utilidad práctica)) Tiempo exacto Meses de 30 días Tiempo exacto Tiempo exacto sin bisiesto Meses de 30 días Clases de interés simple - Ejemplos Ejemplo 1 Sandra quiere conocer cuál es el interés que debe cancelar por el mes de febrero del año 2004 (bisiesto) sobre un préstamo de $ , si se le cobra una tasa del 20% Nominal Anual. Solución 11 Carlos Mario Morales C

12 El monto o capital es: $ El interés es 20% Nominal anual; es decir, es lo que se cobraría por un año. El periodo en que se causa el interés es una fracción de año: 29 (días del mes de febrero) de 360 días, si aplicamos interés bancario. Con las anteriores consideraciones, el interés se calcula, como: I = * 0,2 * (29/360) = ,11 El monto que Sandra debe cancelar por el préstamo de un millón durante el mes de febrero, aplicando interés bancario es: ,11 Ejemplo 2 Sandra quiere conocer cuál es el interés que debe cancelar por el mes de febrero del año 2004 (bisiesto) sobre un crédito comercial de $ para la compra de un TV, si se le cobra una tasa del 20% Nominal Anual. Solución El monto o capital es: $ El interés es 20% Nominal anual; es decir, es lo que se cobraría por un año. El periodo en que se causa el interés es una fracción de año: 30 (días del mes de febrero) de 360 días, si aplicamos interés comercial. Con las anteriores consideraciones, el interés se calcula, como: I = * 0,2 * (30/360) = ,67 El monto que Sandra debe cancelar por el crédito para la compra de un TV durante mes de febrero, aplicando interés comercial es: ,67 Ejemplo 3 Sandra quiere conocer cuál es el interés que debe cancelar por el mes de febrero del año 2004 (bisiesto) sobre un préstamo de $ , si se le cobra una tasa del 20% Nominal Anual y el prestamista hace el cálculo con interés racional Solución El monto o capital es: $ El interés es 20% Nominal anual; es decir, es lo que se cobraría por un año. El periodo en que se causa el interés es una fracción de año: 29 (días del mes de febrero) de 366 días, si aplicamos interés racional. Con las anteriores consideraciones, el interés se calcula, como: I = * 0,2 * (29/366) = ,99 12 Carlos Mario Morales C

13 El monto que Sandra debe cancelar por el préstamo en este caso es de: ,99 Ejemplo 4 Sandra quiere conocer cuál es el interés que debe cancelar por el mes de febrero del año 2004 (bisiesto) sobre un préstamo de $ , si se le cobra una tasa del 20% Nominal Anual y el prestamista hace el cálculo con interés base 365 Solución El monto o capital es: $ El interés es 20% Nominal anual; es decir, es lo que se cobraría por un año. El periodo en que se causa el interés es una fracción de año: 28 (días del mes de febrero) de 365 días, si aplicamos interés base 365, que recordemos no considera bisiestos. Con las anteriores consideraciones, el interés se calcula, como: I = * 0,2 * (28/365) = ,47 El monto que Sandra debe cancelar por el préstamo en este caso es de: ,47 Ejemplo 5 Sandra quiere conocer cuál es el interés que debe cancelar por el mes de febrero del año 2004 (bisiesto) sobre un préstamo de $ , si se le cobra una tasa del 20% Nominal Anual y el prestamista hace el cálculo con interés exacto-tiempo aproximado Solución El monto o capital es: $ El interés es 20% Nominal anual; es decir, es lo que se cobraría por un año. El periodo en que se causa el interés es una fracción de año: 30 (días del mes de febrero) de 366 días, si aplicamos interés exacto-tiempo aproximado. Con las anteriores consideraciones, el interés se calcula, como: I = * 0,2 * (30/366) = ,44 El monto que Sandra debe cancelar por el préstamo en este caso es de: ,44 4. Capital Final (Valor futuro) El capital final que recibirá el prestamista o inversionista, corresponde al capital inicial más los intereses. A este valor se le denomina valor final, valor futuro y se representa por VF VF = VP + I VF = VP + (VPin) 13 Carlos Mario Morales C

14 VF = VP( 1 + in) (2) Donde: VP: Capital o monto principal i: Tasa de interés periódica n: Número de periodos. VF: Valor futuro 5. Capital Inicial (Valor presente) El capital inicial que deberá aportar el prestamista o inversionista, se puede calcular a partir del valor futuro, el interés y la cantidad de periodos a los cuales se hace la inversión. A este valor se le denomina valor presente y se representa por VP VF = VP( 1 + in) VP = VF/(1+in) (3) Donde: VP: Capital o monto principal i: Tasa de interés periódica n: Número de periodos. VF: Valor futuro 6. Representación gráfica Flujo de Caja- Para mayor comprensión del comportamiento de las operaciones financieras; estas se pueden representar a través de una gráfica denominada FLUJO DE CAJA. El flujo de Caja ilustra en una línea del tiempo los ingresos con flechas hacia arriba y los egresos, inversiones, que ocurren en una operación financiera. Ingresos Egresos Horizonte de tiempo 14 Carlos Mario Morales C

15 Grafica No 1 Flujo de Caja Ejemplos valor presente y valor futuro. Ejemplo 6. María Cristina quiere saber cuánto recibirá al final exactamente si presta $ entre el 23 de agosto hasta el 27 de octubre de 1999 a una tasa de interés del 35% nominal anual La situación se ilustra gráficamente como se muestra a continuación: VF =? 23/08/99 Días = 65 27/10/99 VP = i = 35% NA El monto o capital es: $ El interés es 35% Nominal anual; es decir, es lo que se cobraría por un año. El periodo, en el cual se causan intereses, en días entre y el es 65 días; que es una fracción de año o 365 días, si aplicamos interés racional. Con las anteriores consideraciones, el valor final se calcula, como: VF = VP(1 + in) VF = *(1+(0,2*(65/365))) = ,30 El monto que recibirá María Cistina al final será: ,10; esto significa que ella a devengado ,30 pesos de interés. Ejemplo 7. Juan debe pagar $ de matrícula en la universidad el día 13 de diciembre. Cuánto dinero debe depositar el 5 de agosto del 2005 en una cuenta de ahorros que paga el 23% Nominal anual? La situación se ilustra gráficamente como se muestra a continuación: 05/08/05 VP =? Días =? i = 23% NA VF = $ /12/05 15 Carlos Mario Morales C

16 El Valor Final (VF) es: $ El interés es 23% Nominal anual; es decir, es lo que se cobraría por un año. El periodo, en el cual se causan intereses, en días entre y el es 130 días; que es una fracción del año o 360 días, si aplicamos interés bancario. Con las anteriores consideraciones, el valor presente se calcula, como: VP = VF/(1 + in) VP = /(1+(0,23*(130/360))) = ,23 El monto que Juan debe depositar en la cuenta de ahorros es: $ ,23. Ejemplo 8 Julián dueño de una pequeña empresa ha tenido excedentes por $ durante el pasado periodo; él quiere conocer a que tasa de interés comercial dichos excedentes se convertirán en $ en 6 meses. La situación se ilustra gráficamente como se muestra a continuación: VP = Meses i=? VF = $ El Valor Final (VF) es: $ El Valor inicial (Presente) es: $ El periodo, en el cual se causan intereses son 6 meses (180 días) que es una fracción del año (360 días); si aplicamos interés Comercial. Con las anteriores consideraciones, el interés se calcula, como: VF = VP * (1 + in) ((VF/VP) -1)/n = i i = (( / )-1)/(180/360))) = 0,33333 La tasa de Interés NA que se le debe reconocer a Julián es: 33,33% Ejemplo 9 16 Carlos Mario Morales C

17 Julián dueño de una pequeña empresa ha tenido excedentes por $ durante el pasado periodo; él quiere conocer durante cuánto tiempo debe colocar este dinero para convertir estos excedentes en $ , si la entidad bancaria le reconoce un interés NA del 27%. La situación se ilustra gráficamente como se muestra a continuación: VP = n =? i= 27% VF = $ El Valor Final (VF) es: $ El Valor inicial (Presente) es: $ El periodo necesario para acumular la cifra final, en días, serán una fracción del año (360 días); si aplicamos interés bancario. La tasa de interés Nominal Anual: 27% Con las anteriores consideraciones, el número de días se calcula, como: VF = VP * (1 + in) ((VF/VP) -1)/i = (n/360) i = (( / )-1)*360/(0,27))) = 666,67 El número de días que se debe colocar el monto inicial para al final obtener los 4,5 milloes es: Interés Anticipado - Descuento El interés anticipado consiste en causar los intereses al principio del periodo. El descuento se representa por la letra D Tasa Anticipada (Tasa de descuento): Es la que genera el interés anticipado y se representa por la letra d Descuento Simple Consiste en cobrar los intereses por anticipado calculados sobre el valor final; de esta forma el Descuento se calcula, como: D = VF*d*n (3) 17 Carlos Mario Morales C

