SERIE # 4 CÁLCULO VECTORIAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SERIE # 4 CÁLCULO VECTORIAL"

Transcripción

1 SERIE # 4 CÁLCULO VECTORIAL

2 Página 1 1) Calcular 1 x y dy dx ) Evaluar la integral doble circunferencia x y 9. x 9 x da R, donde R es la región circular limitada por la x y ) Calcular el valor de e da donde R es la región del plano XY localizada entre las R circunferencias de ecuaciones x + y = 1, x y 9. 9 ( e e) 4) Utilizar integrales doble para calcular el área de la región del plano XY localizada en el primer cuadrante y limitada por las curvas de ecuaciones 16 ( x 1) y, 8x y. 8 5) Calcular el área de la región del plano XY, interior a las curvas de ecuaciones x + y = 9, x y 6x u

3 Página 6) Por medio de la integral doble, calcular el área de la región localizada entre las curvas de ecuación y x, x 4y 4, x 4. 4 Ln u 7) Por medio de la integral doble, calcular el área de la región del primer cuadrante, limitada por las curvas de ecuaciones: x=, x=6, y = x -10x+6, y - x -10x ) Por medio de la integral doble, calcular el área de la región localizada entre las curvas de ecuación x 14x 5y 59 0, x 14x 5y u x y 9) Calcular da, donde R es la región limitada por las gráficas de y x, y x, R1 x y y x 4 y y x 4. u x y Sugerencia: Haga la transformación v x y R 4ln 5 10) Por medio de la integral doble, calcular el área de la región del primer cuadrante, limitada por las curvas xy 1, xy 4, y x, x y. Ln 8 u

4 Página 11) Calcular el volumen de la región localizada por arriba del plano XY, interior al z = 9 - x y, exterior al cilindro x y 4. paraboloide 5 u. 1) Determinar el volumen de la región limitada por las superficies: az = y, x y r, z 0, donde a y r son constantes. 4 r u. 4a 1) Calcular el volumen de la región que es limitada por las superficies S 1 y S representadas por : 81 u. S x z y S y. 1 : 4, : ) Calcular cos da, donde R es la región interior a la circunferencia r 4 sen y R exterior a la circunferencia r, dadas en coordenadas polares. cos da 0 R 15) Utilizar integración doble para calcular el área de la región del primer cuadrante interior a la curva cuya ecuación polar es r sen (4 ). 9 u. 8

5 Página 4 16) Utilizar integración doble para calcular el área de la región interior a la curva cuya ecuación polar es r 6 cos. 9 u. 17) Calcular el área de la región exterior a la circunferencia cuya ecuación polar es r = e interior a la cardioide de ecuación polar r = (1+cos ) u 4 18) Calcular el área de la región limitada por la lemniscata cuya ecuación en coordenadas polares es r 4 cos. 4 u. 19) Calcular el área de un pétalo de la rosa cuya ecuación polar es r = cos 4. u. 16 0) Por medio de la integral doble, calcular el área de la región interior a la curva de ecuación polar r = a(1+cos ) donde a es una constante. 6 a x y dx dy siendo R la región interior del primer cuadrante limitado R por las curvas x y 1, x y 8, x y, x y 6. 1) Calcular Sugerencia: Hacer el cambio de variable u x y, y x y

6 Página 5 4 ) Comprobar el teorema de Green, considerando el campo vectorial trayectoria carrada que se muestra en la figura. v x y i y j y la A criterio del profesor. ) Utilizar el teorema de Green en el plano mediante integrales de línea, el área de la región mostrada en la figura. 8 u

7 5) Utilizar el teorema de Green para calcular el valor de 4 Página 6 x y C dx y x dy, a lo largo de la trayectoria mostrada en la figura. Comentar el resultado. 0. Comentario a criterio del profesor. 6) Haciendo uso del teorema de Green determinar el área del cardioide x a (cos t cos t), y (sent sen t). 6a u. 7) Utilizar el Teorema de Green para calcular el área de la región cerrada que es limitada por la elipse de ecuación 9x 4y 6. 6 u x y dx dy siendo R la R x y región del plano XY donde + 1 siendo a y b constantes. a b 8) Utilizar el teorema de Green en el plano, para calcular ( ) 4 ab a b

8 Página 7 9) Mediante integrales de línea, calcular el área del plano XY limitada por las curvas x 4 y, x y 0. 1 u. 0) Calcular el área de la porción del cilindro de ecuación con centro en el origen de radio 8. x y 8y interior a una esfera 56 u 1) Calcular el área de la superficie z = x+ y, comprendida en el primer octante e interior al cilindro de ecuación ( x y ) 4( x y ). u. ) Calcular el área de la porción de plano de ecuaciones x+ z = 4 interior a la elipse x y z u. ) Calcular el área de la porción de superficie x y R localizada por arriba del plano XY comprendida entre los planos z = m x, z = n x donde m > n >0. ( n m) R u x y z 4) Calcular el área de la porción del plano de ecuación 1, comprendida entre a b c los planos coordenados.