18 Donde: d: Tasa de descuento D: Descuento Valor Líquido (VT) Es el valor nominal menos el descuento VT = VF D VT = VF (VF*d*n) VT = VF*(1 d*n) (4) Ejemplos Interés Anticipado - Descuento Ejemplo 10 El 17 de abril del 99 una pequeño comerciante compra mercancías por un valor de $ para surtir su almacén; este realiza el pago a la fabrica a través de una letra de cambio por valor nominal de $ con vencimiento el 17 de julio. El 20 de junio la fábrica por problemas de liquidez ofrece en venta la letra al banco Medellín, el cual hará un descuento (interés anticipado) del 36% aplicado al valor final del documento. Cuál es el valor que recibirá la fabrica Valor líquido? La situación se ilustra gráficamente como se muestra a continuación: VF = /04/99 VT =? i= 36% 17/07 El Valor Final (VF) es: $ El periodo en que se causa el descuento es: entre el 20/06 y 17/07, es decir: 27 días que es una una fracción del año (360 días); si aplicamos interés bancario. La tasa de descuento Nominal Anual: 36% Con las anteriores consideraciones, el Valor Liquido se calcula, como: VT = VF * (1 - dn) 20/06 18 Carlos Mario Morales C

19 VT = ( * (1-0,36(27/360)) = ,00 El valor que recibirá el fabricante es: ,00 Ejemplo 11 Cuál debe ser el valor nominal de un documento de cambio que un comerciante descuenta a un interés del 38% Nominal Anual entre el y el y su valor liquido es $ ? La situación se ilustra gráficamente como se muestra a continuación: VF =? 17/12/98 VT = i= 38% 25/01/99 El Valor Nominal (VF) es:? El periodo en que se causa el descuento es: entre el 17/12/98 y 25/01/77, es decir: 39 días que es una fracción del año (360 días); si aplicamos interés comercial. La tasa de descuento Nominal Anual: 38% Con las anteriores consideraciones, el Valor Nominal (VF) se calcula, como: VF = VT/(1 - dn) VT = ( / (1-0,38(39/360)) = ,97 El valor nominal del documento debe ser: ,97 8. Tasa Real en una operación de Descuento La tasa de descuento se aplica al valor final del documento; a diferencia del interés simple que se aplica al valor inicial, en consecuencia, es lógico, que para el mismo valor se obtienen diferentes resultados de interés cobrado; para calcular la tasa real en una operación de descuento debemos aplicar la formula de monto simple al resultado final. Lo anterior se ilustra con el siguiente ejemplo. Ejemplo 12 Si el Banco Medellín descuenta una letra de cambio de $ días antes del vencimiento al 38%. Cuál es la tasa de interés simple real que se cobra por esta operación? La situación se ilustra gráficamente como se muestra a continuación: 19 Carlos Mario Morales C

20 35 días VF = i= 38% VT =? Lo primero que debemos hacer es investigar cual es el Valor liquido de la transacción: VT Valor Nominal (VF): El periodo en que se causa el descuento es 35 días que es una fracción del año (360 días); si aplicamos interés bancario. La tasa de descuento Nominal Anual: 38% Con las anteriores consideraciones, el Valor Nominal (VF) se calcula, como: VT = VF*(1 - dn) VT = ( *(1- -0,38(35/360)) = ,33 El valor líquido de la letra de cambio es: ,33 Así, la situación de la operación financiera se muestra en la siguiente gráfica, a partir de esta se pide determinar la Tasa de Interés Real de la operación. 35 días VF = i=? VT = ,33 Podemos de la formula VF = VP(1+in), despejar i para conocer, así la verdadera tasa de interés de la operación VF = VP(1+in) ((VF/VP) -1)/n = i (( / ,33)-1)/(35/360) = 0,3946 La tasa Nominal Anual Real de interés de la operación es: 39,46% 9. Descuentos en Cadena 20 Carlos Mario Morales C

21 En una operación comercial pueden ocurrir varios descuentos; tal es el caso cuando una empresa vende mercancía; en este caso se ofrecen una serie de descuentos que son aplicables a la misma factura. Descuento por volumen Descuento por pronto pago Descuento por embalaje Descuento por temporada Descuento por fidelidad En la siguiente tabla se muestra el efecto matemático causado por una serie de descuentos sobre un mismo monto (una factura por ejemplo). Descuentos en Cadena Valor Factura Antes Tasa descuento Valor Descuento Valor Factura Después de Descontada A d 1 Ad 1 A - Ad 1 = A(1-d 1 ) A(1-d 1 ) d 2 A(1-d 1 ) d 2 A(1-d 1 )-A(1-d 1 ) d 2 = A(1-d 1 )(1-d 2 ) A(1-d 1 )(1-d 2 ) d 3 A(1-d 1 )(1-d 2 ) d 3 (A(1-d 1 )(1-d 2 )-A(1-d 1 )(1-d 2 )d 3 ) = A(1-d 1 )(1-d 2 )(1-d 3 ) A(1-d 1 )(1-d 2 ) (1-d n-1 ) d n A(1-d 1 )(1-d 2 ) (1-d n-1 ) d n = A(1-d 1 )(1-d 2 )(1-d 3 ) (1-d n ) El descuento total será el valor inicial del monto (factura) menos el valor final, es decir después de ser descontado el monto. D = A(1-(1-d 1 )(1-d 2 ) (1-d n )) Al dividir el valor final del monto (factura) con el valor inicial de la misma factura, se obtiene la tasa de descuento promedio, esto es: d = 1-(1-d 1 )(1-d 2 ) (1-d n ) Ejemplo 13 Un comerciante quiere conocer el descuento promedio que obtiene y el valor final de una factura después de realizar compras por $ ; si el proveedor de la mercancía le 21 Carlos Mario Morales C

22 concede los siguientes descuentos: por pronto pago: 10%; por compra al por mayor 25%; y por temporada: 8% El descuento total lo puede calcular como: D = A(1-(1-d 1 )(1-d 2 ) (1-d n )) D = *(1-(1-0,1)(1-0,25)(1-0,08)) = ,5 De esta forma, el valor final de la factura es: A D = ,5 = ,5 La tasa de descuento total se calcula como: d = 1-(1-d 1 )(1-d 2 ) (1-d n ) d = 1-(1-0,1)(1-0,25)(1-0,08) = 0,3790 = 37,90% 10. Ejercicios resueltos 1) Calcular el interés simple comercial de $ desde el del 18 de marzo al 18 de junio del mismo año al 3.4% mensual meses i = 3,4% mensual I = ( x 0,034) x 3 = ) Una persona invierte $ al 40% desde el 15 de septiembre de 1998 hasta el 18 de noviembre de Calcular: a) El monto racional y b) el monto bancario i = 40% Real Bancario Septiembre Octubre Carlos Mario Morales C

23 Noviembre Total I = (64/365) x 0,4 = ,22; entonces el valor final S = ,22 (Racional) I = (64/360) x 0,4 = ,77; entonces el valor final S = ,77 (Bancario) 3) Cuánto debe invertirse hoy 17 de octubre en un fondo que garantiza el 28% simple real para que el 20 de marzo del siguiente año pueda retirar la suma de $ ? S = P =? i = 28% Real Bancario Comercial Octubre Noviembre Diciembre Enero Febrero Marzo Total 154 S = P + ipn S = P(1 + in) P = S/(1 + in) P = /(1 + 0,028 x( 154/365)) = ,73 (Racional) 4) Hallar el valor presente de $ en 31/2 años a1 3% mensual 42 meses S = P =? 23 Carlos Mario Morales C