9 Página 8 1 a b b c c a u 5) Obtener el área de la superficie primer octante. z x y delimitada superiormente por z = y en el ) Calcular el área de la porción de cono de ecuación de ecuación x x y 6 0. x y z 0, interior al cilindro 9 u 7) Calcular el área de la porción de paraboloide de ecuación z = 9 x y localizado por arriba del plano XY. 1 a b b c c a u 8) Calcular el área de la porción de la esfera de ecuación entre los planos de ecuación z y z 4. x y z 5 localizada 0 u 9) Calcular el área de la porción de superficie de ecuación arriba del plano XY. 4 z x y localizada por

10 Página u 6 40) Calcular el área de la parte del paraboloide y dentro del cilindro x y 4. z = x y localizada en el primer octante 17 1 u 48 41) Calcular el área de la porción de la esfera x z 1. x y z y, 0 interior al cilindro (4 ) u 4) Calcular el área de las porción del cilindro x y a. y z = a que está dentro del cilindro 8a 4) Calcular el área de la parte del cono x y z 9. x y z, que se encuentra dentro de la esfera 9 u 44) Sea S la superficie Calcular f nˆ ds. S x y z 1 y f es la función f ( x, y, z )= x y z.

11 Página 10 8 u. 44) Calcular la integral de superficie F n ˆ ds del campo F =(x ) i ( x y) j ( x z) k, S donde S es la superficie lateral del cilindro x y a, limitado por los planos z = 0, z = a 45) Utilizar integración doble para calcular el área de la porción del cono comprendida entre los planos z = 1, z = 4. z x y 15 u 46) Para el cono x + y - z = 0, obtener una ecuación vectorial de la superficie en coordenadas cilíndricas así como su correspondiente diferencial de área. r ( r, ) r eˆ r eˆ ds r dr d r z 47) Calcular el área de la parte de la esfera conos x y z y x y z. x y z 1 que esta comprendida entre los u. 48) Se sabe que el metro cuadrado de mosaico ya colocado cuesta $ Calcular el costo del recubrimiento de la cúpula de la I. de S. A. que tiene por ecuación

12 Página 11 x y z 50, para z 14 donde x, y, z están en metros. 9 a u 49) Determinar el flujo del campo,, F x y z x y i y j xz k a través de la superficie S formada por los planos coordenados y los planos de ecuaciones x, y y z. Flujo = 40 50) Calcular volumen del sólido limitado por las superficies de ecuaciones x z 9, y z 4, x y z u 51) Calcular el volumen de la región localizada por arriba del plano XY, interior al cilindro x y x y limitada por el paraboloide z x y. u. 5) Utilizar integración triple para determinar el volumen del tetraedro acotado por los planos coordenados y el plano x 6y 4z u 5) Utilizar integrales triples para calcular el volumen del sólido limitado por la superficie x y 4 z y el plano y z 4.

13 Página 1 u. 54) Calcular el volumen de la región limitada por las superficies S 1 y S, donde S : x y 4 y S : y z u. 55) Determinar el volumen de la región localizada entre los conos z x y interior a la esfera x y z 16 y donde z 0. z x y y 64 1 u. 56) Calcular el volumen de la región interior a la esfera z x y ; con z 0. x y z 4 como al cono 16 1 u 57) Determinar el volumen dentro del cono que está sobre el plano XY entre las esferas x y z 1 y x y z u 58) Calcular el volumen de la región D interior a la esfera r sen, dado en coordenadas cilíndricas circulares. x y z 4 y al cilindro

14 Página u. de vol. 59) Mediante la integración triple, calcular el volumen del sólido localizado en el primer octante, limitado por las superficies de ecuaciones : z = x y, x 0, y 0, z. u 9 60) Mediante integración triple en coordenadas esféricas, calcular el volumen del sólido limitado superiormente por el cono z = x + y, e inferiormente por la esfera x y z z u. x y z ds, para la superficie S: z interior al cilindro s 61) Calcular x y 1. s 6) Calcular el flujo de campo,, F x y z z y x i x z xz j z xy k que atraviesa la superficie cerrada S determinada por las superficies cuyas ecuaciones en coordenadas cilíndricas son r = 4 1+cos, z, z. 96 uf..

15 Página 14 6) Utilizar el teorema de la divergencia para calcular F n ˆ ds, donde S F ( x) i ( y) j (4 z) k y S es la superficie cerrada que envuelve a la región interior a la esfera 750 x y z 5 localizada por encima del plano XY. 64) Sea el campo vectorial,, 4 F x y z x y i x z y j xy z k. Calcular el valor de F n ˆ ds sobre la superficie cerrada que envuelve a la región en el primer s octante limitada por el plano x y 6z ) Calcular el flujo del campo vectorial,, F sen eˆ sen eˆ sen eˆ que atraviesa la superficie de la esfera de ecuación NOTA: El campo F está referido al sistema esférico. 15 u.f. x y z 5. 66) Utilizar el teorema de la divergencia de Gauss para calcular F n ˆ ds, donde s F ( x ) i ( y ) j ( z ) k y S es la superficie cerrada que rodea el sólido limitado por el paraboloide 96 u.f. x y z z 4, 0 4 y el disco x y z 4, 0. 67) Utilizar el teorema de Gauss, para calcular el flujo del campo,, F x y z x y z xi y j z k que atraviesa la superficie de la esfera x y z.

16 Página u.f. 68) Por medio del teorema de Gauss, calcular F n ˆ ds para el campo vectorial s F( x, y, z) ( x ) i ( y ) j ( z ) k 0. y la esfera S con centro en el origen y radio igual a 1. 69) Utilizar el teorema de Gauss para calcular el flujo del campo F x, y, z ( x ) i ( y ) j ( z ) k a través de la superficie x y z uf.. 5 F x y z x y i x j x z k que pasa 70) Calcular el flujo del campo vectorial,, a través de la superficie S:x y z 6, limitada por los planos coordenados. 7 de u. de flujo. 6 V x, y, z ( xy) i ( z) j ( x ) k a través de la superficie 71) Calcular el flujo del campo cerrada que envuelve al sólido limitado por las superficies de ecuaciones y 8 x, x 0, y 4, z 0, z uf.. 7) Calcular el flujo del campo vectorial F x, y, z yz formada por el paraboloide z x y y el plano z 1. j a través de la superficie S

17 Página 16 8 u. de flujo. 5 7) Calcular el flujo del campo vectorial F x, y, z x z i ( x y z) j (5 x y) k a través de la región triangular del plano que tiene sus vértices en los puntos A(1,0,0), B(0,1,0) y C(0,0,1). 5 u. de flujo. 74) Calcular el flujo neto del campo vectorial de la superficie 1 u. de flujo. 5 S x y z : 1. F x, y, z x i ( y )j ( z )k a través 75) Calcular el flujo neto del campo vectorial F x, y, z x i ( y)j ( z)k a través de la superficie S formada por y x z y y 8 u. de flujo. 76) Calcular el flujo neto del campo vectorial de la superficie 1 u. de flujo. 5 S x y z : 1. F x, y, z x i ( y )j ( z )k a través

18 77) Utilizar el teorema de la divergencia de Gauss para calcular ˆ s F n ds,, Página 17, donde F x y z x xz i yz j x y k y S la superficie cerrada que envuelve a la región del primer octante limitada por los planos de ecuaciones x 0, y 0, z 0, x y z. 1 78) Determinar el flujo F, donde,, 4 F x y z x z i y xy j z yz k a través de la superficie S definida por la frontera de la región acotada por el semicono x y z y el plano x 9. Flujo = 4 79) Calcular el flujo neto del campo vectorial la superficie S formada por 7 u. de flujo. x y z y x F x, y, z x i ( y)j ( z)k a través de 80) Calcular A n ˆ ds, sobre la superficie cerrada S que encierra al sólido limitado por s el cilindro x y 9 y los planos y 8, x 0, y 0, z 0, siendo 6 A z i x y j x k y ˆn el vector unitario normal a S ) Calcular la circulación total del campo vectorial x y 1 largo de la curva C : x y z 1 F x, y, z xy i ( yz) j ( xz) k a lo