24 S = P(1 + in) P = S/(1 + in) P = /(1 + (0,03 x 42)) = ,93 5) Hace 6 años compré un lote en $ y hoy se vendió en $6 millones. Hallar la tasa de interés comercial que gane en este negocio. i =? S = años S = P( 1 + in) S/P = 1 + in ((S/P) 1)/n = i (( / ) 1)/6 = i; es decir: i = 94.44% 6) Qué tan rentable es un documento que hoy se puede comprar en $ el cual devolverá al cavo de 3 años la suma de $ ? 3 años S = i =? i = ((S/P)-1)/n i = (( /75.000)-1)/3 = 1,13333; es decir: i = 113,33% 7) Se recibe un préstamo por $1 millón al 42% nominal anual periodo vencido el día 8 de agosto de 1999 con vencimiento el 8 de marzo del Hallar el valor final del préstamo calculando los intereses: a) interés exacto o racional b) interés comercial o base 360 c) interés bancario 24 Carlos Mario Morales C

25 d) interés base 365 Nota: Tenga en cuenta que el año 2000 es un año bisiesto P = i = 42% S =? Exacto o racional Bancario Comercial Agosto Septiembre Octubre Noviembre Diciembre Enero Febrero Marzo Total a) Interés exacto racional I = x 0,42 x (213/366) = ,20 S = ,20 b) Interés Comercial I = x 0,42 x (210/360) = S = c) Interés Bancario I = x 0,42 x (213/360) = S = ) Un pagaré con valor presente de $ emitido el 15 de septiembre de 1999 con plazo de 270 días a una tasa de interés del 30% nominal anual período vencido. Hallar el valor futuro y la fecha de vencimiento en: 25 Carlos Mario Morales C

26 a) interés exacto o racional b) interés comercial o base 360 c) interés bancario d) interés base S=? dias 30% a) Interés Exacto o racional S = P(1 + in) = ( 1 + 0,3(270/366) S = ,42 Fecha de vencimiento: b) Interés Comercial S = P(1 + in) = ( 1 + 0,3(270/360) S = Fecha de vencimiento: c) Interés Bancario S = P(1 + in) = ( 1 + 0,3(270/360) S = Fecha de vencimiento: d) Interés Base S = P(1 + in) = ( 1 + 0,3(270/365) S = Fecha de vencimiento: ) Una letra por $ madura el 23 de agosto de 1998 y va a ser descontada el 17 de julio del mismo año al 38%. Determinar el valor de la transacción. 26 Carlos Mario Morales C

27 % $ P=? D = Sdn Descuento- d: tasa de descuento n: número de periodos VL = S D Valor Liquido- VL = S Sdn VL = S( 1-dn) Exacto o racional Comercial Julio Agosto Total VL = (1 0,38(36/360) VL = Valor Comercial- VL = (1 0,38(37/360) VL = Valor Bancario- 10) El 15 de diciembre de 1999 una empresa recibe un pagaré por $2 millones a un plazo de 90 días al 25% nominal anual vencido de interés comercial simple. El 14 de enero lo negocia con un banco que lo adquiere a una tasa de descuento del 29% nominal anual anticipado en interés bancario. Cuánto recibirá la empresa por el pagaré y cuánto ganará el banco en la operación de descuento? S=? i = 25% S = (1 + 0,25(90/360)) = VL = S(1 dn) 27 Carlos Mario Morales C

28 VL = (1 0,29(60/360)) = ,67 La empresa recibirá: $ ,67 El Banco Ganará: $ , Ejercicios propuestos 1) Halle el valor de maduración de un pagaré con vencimiento el 20 de abril si va a ser descontado el13 de marzo del mismo año a140% y su valor de transacción es de $ ) Una persona solicita un préstamo a un banco por la suma de $ , a un plazo de 90 días y le cobran una tasa anticipada del 38%. a) Cuál es el valor líquido que le entregan? b) Suponga que el banco cobra $ por el estudio del crédito, cuál será el valor liquido? 3) Cuál es el valor del documento que queda en poder de un banco, si el prestatario recibe un valor liquido de $ por un documento con maduración en 90 días, si le cobran una tasa de descuento del 41 %? a) Sin tener en cuenta costos de apertura del crédito y b) Teniendo en cuenta que el banco cobra $2000 por estudio del documento 4) Un documento de valor inicial $ es fechado el 25 de septiembre de 1998 a un plazo de 325 días y un interés del 32%. Si es descontado por un banco el18 de marzo de 1999 al 40% determinar: a) la fecha de vencimiento b) El valor al vencimiento c) El valor de transacción. 5) Hallar la verdadera tasa bancaria que cobra un banco cuando descuenta un documento con valor de maduración de $ si es descontado 25 días antes del vencimiento al41 % nominal anual anticipado. 6) Un almacén ofrece los siguientes descuentos, sobre una mercancía cuyo costo inicial es de $ : 30% por venta al por mayor, 10% por pago al contado y 5% por enviar la mercancía sin empaque. a) Cuál es el valor final de la factura? b) Cuál es el descuento promedio que se otorgó? 7) Una fábrica ofrece un descuento del 25% en ventas al por mayor, e15% por pronto pago y e14% por embalaje. Cuál debe ser el descuento adicional que puede ofrecerse a los empleados de la misma fábrica para que el descuento total no sea superior al 35%? 28 Carlos Mario Morales C

29 8) Demostrar que el interés simple producido por un capital C, colocado durante n años a la tasa de interés i es igual al interés simple que producirá a la tasa proporcional ( i / m ) colocado durante m.n periodos. 9) Calcular la tasa de interés simple proporcional mensual equivalente a la tasa del 9%. 10) Calcular el interés simple que produce un capital de $ en 3 años al 0,8% mensual. 11) A qué tasa de interés el monto de $ será $21.200, a interés simple, en 9 meses? 12) El 10 de enero de 2006 se firmo un pagaré de $6.000 con 9% de interés. En que fecha los intereses serán de $359? 13) Qué suma debe invertirse al 9% para tener $2000 dentro de 8 meses? 14) Una persona firma un pagare por $ el 15 de mayo con vencimiento el 13 de agosto y recibe solo $19.559,90. A que tasa de descuento racional le fue descontado el pagaré? 15) Un inversionista recibió un pagaré que gana intereses del 8%, por $ , el 15 de julio a 150 días. El 20 de octubre del mismo año lo ofrece a otro inversionista que desea ganar 10%. Cuánto recibe por el pagaré el primer inversionista? 29 Carlos Mario Morales C

30 2 Unidad de Aprendizaje Interés Compuesto Contenido Introducción 1. Concepto del interés simple 2. Formula de interés simple 3. Clases de interés simple 4. Capital Final Valor futuro 5. Capital inicial Valor presente 6. Representación gráfica Flujo de Caja- 7. Interés Anticipado - Descuento simple. 8. Tasa realmente cobrada en una operación de descuento 9. Descuentos en cadena 10. Ejercicios resueltos 11. Ejercicios propuestos 30 Carlos Mario Morales C

31 1. Concepto de Interés compuesto En general las operaciones financieras se realizan utilizando interés compuesto. Con este interés, a diferencia del interés simple, cada vez que se liquidan los intereses, éstos se acumulan al capital para formar un nuevo capital (monto), sobre el cual se liquidan intereses nuevamente. Por ejemplo, si se invierte un capital de $1000 al 10% trimestral, durante un año, bajo la modalidad de Interés simple, la liquidación de los intereses será así: I = (1.000)*(10%)*4 = $400, Al cabo de un año el inversionista recibirá $1.400, $1000 correspondiente al capital y $400 a los intereses. La situación se ilustra en la siguiente grafica: $100 $100 $100 $ % 10% $ $1.000 De otra forma, si la inversión se hace a interés compuesto entonces al final del primer trimestre se liquidan los primeros intereses (1000x0,1 = $100) y estos se acumulan al capital para obtener un monto de $1.100 al cabo del primer periodo; al final del 2do periodo se liquidan los segundos intereses sobre el monto anterior $1100 x 0,1 = 110 y estos se acumulan al capital obteniendo para este periodo un nuevo monto de $1.210; y así sucesivamente hasta $1.464,10; la situación se ilustra en la siguiente grafica: $1.331 $1.464 $1.100 $ % 10% $ Carlos Mario Morales C

Glosario de términos. Introducción a las Matemáticas Financieras

Glosario de términos. Introducción a las Matemáticas Financieras Introducción a las Matemáticas Financieras Carlos Mario Morales C 2012 1 Interés No hay inversión más rentable que la del conocimiento (Benjamín Franklin) UNIDAD 1: INTERÉS OBJETIVO Al finalizar la unidad

Más detalles

MATEMATICAS FINANCIERAS TEMA 1. CONCEPTOS GENERALES EJERCICIOS PROPUESTOS TEMARIO 1 1) Una inversión realizada hoy por $ 1.200.000 genera al final de

MATEMATICAS FINANCIERAS TEMA 1. CONCEPTOS GENERALES EJERCICIOS PROPUESTOS TEMARIO 1 1) Una inversión realizada hoy por $ 1.200.000 genera al final de MATEMATICAS FINANCIERAS TEMA 1. CONCEPTOS GENERALES EJERCICIOS PROPUESTOS TEMARIO 1 1) Una inversión realizada hoy por $ 1.200.000 genera al final de un año la suma de $1.536.000. Se pide: a) La suma ganada

Más detalles

JORGE LUIS GONZÁLEZ ESCOBAR

JORGE LUIS GONZÁLEZ ESCOBAR 1. Se invierten 200.000 en un depósito a término fijo de 6 meses en un banco que paga el 28,8% Nominal Mensual. Determinar el monto de la entrega al vencimiento. R/230.584,30. 2. Una persona debe pagar

Más detalles

Operaciones Financieras

Operaciones Financieras Operaciones Financieras Módulo Instruccional Programático Barquisimeto, 2014 UNIDAD I - DESCUENTO SIMPLE OBJETIVO GENERAL Aplicar el Descuento Simple en las diferentes actividades comerciales desarrollando

Más detalles

Unidad de Aprendizaje: Interés Compuesto

Unidad de Aprendizaje: Interés Compuesto Carlos Mario Morales C 2012 56 Matemáticas Financieras No está permitida la reproducción total o parcial de este libro, ni su tratamiento informático, ni la transmisión de ninguna forma o por cualquier

Más detalles

ANALISIS DE DATOS CON EXCEL

ANALISIS DE DATOS CON EXCEL 1 ANALISIS DE DATOS CON EXCEL 1 USAR FORMULAS Y FUNCIONES PARA CALCULAR VALORES Las funciones son fórmulas predefinidas que ejecutan cálculos utilizando valores específicos, denominados argumentos, en

Más detalles

Unidad 2. Interés simple. Objetivos. Al finalizar la unidad, el alumno:

Unidad 2. Interés simple. Objetivos. Al finalizar la unidad, el alumno: Unidad 2 Interés simple Objetivos Al finalizar la unidad, el alumno: Calculará el interés simple producido por un cierto capital colocado a una tasa determinada durante un periodo de tiempo dado. Calculará

Más detalles

Matemáticas Financieras Conceptos básicos para los instrumentos del Mercado de Valores

Matemáticas Financieras Conceptos básicos para los instrumentos del Mercado de Valores Matemáticas Financieras Conceptos básicos para los instrumentos del Mercado de Valores [1] Conceptos generales...1 Valor del dinero en el tiempo...1 Periodo...1 Costo del dinero...1 [2] Tasa de interés...2

Más detalles

Interés Simple y Compuesto

Interés Simple y Compuesto Interés Simple y Compuesto Las finanzas matemáticas son la rama de la matemática que se aplica al análisis financiero. El tema tiene una relación cercana con la disciplina de la economía financiera, que

Más detalles

Instrumentos matemáticos para la empresa (2/4) 1º GRADO DERECHO-ADE CURSO 2011-2012. Prof. Pedro Ortega Pulido

Instrumentos matemáticos para la empresa (2/4) 1º GRADO DERECHO-ADE CURSO 2011-2012. Prof. Pedro Ortega Pulido Instrumentos matemáticos para la empresa (2/4) 1º GRADO DERECHO-ADE CURSO 2011-2012. Prof. Pedro Ortega Pulido 1. Matemática Financiera 1.0. Introducción a la matemática financiera. 1.1. Capitales financieros

Más detalles

Unidad 3. Interés compuesto. Objetivos. Al finalizar la unidad, el alumno:

Unidad 3. Interés compuesto. Objetivos. Al finalizar la unidad, el alumno: Unidad 3 Interés compuesto Objetivos Al finalizar la unidad, el alumno: Calculará el monto producido por un cierto capital colocado a una tasa de interés compuesto convertible anualmente, semestralmente

Más detalles

1 Unidad de Aprendizaje Interés Simple

1 Unidad de Aprendizaje Interés Simple 1 Unidad de Aprendizaje Interés Simple Contenido Introducción 1. Concepto del interés simple 2. Formula de interés simple 3. Clases de interés simple 4. Capital Final Valor futuro 5. Capital inicial Valor

Más detalles

En Evaluaciones y Análisis Financiero, La TASA DE INTERES recibe diferentes

En Evaluaciones y Análisis Financiero, La TASA DE INTERES recibe diferentes CLASES DE TASAS DE INTERES En Evaluaciones y Análisis Financiero, La TASA DE INTERES recibe diferentes Nombres según las Condiciones en que esté Operando, y es así como encontramos los siguientes Términos

Más detalles

Glosario de términos. Introducción a las Matemáticas Financieras

Glosario de términos. Introducción a las Matemáticas Financieras Introducción a las Matemáticas Financieras Carlos Mario Morales C 2012 1 Interés compuesto UNIDAD 2: INTERÉS COMPUESTO OBJETIVO Al finalizar la unidad los estudiantes estarán en capacidad de conceptuar

Más detalles

3. VALOR DEL DINERO EN EL TIEMPO

3. VALOR DEL DINERO EN EL TIEMPO 3.1 Valor temporal del dinero 3. VALOR DEL DINERO EN EL TIEMPO El dinero cambia de valor a través del tiempo, sobre todo por el fenómeno inflacionario. Toda operación monetaria, a través del tiempo, va

Más detalles

Capítulo 2 Interés y descuento simple

Capítulo 2 Interés y descuento simple Capítulo 2 Interés y descuento simple Introducción Los problemas de la teoría del interés son relativamente elementales, cada problema se restringe a calcular las siguientes variables: a) El capital invertido

Más detalles

ESPECIALIZACIÓN GERENCIA DE PROYECTOS Curso: Finanzas del proyecto- Profesor: Carlos Mario Morales C Taller No 1 - Solucionado

ESPECIALIZACIÓN GERENCIA DE PROYECTOS Curso: Finanzas del proyecto- Profesor: Carlos Mario Morales C Taller No 1 - Solucionado 1. Un empresario recibe el 15 de mayo del 2011, las siguientes tres ofertas por la compra de su negocio. Cuál de las tres es la mejor si el rendimiento del dinero es del 10,5% anual? A. $60 millones de

Más detalles

VALOR DEL DINERO EN EL TIEMPO

VALOR DEL DINERO EN EL TIEMPO VALOR DEL DINERO EN EL TIEMPO Tema 1.4 Licenciatura en Economía y Finanzas 7º semestre. Dr. José Luis Esparza A. Introducción En la empresa como en la vida personal, constantemente se deben tomar decisiones,

Más detalles

Las Finanzas Módulo 1

Las Finanzas Módulo 1 PRESENTACIÓN DEL MÓDULO Introducción Las Finanzas Módulo 1 Aunque parezca difícil de recordar o imaginar, las monedas y los billetes no se han usado desde siempre, al principio las relaciones económicas

Más detalles

Gestión Financiera 2º AF 1

Gestión Financiera 2º AF 1 LEY FINANCIERA DE INTERÉS SIMPLE Gestión Financiera 2º AF 1 1.1 Concepto Operación financiera cuyo objeto es la sustitución de un capital presente por otro equivalente con vencimiento posterior, mediante

Más detalles

Carlos Mario Morales C 2012

Carlos Mario Morales C 2012 Glosario de términos Carlos Mario Morales C 2012 1 Matemáticas Financieras No está permitida la reproducción total o parcial de este libro, ni su tratamiento informático, ni la transmisión de ninguna forma

Más detalles

INTERÉS SIMPLE $15000 + $15 000. Monto. Capital Interés 15000(.08) = 1200 15 000 + 1 200 = 16 200. Tasa de interés: 8% mensual (.