19 Página 18 Circulación total = 8) Calcular el flujo del campo vectorial esfera x y z 1. u. de flujo. F x, y, z x i ( y ) j ( z ) k a través de la 8) Calcular la circulación total del campo vectorial,, F x y z xz y i yz x j x y k a lo largo de la curva x y C : z 1 Circulación total = 84) Calcular la circulación total del campo vectorial F x, y, z y 6x y z largo de la curva Circulación=15 x y z C : x y ( z ) 10 i j k a lo 85) Calcular mediante el teorema de Stokes, el valor de F d r, para c F ( x, y, z) ( y ) i ( z) j ( x) k y la curva C que se muestra en la figura:

20 Página 19 F dr 9 c 86) Calcular la circulación total del campo vectorial la curva C x : y 4. F( x, y) ( x y)i ( xy )j a lo largo de 8. 87) Calcular la circulación total del campo vectorial de la curva C x : y. F( x, y) ( x y)i+( xy )j a lo largo 88) Utilizar el teorema de Stokes para calcular el valor de x y z ( ) 10 C: z x y 4. donde F( x, y, z) ( y) i ( x) j ( y z) k. F dr a lo largo de la curva C 89) Sea el campo de fuerzas F x, y, z ( x) i ( z) j ( y) k. Emplear el teorema de Stokes para determinar el trabajo que realiza el campo F para mover una partícula una vuelta z = x+ y completa a lo largo de la curva C de ecuaciones. x y 16 ut..

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2.

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. 1 1 4, 0 1 a.- (, ) = 2 1 4, 1 2 2 1 < 3, 0 < 1 b.- (, ) = 1 1 < 3, 1 2 3 3 4,

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

Ejercicios típicos del segundo parcial

Ejercicios típicos del segundo parcial Ejercicios típicos del segundo parcial El segundo examen parcial consiste en tres ejercicios prácticos y dos teóricos, aunque esta frontera es muy difusa. Por ejemplo, el primer ejercicio de esta serie,

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE PLANO TANGENTE Y VECTOR NORMAL. AREA DE UNA SUPERFICIE 1) En cada uno de los siguientes ejercicios se presenta una S dada en forma paramétrica,

Más detalles

Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. Solución: ( )

Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. Solución: ( ) SERIE DE ÁLULO VETORIAL 1 PROFESOR: PEDRO RAMÍREZ MANNY TEMA 1 Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. f x, y = x + y 6x + 6y + 8 1) (

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

INTEGRALES MÚLTIPLES. 9 xy c) 4

INTEGRALES MÚLTIPLES. 9 xy c) 4 de 6 TRABAJO PRÁCTICO Nº A.M. II - INTEGRALES MÚLTIPLES INTEGRALES DOBLES - Calcule las siguientes integrales: a d d d d d b d d sen e 6 d d --. Grafique la región de integración eprese la integral invirtiendo

Más detalles

SERIE # 2 CÁLCULO VECTORIAL

SERIE # 2 CÁLCULO VECTORIAL SERIE # CÁLCULO VECTORIAL SERIE 1) Calcular las coordenadas del punto P de la curva: en el que el vector P 1, 1, r t es paralelo a r t Página 1 t1 r t 1 t i ( t ) j e k ) Una partícula se mueve a lo largo

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1

Más detalles

PRÁCTICA TEMA 2 INTEGRALES MÚLTIPLES. Ejercicio 1. Escriba la expresión que permite calcular por integrales dobles.

PRÁCTICA TEMA 2 INTEGRALES MÚLTIPLES. Ejercicio 1. Escriba la expresión que permite calcular por integrales dobles. PRÁCTICA TEMA 2 INTEGRALES MÚLTIPLES Ejercicio 1. Escriba la expresión que permite calcular por integrales dobles. a. El área de una región plana R. b. El volumen de un sólido V, de altura z = f(x,y).