INTERÉS SIMPLE $15000 + $15 000. Monto. Capital Interés 15000(.08) = 1200 15 000 + 1 200 = 16 200. Tasa de interés: 8% mensual (. INTERÉS SIMPLE Capital Interés $15 000 Tasa de interés: 8% mensual (.08) $15000 + 15000(.08) = 1200 1 mes 15 000 + 1 200 = 16 200 Monto INTERÉS SIMPLE Capital Interés C Tasa de interés: i C + I Ci 1 periodo

Más detalles

1. El 5to. término de una progresión aritmética es 7 y el 7mo. término es 8 1/3. Hallar el 1er. término.

1. El 5to. término de una progresión aritmética es 7 y el 7mo. término es 8 1/3. Hallar el 1er. término. 1. El 5to. término de una progresión aritmética es 7 y el 7mo. término es 8 1/3. Hallar el 1er. término. 2. Hallar el 8vo. Término de la siguiente progresión geométrica: 6: 4:. 3. La razón de una progresión

Más detalles

Curso de Finanzas PROF. ALFREDO VENTO ORTIZ

Curso de Finanzas PROF. ALFREDO VENTO ORTIZ Curso de Finanzas PROF. ALFREDO VENTO ORTIZ DEFINICIÓN DE FINANZAS Entendemos por finanzas todo aquello que esta relacionado con la obtención y uso eficiente del dinero o sus equivalentes. En particular:

Más detalles

INTRODUCCIÓN A LAS FINANZAS (Informática)

INTRODUCCIÓN A LAS FINANZAS (Informática) INTRODUCCIÓN A LAS FINANZAS (Informática) SEGUNDO SEMESTRE 2011 Apunte N 2 Objetivos de la unidad Al finalizar la Unidad Nº2, debe ser capaz de: Entender el concepto de costo de oportunidad del dinero,

Más detalles

CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 2 CAPITALIZACIÓN SIMPLE

CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 2 CAPITALIZACIÓN SIMPLE CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 2 CAPITALIZACIÓN SIMPLE Javier Bilbao García 1 1.- Capitalización Simple Definición: Se pretende sustituir un capital presente por otro equivalente en

Más detalles

FICHERO MUESTRA Pág. 1

FICHERO MUESTRA Pág. 1 FICHERO MUESTRA Pág. 1 Fichero muestra que comprende parte del Tema 3 del libro Gestión Financiera, Teoría y 800 ejercicios, y algunas de sus actividades propuestas. TEMA 3 - CAPITALIZACIÓN COMPUESTA 3.15.

Más detalles

Matemáticas financieras y criterios de evaluación

Matemáticas financieras y criterios de evaluación Matemáticas financieras y criterios de evaluación 01/06/03 1 Momentos y períodos Conceptos generales Momento Momento Momento Momento Momento Momento 0 1 2 3 4 5 Período 1 Período 2 Período 3 Período 4

Más detalles

1.- La función financiera definición y objetivos. 2.- Clasificación de los recursos financieros según su titularidad

1.- La función financiera definición y objetivos. 2.- Clasificación de los recursos financieros según su titularidad 1.- La función financiera definición y objetivos 2.- Clasificación de los recursos financieros según su titularidad 3.- Instrumentos de financiación externa a c.p. 4.- Principales fuentes de financiación

Más detalles

TERCERA RELACIÓN LEYES FINANCIERAS DE DESCUENTO COMPUESTO

TERCERA RELACIÓN LEYES FINANCIERAS DE DESCUENTO COMPUESTO TERCERA RELACIÓN LEYES FINANCIERAS DE DESCUENTO COMPUESTO 1.- Tenemos que pagar una deuda de 1.500 dentro de 3 años. Si se adelanta su pago al momento presente, qué cantidad tendremos que pagar sabiendo

Más detalles

VALOR DEL DINERO EN EL TIEMPO

VALOR DEL DINERO EN EL TIEMPO VLO DEL DINEO EN EL TIEMPO El valor del dinero cambia con el tiempo y mientras más largo sea este, mayor es la evidencia de la forma como disminuye su valor. Tomemos como referencia el valor de la matrícula

Más detalles

TEMA VIII. EVALUACIÓN DE PROYECTOS (ESTUDIO FINANCIERO)

TEMA VIII. EVALUACIÓN DE PROYECTOS (ESTUDIO FINANCIERO) UNIVERSIDAD NACIONAL ESCUELA DE CIENCIAS AMBIENTALES CURSO: FORMULACIÓN Y EVALUACIÓN DE PROYECTOS PROFESOR: ING. IGOR ZÚÑIGA GARITA. MAP TEMA VIII. EVALUACIÓN DE PROYECTOS (ESTUDIO FINANCIERO) CUAL ES

Más detalles

Administración de Empresas. 13 El coste de capital 13.1

Administración de Empresas. 13 El coste de capital 13.1 Administración de Empresas. 13 El coste de capital 13.1 TEMA 13: EL COSTE DE CAPITAL ESQUEMA DEL TEMA: 13. 1. El coste de capital en general. 13.2. El coste de préstamos y empréstitos. 13.3. El efecto

Más detalles

INGENIERIA ECONOMICA

INGENIERIA ECONOMICA INGENIERIA ECONOMICA Fundamentalmente la ingeniería económica implica formular, estimar y evaluar los resultados económicos cuando existan alternativas disponibles para llevar a cabo un propósito definido.

Más detalles

ST6AGC. P.M.M. UMBRAL DE RENTAB. VIABILIDAD. FINANCIACIÓN PÁG. 1/7

ST6AGC. P.M.M. UMBRAL DE RENTAB. VIABILIDAD. FINANCIACIÓN PÁG. 1/7 ST6AGC. P.M.M. UMBRAL DE RENTAB. VIABILIDAD. FINANCIACIÓN PÁG. 1/7 BLOQUE 6.1. 1. Evalúa las siguientes inversiones según los criterios de: flujo neto de caja total, flujo neto de caja medio anual y plazo

Más detalles

EJERCICIOS PROPUESTOS CAPÍTULO 3

EJERCICIOS PROPUESTOS CAPÍTULO 3 ADMINISTRACIÓN FINANCIERA FUNDAMENTOS Y APLICACIONES Oscar León García S. Cuarta Edición EJERCICIOS PROPUESTOS CAPÍTULO 3 Matemáticas Financieras Última Actualización: Agosto 18 de 2009 Consultar últimas

Más detalles

Universidad José Carlos Mariátegui Sede Puno Docente: Marcelino Aguilar Condori

Universidad José Carlos Mariátegui Sede Puno Docente: Marcelino Aguilar Condori Interés Simple e Interés Compuesto El interés pagado y recibido puede considerarse como simple o compuesto. 1. Interés Simple El interés simple, es pagado sobre el capital primitivo que permanece invariable.

Más detalles

La financiación de la empresa

La financiación de la empresa La función financiera Funciones del área financiera de la empresa Planificación financiera Obtención de recursos financieros Estudia las necesidades futuras de capital Estudia las diversas alternativas

Más detalles

MATEMATICAS FINANCIERAS

MATEMATICAS FINANCIERAS 1. Hallar el valor equivalente de un monto de $94 000.000 en 450 días suponiendo una tasa de interés bancaria del 12% ES. o Valor inicial o presente: 94 millones o Tasa de interés: 12% ES o Periodo de

Más detalles

Matemáticas Financieras Avanzadas

Matemáticas Financieras Avanzadas Matemáticas Financieras Avanzadas 1 Sesión No. 1 Nombre: Interés simple Objetivo Al término de la sesión el estudiante solucionará problemas aplicando los conceptos de interés simple, a través de la resolución

Más detalles

Boletín Técnico Nº 21 del Colegio de Contadores INTERESES EN CUENTAS POR COBRAR Y EN CUENTAS POR PAGAR INTRODUCCIÓN

Boletín Técnico Nº 21 del Colegio de Contadores INTERESES EN CUENTAS POR COBRAR Y EN CUENTAS POR PAGAR INTRODUCCIÓN Boletín Técnico Nº 21 del Colegio de Contadores INTERESES EN CUENTAS POR COBRAR Y EN CUENTAS POR PAGAR INTRODUCCIÓN 1. Las transacciones comerciales, con frecuencia implican el intercambio de dinero efectivo,

Más detalles

deuda 3.2 Resolver también, bajo el supuesto de que los abonos a la deuda son iguales deuda

deuda 3.2 Resolver también, bajo el supuesto de que los abonos a la deuda son iguales deuda 2.13 EJERCICIOS 1. 1.1 Por qué es distinto el valor del derecho a $1 hoy, de un derecho igual dentro de un año? De acuerdo con esto, qué es el interés? 1.2 Qué se entiende por concepto de equivalencia?

Más detalles

MANUAL APLICACIONES FINANCIERAS DE EXCEL

MANUAL APLICACIONES FINANCIERAS DE EXCEL APLICACIONES FINANCIERAS DE EXCEL CON MATEMATICAS FINANCIERAS Copyright 2005 César Aching Guzmán CESAR ACHING GUZMAN Autor JORGE L. ACHING SAMATELO Revisión Técnica CESAR D. ACHING SAMATELO Diseño y Proceso

Más detalles

Guía de Estudios Matemática Financiera Quinto Bachillerato en Administración Prof. Cristobal Escalante O.

Guía de Estudios Matemática Financiera Quinto Bachillerato en Administración Prof. Cristobal Escalante O. Quinto Bachillerato en Administración Prof. Cristobal Escalante O. Temas a Evaluar 1. Porcentajes 2. Repartición Proporcional a. Directa b. inversa 3. Interés Simple 4. Interés Compuesto a. Monto compuesto

Más detalles

Curso de Excel Empresarial y Financiero

Curso de Excel Empresarial y Financiero Curso de Excel Empresarial y Financiero SESIÓN 2: FUNCIONES FINANCIERAS Rosa Rodríguez Funciones En Excel Una función es una fórmula predefinida por Excel (o por el usuario) que opera con uno o más valores

Más detalles

VI. LAS FUENTES DE FINANCIAMIENTO DE CORTO PLAZO

VI. LAS FUENTES DE FINANCIAMIENTO DE CORTO PLAZO VI. LAS FUENTES DE FINANCIAMIENTO DE CORTO PLAZO 168 David Wong Cam En este capítulo consideramos las principales fuentes de financiación de corto plazo formales e informales. Dentro de las primeras se

Más detalles

LECCIÓN Nº 07 y 08 DESCUENTO

LECCIÓN Nº 07 y 08 DESCUENTO UNIVERSIA JOSE CARLOS MARIATEGUI LECCIÓN Nº 07 y 08 ESCUENTO OBJETIVO: El presente capítulo es enseñar los conceptos básicos en las operaciones bancarias y comerciales como intereses, descuentos y comisiones.

Más detalles

1) Calcular el montante o capital final obtenido al invertir un capital de 1.000 al 8% de interés anual simple durante 8 años. 2) Calcular el capital

1) Calcular el montante o capital final obtenido al invertir un capital de 1.000 al 8% de interés anual simple durante 8 años. 2) Calcular el capital 1) Calcular el montante o capital final obtenido al invertir un capital de 1.000 al 8% de interés anual simple durante 8 años. 2) Calcular el capital inicial necesario para obtener un capital de 20.000

Más detalles

Unidad de Aprendizaje: Anualidades y gradientes

Unidad de Aprendizaje: Anualidades y gradientes Carlos Mario Morales C 2012 1 Matemáticas Financieras No está permitida la reproducción total o parcial de este libro, ni su tratamiento informático, ni la transmisión de ninguna forma o por cualquier

Más detalles

Fundamentos Teóricos para la Valuación de Bonos y Acciones

Fundamentos Teóricos para la Valuación de Bonos y Acciones Fundamentos Teóricos para la Valuación de Bonos y Acciones Unidad 2.1 Fundamentos para la valuación de Bonos Licenciatura en Economía y Finanzas 6º semestre. Dr. José Luis Esparza A. FUNDAMENTOS BÁSICOS

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIERAS ÍNDICE Página UNIDAD 1 Interés Simple... UNIDAD 2 Descuento Bancario, Descuentos y Comisiones, Descuentos en Cadena-Tasas Escalonadas... UNIDAD 3 Pagos Parciales y Ventas a Crédito

Más detalles

Capítulo 6 Amortización

Capítulo 6 Amortización Capítulo 6 Amortización Introducción El objetivo de este capítulo es calcular, analizar e interpretar el comportamiento de deudas de largo plazo al extinguirse gradualmente en el tiempo Se explicará cómo

Más detalles

INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER

INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER ASIGNATURA: Matemática Financiera PROGRAMA: S3C Lima-Perú 2 SESION 1 EL SISTEMA FINANCIERO OBJETIVO.- Reconocer los entes del sistema financiero La importancia

Más detalles

TEMA 10: Operaciones financieras. El interés

TEMA 10: Operaciones financieras. El interés UNO: Básicos de interés simple. 1. Calcula el interés que en capitalización simple producen 10.000, al 5% anual durante 3 años. 2. Cuál será el montante obtenido de la operación anterior? 3. Un inversor

Más detalles

Proyectos de inversión. Economía de la Empresa (ISS)

Proyectos de inversión. Economía de la Empresa (ISS) Proyectos de inversión Economía de la Empresa (ISS) 1 Categorías de Flujo de Efectivo El flujo de caja flujos suelen contener las siguientes categorías de flujo de caja. Estas categorías se describen para

Más detalles

Interés Compuesto con tasa variable

Interés Compuesto con tasa variable CASOS PRACTICOS UTILIZANDO LAS FUNCIONES FINANCIERAS Como primera medida debemos acceder a las funciones financieras faltantes ya que las mismas no se encuentran habilitadas por default en la planilla

Más detalles

TEMA 12. EL SISTEMA FINANCIERO Y LA POLÍTICA MONETARIA 1. EL SISTEMA FINANCIERO Y SUS INTERMEDIARIOS.

TEMA 12. EL SISTEMA FINANCIERO Y LA POLÍTICA MONETARIA 1. EL SISTEMA FINANCIERO Y SUS INTERMEDIARIOS. 1. EL SISTEMA FINANCIERO Y SUS INTERMEDIARIOS. El Sistema Financiero lo componen los bancos e instituciones de crédito donde están depositados los ahorros. Para que el sistema funcione es necesario que

Más detalles

Tema 17 - El Sistema Financiero

Tema 17 - El Sistema Financiero Tema 17 - El Sistema Financiero Qué es el sistema financiero? El sistema financiero es el conjunto de instituciones, mecanismos y mercados que facilitan la coincidencia entre el ahorro y el crédito de

Más detalles

SE ANALIZA EL COSTO DE CAPITAL COMO UNO DE LOS CONCEPTOS MÁS IMPORTANTES DE LAS FINANZAS EMPRESARIALES.

SE ANALIZA EL COSTO DE CAPITAL COMO UNO DE LOS CONCEPTOS MÁS IMPORTANTES DE LAS FINANZAS EMPRESARIALES. COSTO DE CAPITAL JORGE CABREJOS POLO SE ANALIZA EL COSTO DE CAPITAL COMO UNO DE LOS CONCEPTOS MÁS IMPORTANTES DE LAS FINANZAS EMPRESARIALES. 1. DEFINICIÓN El Costo de Capital es uno de los temas más importantes

Más detalles

Unidad 7. Descuento Compuesto

Unidad 7. Descuento Compuesto Unidad 7 Descuento Compuesto En muchas operaciones bancarias se otorgan préstamos en cuyos documentos se mencionan descuentos compuestos. Antes de estudiar los diferentes tipos de descuentos, es conveniente

Más detalles

Manual didáctico de Matemáticas Financieras. Informe Final de Investigación IFI. Rafael Serna Espitia. Gerardo Rojas.

Manual didáctico de Matemáticas Financieras. Informe Final de Investigación IFI. Rafael Serna Espitia. Gerardo Rojas. Manual didáctico de Matemáticas Financieras Informe Final de Investigación IFI Rafael Serna Espitia Gerardo Rojas Universidad EAN Facultad de Postgrados Especialización en Administración Financiera Bogotá,

Más detalles

Unidad 15. Obligaciones y Bonos

Unidad 15. Obligaciones y Bonos Unidad 15 Obligaciones y Bonos INTRODUCCIÓN Cuando una empresa privada o un gobierno necesitan dinero para financiar sus proyectos a largo plazo, y la cantidad requerida es bastante elevada, de tal manera

Más detalles

Comente: Los bancos siempre deberían dar crédito a los proyectos rentables. Falso, hay que evaluar la capacidad de pago.