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

gradiente de una función? Para esos valores, calcule la función potencial.

gradiente de una función? Para esos valores, calcule la función potencial. CAMPOS CONSERVATIVOS. FUNCIÓN POTENCIAL 1. Sea F = 4xy 3x ( z (, 2x (, 2x, z. Demuestre que Fdl trayectoria C. es independiente de la 2. Dado el campo vectorial F = 3x ( + 2y y ( e 3, 2x 2ye 3. Es posible

Más detalles

Integración múltiple: integrales dobles

Integración múltiple: integrales dobles Problemas propuestos con solución Integración múltiple: integrales dobles ISABEL MAEO epartamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice. Integrales iteradas 2. Teorema

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

Tema 4: Integración de funciones de varias variables

Tema 4: Integración de funciones de varias variables Departamento de Matemáticas. Universidad de Jaén. Análisis Matemático II. Curso 29-21. Tema 4: Integración de funciones de varias variables 1. Evaluar las siguientes integrales iteradas e) f ) g) 1 2 1

Más detalles

Gu ıa Departamento Matem aticas U.V.

Gu ıa Departamento Matem aticas U.V. Universidad de Valparaíso Instituto de Matemáticas Guía de Cálculo en Varias Variables Integración. Sean = [,] [,] {(x,y) : (x,y) < } y f : continua. a) Escriba lafuncióncaracterísticaχ demedianteunafunciónporparte,análogamente

Más detalles

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple El Teorema de Green Una curva dada por r(t) x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) r(d) si c d. urva simple urva no simple urva orientada positivamente La curva

Más detalles

6. Integrales triples.

6. Integrales triples. GRADO DE INGENIERÍA AEROESPACIAL. CRSO 0. Lección. Integrales múltiples. 6. Integrales triples. Integral triple en un prisma. El proceso para definir la integral triple f ( xyzdv,, ), de una función continua

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE---V--00-0 CURSO: Matemática Intermedia SEMESTRE: Segundo CÓDIGO DEL CURSO: TIPO DE EXAMEN: Tercer Parcial

Más detalles

SERIE # 1 CÁLCULO VECTORIAL

SERIE # 1 CÁLCULO VECTORIAL SERIE # 1 CÁLCULO VECTORIAL Página 1) Determinar la naturaleza de los puntos críticos de la función f x, y = x y x y. P 1 0,0 máximo relativo, P 1, 1 punto silla, P 1, 1 punto silla, 4 1, 1 silla, P5 1,

Más detalles

MÉTODOS MATEMÁTICOS II

MÉTODOS MATEMÁTICOS II MÉTODOS MATEMÁTICOS II (Licenciatura de Física. Curso 2007-2008) Boletín de problemas a evaluar correspondientes a los Temas I y II Fecha de entrega: Viernes, 23 de Noviembre de 2007 1. Calcula los siguientes

Más detalles

PEP 3. Responda 4 de los siguientes 9 problemas, escogiendo al menos uno de cada sección.

PEP 3. Responda 4 de los siguientes 9 problemas, escogiendo al menos uno de cada sección. Universidad de Santiago de Chile Cálculo odrigo Vargas do semestre 1 PEP Nombre: Nota: esponda de los siguientes 9 problemas, escogiendo al menos uno de cada sección. Sección 1. 1. Use coordenadas esféricas

Más detalles

Aplicaciones físicas

Aplicaciones físicas Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de 2003

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de 2003 CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de Ejercicio 1. Calcular el volumen del elipsoide x a + y b + z c 1. Probar que el elipsoide de volumen máximo,

Más detalles

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones:

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: SERIE SUPERFICIES 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: 4x C z 0 y que se genera por rectas perpendiculares al plano: x + y + 3z + = 0.-Sea la superficie

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

6. El teorema de la divergencia.

6. El teorema de la divergencia. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. Lección. Cálculo vectorial. 6. El teorema de la divergencia. Ya vimos una versión del teorema de Green en el plano que expresa la igualdad entre la integral doble

Más detalles

CA LCULO Hoja 9. Integrales dobles.

CA LCULO Hoja 9. Integrales dobles. pto. Matema tica Aplicada. E.T.S. Arquitectura. U.P.M. CA LCULO Hoja 9. Integrales dobles.. Evaluar cada una de las siguientes integrales siendo R = [, ] [, ]: a) ( + y )ddy d) ( + y)ddy (:= 65 ) R R y

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Programa de Ampliación de Cálculo. Curso 2014/15 1. Cálculo de integrales múltiples Integrales dobles en rectángulos;

Más detalles

GUIA DE EJERCICIOS PARA MATEMATICAS 5

GUIA DE EJERCICIOS PARA MATEMATICAS 5 GUIA DE EJERCICIOS PARA MATEMATICAS 5 La presente guía representa una herramienta para el estudiante para que practique los temas dictados en matemáticas 5. Al final están las soluciones a los ejercicios

Más detalles

En esta sección se presenta la integral triple para funciones de tres variables, funciones del tipo

En esta sección se presenta la integral triple para funciones de tres variables, funciones del tipo 5. INTEGRALES TRIPLES En esta sección se presenta la integral triple para funciones de tres variables, funciones del tipo f:, tal como se hizo en la sección anterior para las integrales dobles. Así como

Más detalles

Superficies parametrizadas

Superficies parametrizadas 1 Universidad Simón Bolívar.. Preparaduría nº 1. christianlaya@hotmail.com ; @ChristianLaya Superficies parametrizadas Superficies parametrizadas: Una superficie parametrizada es una función donde D es

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

1.5. Integral de línea de un campo Vectorial.

1.5. Integral de línea de un campo Vectorial. .5. Integral de línea de un campo Vectorial. Sea F ( xyz,, un campo vectorial continuo sobre R donde F representa un campo de fuerzas aplicado sobre una partícula cuya trayectoria puede ser descrita por

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

CAMPOS: CIRCULACIÓN Y FLUJO

CAMPOS: CIRCULACIÓN Y FLUJO AMPO: IRULAIÓN Y FLUJO Dado el vector a ( x + y) i ˆ + xy ˆ j calcular su circulación a lo largo de la recta y x+ desde el punto A (, ) al B (, 2). olución: I.T.I. 99, 5, I.T.T. 2 En la trayectoria que

Más detalles

Sea S = F r(w ) una supercie cerrada que limita una región en el espacio W R 3

Sea S = F r(w ) una supercie cerrada que limita una región en el espacio W R 3 4.3 Teorema de la ivergencia Gauss) ea = F r ) una supercie cerrada que limita una región en el espacio R 3 El teorema de la divergencia tambien conocido como teorema de Gauss) es una generalización del

Más detalles

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES TEMA : CÁLCULO DE FUNCIONES DE AIAS AIABLES. Hallar f,. f, f,. 4 4. Hallar el valor de la función f, en los puntos de la circunferencia.. Calcular los guientes límites: cos lim,, sen lim,, c, lim con,

Más detalles

Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica

Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica http://www.cidse.itcr.ac.cr 7 de junio de 008 . Para cada una de las funciones que se

Más detalles

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican:

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican: INTEGACION EN VAIAS VAIABLES: Integrales dobles.. Evaluar las siguientes integrales iteradas: (x y + y )dy dx xye x+y dy dx ( x ln y)dy dx ln [((x + )(y + )] dx dy. 3 ; ; ; ln. 5. Sea I = [, ] [, 3]. Calcular

Más detalles

División Departamento Licenciatura. Asignatura: Horas/semana: Horas/semestre: Obligatoria X Teóricas 4.0 Teóricas 64.0

División Departamento Licenciatura. Asignatura: Horas/semana: Horas/semestre: Obligatoria X Teóricas 4.0 Teóricas 64.0 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO CÁLCULO VECTORIAL CIENCIAS BÁSICAS 3 8 Asignatura Clave Semestre Créditos COORDINACIÓN DE MATEMÁTICAS INGENIERÍA CIVIL

Más detalles

7.1. CAMPOS VECTORIALES EN DEFINICIONES

7.1. CAMPOS VECTORIALES EN DEFINICIONES 7 n 7.. AMPO VETOIALE EN 7.. 7.. DEFINIIONE 7.. 7.. POPIEDADE 7.. 7.4. AMPO VETOIALE 7.4. ONEVATIVO 7.5. INTEGALE DE LÍNEA 7.6. TEOEMA DE GEEN 7.7. INTEGAL DE LÍNEA PAA EL ÁEA DE UNA EGIÓN PLANA 7.8. INTEGALE

Más detalles

Guía n 0: Herramientas de Física y Matemáticas

Guía n 0: Herramientas de Física y Matemáticas Guía n 0: Herramientas de Física y Matemáticas Problema Dadas dos partículas en el espacio ubicadas en los puntos de coordenadas p = (0,5, 2) y p 2 = (2,3,). Hallar el vector posición de la partícula respecto

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral Examen final de Cálculo Integral de junio de 11 (Soluciones) Cuestiones C 1 La respuesta es que la función es integrable, como consecuencia del Teorema 1.1 de los apuntes, o el Teorema del Capítulo 5 del