Comente: Los bancos siempre deberían dar crédito a los proyectos rentables. Falso, hay que evaluar la capacidad de pago. Explique Brevemente en que consiste el leasing y nombre los diferentes tipos existentes. Es un mecanismo de financiamiento de Activos el cual permite el uso del activo por un periodo determinado a cambio

Más detalles

Matemáticas Financieras I. Febrero, 2009

Matemáticas Financieras I. Febrero, 2009 Matemáticas Financieras I. Febrero, 2009 Tarea II. Interés simple, descuento Simple. Instrucciones: Van algunos ejercicios de interés y descuento simple, están bastante sencillos, pero confío en que sean

Más detalles

Anexo Funciones financieras de Excel

Anexo Funciones financieras de Excel Anexo Funciones financieras de Excel Introducción La solución a problemas financieros mediante la aplicación de las matemáticas financieras se facilita con el uso de calculadoras financieras u hojas electrónicas

Más detalles

c) Inversiones Complementarias: a) Inversiones en el sector privado: b) Inversiones en el sector público: Costo Anual Equivalente: Equivalencia:

c) Inversiones Complementarias: a) Inversiones en el sector privado: b) Inversiones en el sector público: Costo Anual Equivalente: Equivalencia: CONCEPTOS BASICOS MATEMATICA FINANCIERA Compilación: Doris Amalia Alba Sánchez, 2014 A continuación se presenta una recopilación de los conceptos fundamentales que se deben manejar para desarrollar y comprender

Más detalles

En términos generales existen dos maneras de atraer el dinero de los inversores: pidiendo préstamos o emitiendo más acciones ordinarias.

En términos generales existen dos maneras de atraer el dinero de los inversores: pidiendo préstamos o emitiendo más acciones ordinarias. LA VALORACIÓN DE LAS OBLIGACIONES. En términos generales existen dos maneras de atraer el dinero de los inversores: pidiendo préstamos o emitiendo más acciones ordinarias. Las empresas cuando tienen que

Más detalles

4. DESCUENTO SIMPLE 4.1. Descuento comercial o bancario 4.2. Descuento racional o matemático

4. DESCUENTO SIMPLE 4.1. Descuento comercial o bancario 4.2. Descuento racional o matemático 4. DESCUENTO SIMPLE 4.1. Descuento comercial o bancario 4.2. Descuento racional o matemático El descuento comercial o bancario es un instrumento de financiación bancaria a corto plazo, utilizado principalmente

Más detalles

Asignatura: Matemática Financiera.

Asignatura: Matemática Financiera. Unidad No. I. Interés simple. Asignatura: Matemática Financiera. En todas las actividades financieras se acostumbra a pagar un rédito por el uso del dinero prestado. La mayor parte de los ingresos de bancos

Más detalles

MODELO DE RESPUESTAS

MODELO DE RESPUESTAS PRIMERA PRUEBA INTEGRAL LAPSO 2 008-2 734-1/5 Universidad Nacional Abierta MATEMÁTICA III ( 734 ) Vicerrectorado Académico Fecha: 25/10/2 008 Cód. Carrera: 610-612 - 613 MODELO DE RESPUESTAS OBJ 1 PTA

Más detalles

MBA SE Edición 2007-2008 Código. 84.009 MÓDULO IV FINANZAS CORPORATIVAS Y CONTROL DE GESTIÓN MATEMÁTICAS FINANCIERAS

MBA SE Edición 2007-2008 Código. 84.009 MÓDULO IV FINANZAS CORPORATIVAS Y CONTROL DE GESTIÓN MATEMÁTICAS FINANCIERAS MBA SE Edición 2007-2008 Código. 84.009 MÓDULO IV FINANZAS CORPORATIVAS Y CONTROL DE GESTIÓN MATEMÁTICAS FINANCIERAS GLORIA MONTES EDICIÓN 2007/2008 ENERO /2008 MBA DE POSTGRADO 07-08 PROFESOR: D.ª GLORIA

Más detalles

Capítulo 8 Bonos. Introducción

Capítulo 8 Bonos. Introducción Capítulo 8 Bonos Introducción Cuando las empresas o los gobiernos necesitan financiar sus proyectos más allá de la cantidad que les permiten sus presupuestos anuales, recurren a préstamos para hacerse

Más detalles

Facultad Ciencias Económicas y Administrativas. Programa: ADMINISTRACION DE NEGOCIOS

Facultad Ciencias Económicas y Administrativas. Programa: ADMINISTRACION DE NEGOCIOS Facultad Ciencias Económicas y Administrativas Programa: ADMINISTRACION DE NEGOCIOS GUIA ACADEMICA I. FICHA TECNICA NOMBRE DE LA MATERIA MATEMATICAS FINANCIERAS 1. Número de créditos académicos : (3) TRES

Más detalles

Curso MATEMATICAS FINANCIERAS Capitulo 4. Carlos Mario Morales C 2009

Curso MATEMATICAS FINANCIERAS Capitulo 4. Carlos Mario Morales C 2009 Curso MATEMATICAS FINANCIERAS Capitulo 4 Contenido Capitulo 4 Depósitos a término fijo La inflación La devaluación Tasas combinadas Tasa deflactada o tasa real Equivalencias de tasas referenciadas. Aceptaciones

Más detalles

Regla Comercial y Descuento compuesto.

Regla Comercial y Descuento compuesto. Regla Comercial y Descuento compuesto. Regla comercial: consiste en calcular el monto que se acumula durante los periodos de capitalización completos, utilizando la fórmula de interés compuesto, para luego

Más detalles

DIRECCIÓN FINANCIERA (3º GADE) EJERCICIOS TEMA 4: FUENTES DE FINANCIACIÓN DE LA EMPRESA

DIRECCIÓN FINANCIERA (3º GADE) EJERCICIOS TEMA 4: FUENTES DE FINANCIACIÓN DE LA EMPRESA DIRECCIÓN FINANCIERA (3º GADE) EJERCICIOS TEMA 4: FUENTES DE FINANCIACIÓN DE LA EMPRESA 1. Un agricultor tiene un parque de maquinaria agrícola compuesto por 10 tractores cuyo valor de adquisición unitario

Más detalles

Unidad 10. Registro de operaciones

Unidad 10. Registro de operaciones Unidad 10 Registro de operaciones "El registro de operaciones tiene una lógica definida y sencilla, que se basa en la combinación de las reglas de la Partida Doble con las reglas del Cargo y el Abono".

Más detalles

TABLA DE CONTENIDO 1 GENERALIDADES 4 1.1 TASA DE INTERES 4 1.2 TASA DE INTERES REAL 4 1.5. SERIE UNIFORME VENCIDA 5 1.5.1. ANUALIDADES VENCIDAS 6

TABLA DE CONTENIDO 1 GENERALIDADES 4 1.1 TASA DE INTERES 4 1.2 TASA DE INTERES REAL 4 1.5. SERIE UNIFORME VENCIDA 5 1.5.1. ANUALIDADES VENCIDAS 6 TABLA DE CONTENIDO 1 GENERALIDADES 4 1.1 TASA DE INTERES 4 1.2 TASA DE INTERES REAL 4 1.3. FORMULAS DEL INTERES SIMPE 1.4. FORMUALS DEL INTERES COMPUESTO 4 5 1.5. SERIE UNIFORME VENCIDA 5 1.5.1. ANUALIDADES

Más detalles

ANÁLISIS ECONÓMICO Evaluación de Proyectos

ANÁLISIS ECONÓMICO Evaluación de Proyectos Página0 ANÁLISIS ECONÓMICO Evaluación de Proyectos Página1 Índice Introducción 02 Valor actual neto 03 Flujo neto de Caja 04 Plazo de Recuperación, Plazo de Reembolso, o Pay-Back estático 04 Tasa de Rendimiento

Más detalles

CONTABILIDAD GENERAL

CONTABILIDAD GENERAL CONTABILIDAD GENERAL CONTABILIDAD GENERAL 1 Sesión No. 8 Nombre: Crédito y descuentos Contextualización Qué son los créditos y los descuentos? Una práctica muy recurrente en el mundo empresarial es el

Más detalles

DE ESTADOS FINANCIEROS " Porcientos Integrales, Razones Financieras, Punto de Equilibrio y Flujo de Efectivo"

DE ESTADOS FINANCIEROS  Porcientos Integrales, Razones Financieras, Punto de Equilibrio y Flujo de Efectivo EDUCACION FINANCIERA ANALISIS SISTEMAS INTEGRALES Y DESARROLLO AGROPECUARIO, S.A. DE C.V. SOFOM ENR DE ESTADOS FINANCIEROS " Porcientos Integrales, Razones Financieras, Punto de Equilibrio y Flujo de Efectivo"

Más detalles

11 Selección de proyectos

11 Selección de proyectos Selección de proyectos de inversión Esta unidad didáctica persigue los siguientes objetivos: Esquema temporal de un proyecto de inversión. Comprender y operar con el factor de capitalización compuesta.