Más detalles

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera:

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera: PROBLEMA 1 A una esfera maciza de radio unidad se le hace una perforación cilíndrica siguiendo un eje diametral de la esfera. Suponiendo que el cilindro es circular de radio, con y que el eje que se usa

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

4 Integrales de línea y de superficie

4 Integrales de línea y de superficie a t e a PROBLEMA DE ÁLULO II t i c a s 1 o Ings. Industrial y de Telecomunicación URO 2009 2010 4 Integrales de línea y de superficie 4.1 Integrales sobre curvas y campos conservativos. Problema 4.1 Integra

Más detalles

PRÁCTICA COORDENADAS CILÍNDRICAS Y ESFÉRICAS CURSO CÁLCULO II. Práctica 2 (24/02/2015)

PRÁCTICA COORDENADAS CILÍNDRICAS Y ESFÉRICAS CURSO CÁLCULO II. Práctica 2 (24/02/2015) PRÁCTICA COORDENADAS CILÍNDRICAS Y ESFÉRICAS CURSO 014-015 CÁLCULO II Prácticas Matlab Práctica (4/0/015) Objetivos o Estudiar los sistemas de coordenadas cilíndricas y esféricas. 3 o Definir regiones

Más detalles

Campos vectoriales - Parte B

Campos vectoriales - Parte B apítulo 6 ampos vectoriales - Parte B 6.6 Teorema de Green El Teorema de Green relaciona una integral de línea a lo largo de una curva cerrada en el plano, con una integral doble sobre la región encerrada

Más detalles

NOCIONES DE CALCULO VECTORIAL

NOCIONES DE CALCULO VECTORIAL NOCIONES DE CALCULO VECTORIAL ANÁLISIS VECTORIAL o ÁLGEBRA VECTORIAL: Suma, resta y multiplicación de vectores. o CÁLCULO VECTORIAL: Gradiente, divergencia y rotacional. Teorema de la Divergencia. Teorema

Más detalles

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Cálculo Vectorial Tarea 5

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Cálculo Vectorial Tarea 5 Integrales Múltiples álulo Vetorial Tarea 5 1. Evalúe las siguientes integrales: 1.1 0 1 4 ( 1 8 dd 1. 1 0 sin 1. 0 0 (Res. 57 ( 1 dd (Res. 0/ (1 os (Res. dd 1 1 1.4 os( sen( 0 (Res. dd 7 9. Utilie una

Más detalles

Rotaciones alrededor de los ejes cartesianos

Rotaciones alrededor de los ejes cartesianos Sólido de revolución Un sólido de revolución es un cuerpo que puede obtenerse mediante una operación geométrica de rotación de una superficie plana alrededor de una recta que se contenida en su mismo plano.

Más detalles

INTEGRALES TRIPLES. 46. Dada la integral la integral de todas las formas posibles. f(x, y, z) dzdydx, dibujar la región de integración y escribir

INTEGRALES TRIPLES. 46. Dada la integral la integral de todas las formas posibles. f(x, y, z) dzdydx, dibujar la región de integración y escribir INTEGALES TIPLES. 46. Dada la integral la integral de todas las formas posibles. f(,, ) ddd, dibujar la región de integración escribir Teniendo en cuenta la gráfica adjunta, si D 1, D 2 D 3 son las proecciones

Más detalles

1.18 Convertir de coordenadas cilíndricas a esféricas el campo vectorial H = (A/r), donde A es constante.

1.18 Convertir de coordenadas cilíndricas a esféricas el campo vectorial H = (A/r), donde A es constante. Problemas 1.5 Un campo vectorial está dado por G = 24xy + 12(x 2 + 2) + 18z 2. Dados dos puntos, P(1, 2, - 1) y Q(-2, 1, 3), encontrar: a) G en P; b) un vector unitario en la dirección de G en Q; c) un

Más detalles

INTEGRALES DE FUNCIONES DE VARIAS VARIABLES

INTEGRALES DE FUNCIONES DE VARIAS VARIABLES INTEGALES DE FUNCIONES DE VAIAS VAIABLES [Versión preliminar] Prof. Isabel Arratia Z. Integrales dobles sobre rectángulos La integral de iemann para una función f de dos variables se define de manera similar

Más detalles

Operadores diferenciales

Operadores diferenciales Apéndice A Operadores diferenciales A.1. Los conceptos de gradiente, divergencia y rotor Sobre el concepto de gradiente. Si f r) es una función escalar, entonces su gradiente, en coordenadas cartesianas