Más detalles

CAPÍTULO IV VALOR FUTURO y VALOR PRESENTE - DESCUENTO COMPUESTO- Inflación

CAPÍTULO IV VALOR FUTURO y VALOR PRESENTE - DESCUENTO COMPUESTO- Inflación CAPÍTULO IV VALOR FUTURO y VALOR PRESENTE - DESCUENTO COMPUESTO- Inflación 74 4..- VALOR FUTURO y VALOR PRESENTE -DESCUENTO COMPUESTO- Inflación En el capítulo de Interés Simple se comentó sobre el tema

Más detalles

Herramientas financieras para emprendedores. Mag. Oswaldo Sifuentes Bitocchi Jefe División de Mercadotecnia del INICTEL

Herramientas financieras para emprendedores. Mag. Oswaldo Sifuentes Bitocchi Jefe División de Mercadotecnia del INICTEL Herramientas financieras para emprendedores Mag. Oswaldo Sifuentes Bitocchi Jefe División de Mercadotecnia del INICTEL Definición de Estados Financieros Mucha de la información acerca de la empresa está

Más detalles

El descuento bancario o comercial es el interés del valor nominal, y se determina mediante el interés entre el vencimiento de la deuda y la fecha de

El descuento bancario o comercial es el interés del valor nominal, y se determina mediante el interés entre el vencimiento de la deuda y la fecha de El descuento bancario o comercial es el interés del valor nominal, y se determina mediante el interés entre el vencimiento de la deuda y la fecha de descuento a cierta tasa, valuada ésta sobre el valor

Más detalles

FUNDACIÓN UNIVERSITARIA LUÍS AMIGÓ

FUNDACIÓN UNIVERSITARIA LUÍS AMIGÓ 1. El objetivo financiero de toda empresa es maximizar las utilidades. Explique las razones por las cuales está o no de acuerdo con esta afirmación. El OBF entendido como la maximización de las utilidades

Más detalles

PRIMERA RELACIÓN. LEYES FINANCIERAS DE CAPITALIZACIÓN

PRIMERA RELACIÓN. LEYES FINANCIERAS DE CAPITALIZACIÓN PRIMERA RELACIÓN. LEYES FINANCIERAS DE CAPITALIZACIÓN 1º.- Un capital colocado al 10% simple durante un tiempo se transformó en 8.257 88, pero si hubiera estado colocado al 15% durante el mismo período

Más detalles

Ejercicios página 179 y siguientes

Ejercicios página 179 y siguientes Ejercicios página 179 y siguientes Nota: El valor del derecho de suscripción procede de VDS = VC - Vtpost = VC - [(VC*a + VN*n) / a + n]. Una fórmula derivada de la anterior y que se usa en la solución

Más detalles

ESCUELA DE CIENCIAS EMPRESARIALES ASIGNATURA: Matemáticas Financieras

ESCUELA DE CIENCIAS EMPRESARIALES ASIGNATURA: Matemáticas Financieras ESCUELA DE CIENCIAS EMPRESARIALES ASIGNATURA: Matemáticas Financieras CORPORACIÓN UNIVERSITARIA REMINGTON DIRECCIÓN PEDAGÓGICA Este material es propiedad de la Corporación Universitaria Remington (CUR),

Más detalles

EVALUACIÓN FINANCIERA

EVALUACIÓN FINANCIERA EVALUACIÓN FINANCIERA FACTIBILIDAD FINANCIERA Sintetiza numéricamente todos los aspectos desarrollados en el plan de negocios. Se debe elaborar una lista de todos los ingresos y egresos de fondos que se

Más detalles

Fórmulas y enfoques utilizados para calcular el Tasa Efectiva de Interés (TEI) o Costo Anual Total (CAT)

Fórmulas y enfoques utilizados para calcular el Tasa Efectiva de Interés (TEI) o Costo Anual Total (CAT) Fórmulas y enfoques utilizados para calcular el Tasa Efectiva de Interés (TEI) o Costo Anual Total (CAT) El propósito del Costo Anual Total (CAT) El precio verdadero del préstamo no solamente incluye los

Más detalles

Unidad 13. Amortización y Fondos de Amortización

Unidad 13. Amortización y Fondos de Amortización Unidad 13 Amortización y Fondos de Amortización INTRODUCCION En la sección 6.8 se mencionó que la palabra amortizar proviene del latín y que su significado literal es "dar muerte". En matemática financiera

Más detalles

Valor del Dinero en el Tiempo Uno de los principios más importantes en todas las finanzas.

Valor del Dinero en el Tiempo Uno de los principios más importantes en todas las finanzas. Valor del Dinero en el Tiempo Uno de los principios más importantes en todas las finanzas. El dinero es un activo que cuesta conforme transcurre el tiempo, permite comprar o pagar a tasas de interés periódicas

Más detalles

Fíjate cómo se expresan los siguientes porcentajes y completa la tabla calculando mentalmente:

Fíjate cómo se expresan los siguientes porcentajes y completa la tabla calculando mentalmente: 2 Matemática financiera 1. Porcentajes Piensa y calcula Fíjate cómo se expresan los siguientes porcentajes y completa la tabla calculando mentalmente: Porcentaje 10% = 10/100 = 1/10 20% = 20/100 = 1/5

Más detalles

Capítulo 2. Técnicas de Evaluación de la inversión en activos no circulantes.

Capítulo 2. Técnicas de Evaluación de la inversión en activos no circulantes. Capítulo 2. Técnicas de Evaluación de la inversión en activos no circulantes. 2.1 Generalidades. En la actualidad, en lo referente a las finanzas uno de los grandes problemas que los administradores y

Más detalles

2. Cómo se calculan los rendimientos o beneficios que genera un cliente en un Fondo de Inversión?

2. Cómo se calculan los rendimientos o beneficios que genera un cliente en un Fondo de Inversión? Conceptos básicos de los Fondos de Inversión 1. Qué es una participación? Cómo se calcula su valor? R/ La participación es la unidad que representa el derecho de propiedad que tiene un cliente dentro del

Más detalles

CAPÍTULO II INTRODUCCION A LA MATEMÁTICA FINANCIERA EN LA GESTIÓN

CAPÍTULO II INTRODUCCION A LA MATEMÁTICA FINANCIERA EN LA GESTIÓN CAPÍTULO II INTRODUCCION A LA MATEMÁTICA FINANCIERA EN LA GESTIÓN Introducción. En la bibliografía dreferida a la matemática financiera el primer término que aparece es el de "Capital financiero". Se entiende

Más detalles

F = P (1 + i)n = 1.000.000(1.09)4 = $1.411.581.61. Veamos la tabla que se genera. INTERESES CAUSADOS y CAPITALIZADOS INTERESES PAGADOS $

F = P (1 + i)n = 1.000.000(1.09)4 = $1.411.581.61. Veamos la tabla que se genera. INTERESES CAUSADOS y CAPITALIZADOS INTERESES PAGADOS $ AMORTIZACION DE PRÉSTAMOS. APLICACIONES PRÁCTICAS. Todo empresario, todo administrador de negocios, más específicamente todo ente económico se podrá ver abocado en algún momento a conseguir los fondos

Más detalles

Interés: Es el rendimiento del capital entregado en préstamo. Es la renta que gana un capital. Es la ganancia producida por un capital.

Interés: Es el rendimiento del capital entregado en préstamo. Es la renta que gana un capital. Es la ganancia producida por un capital. UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS ECONOMICAS CURSO: MATEMATICAS III, AREA COMUN UNIDAD No. 1 INTERES SIMPLE SEGUNDO SEMESTRE 2009. GENERALIDADES DEL INTERES: Interés: Es el rendimiento

Más detalles

Fundamentos y Aplicación de las Matemáticas Financieras

Fundamentos y Aplicación de las Matemáticas Financieras CAPITULO 3 INTERÉS COMPUESTO OBJETIVO Al finalizar el estudio de éste capítulo el estudiante podrá: Definir el interés compuesto y la diferencia con el interés simple. Deducir de un valor presente, valor

Más detalles