Más detalles

Universidad Técnica Federico Santamaría

Universidad Técnica Federico Santamaría Integral de uperficie - Mate 4 UPEFICIE PAAMÉTICA e forma similar a como se describe una curva mediante una función vectorial r(t), en función de un parámetro t,se puede describir una superficie mediante

Más detalles

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Integrales Dobles Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 76 CONTENIDO Integrales Dobles Introducción

Más detalles

FACULTAD DE CIENCIAS DEL MAR. FUNDAMENTOS MATEMÁTICOS II. Convocatoria Extraordinaria de Diciembre de 2002.

FACULTAD DE CIENCIAS DEL MAR. FUNDAMENTOS MATEMÁTICOS II. Convocatoria Extraordinaria de Diciembre de 2002. FAULTAD DE IENIAS DEL MAR. FUNDAMENTOS MATEMÁTIOS II. onvocatoria Extraordinaria de Diciembre de. xydx x y dy a lo largo de la elipse.- alcular + ( ) contrario al de las agujas del reloj. x y + = recorrida

Más detalles

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x.

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. Área entre curvas Ejercicios resueltos 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. En primer lugar hallamos los puntos de corte de las dos funciones para conocer los límites

Más detalles

Lección 3. Cálculo vectorial. 5. El teorema de Stokes.

Lección 3. Cálculo vectorial. 5. El teorema de Stokes. GRADO DE INGENIERÍA AEROESPAIAL. URSO. 5. El teorema de Stokes. En esta sección estudiaremos otro de los teoremas clásicos del análisis vectorial: el teorema de Stokes. Esencialmente se trata de una generalización

Más detalles

TEXTO: MATEMÁTICA II PARA ESTUDIANTES DE INGENIERÍA QUÍMICA"

TEXTO: MATEMÁTICA II PARA ESTUDIANTES DE INGENIERÍA QUÍMICA UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA QUÍMICA UNIDAD DE INVESTIGACIÓN DE INGENIERÍA QUÍMICA INFORME FINAL DEL TEXTO TEXTO: MATEMÁTICA II PARA ESTUDIANTES DE INGENIERÍA QUÍMICA" AUTOR:

Más detalles

Integrales Múltiples.

Integrales Múltiples. CAPÍTULO 8 Integrales Múltiples. En este capítulo generalizamos las integrales definidas de una variable a dos y tres variables. La interpretación geométrica de las integrales definidas de una variable

Más detalles

La puntuación depende del modo de resolución.

La puntuación depende del modo de resolución. Grupo B 16/17 Ampliación de Cálculo En todos los casos, se pide contestar razonadamente La puntuación depende del modo de resolución Ejercicio 1 (15 puntos por apartado) Una semiesfera sólida de densidad

Más detalles

Soluciones de los ejercicios del examen de Fundamentos Matemáticos I Segundo curso de Ingeniería de Telecomunicación - febrero de 2006

Soluciones de los ejercicios del examen de Fundamentos Matemáticos I Segundo curso de Ingeniería de Telecomunicación - febrero de 2006 Soluciones de los ejercicios del examen de Segundo curso de Ingeniería de Telecomunicación - febrero de 6 ( a) (.5 puntos) Justifica que el campo vectorial F(x,y) = log(x + y ), arctg y ) es conservativo

Más detalles

( ) x y dxdy. x y dxdy y. sin 2θ 2 = = = x y dxdy. 3 4y y ln. 1

( ) x y dxdy. x y dxdy y. sin 2θ 2 = = = x y dxdy. 3 4y y ln.   1 Cálculo II Exámenes esueltos Tercer Parcial. Evaluar la integral, pasando a coordenadas polares: Solución: haciendo los siguientes cambios, ( ) 4y 4y 4y x y y 4y 4y 4 4 4y x y sin θ x y = r ( sinθcosθ

Más detalles

Volumen de Revolución Ejemplo. Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x el eje 0x:

Volumen de Revolución Ejemplo. Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x el eje 0x: Volumen de Revolución Ejemplo Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x 2 1 gira sobre el eje 0x: Sólidos de Revolución conocidos ALGUNAS APLICACIONES

Más detalles

UNIVERSIDAD NACIONAL Facultad de Ciencias Departamento de Matemáticas. TALLER IV Profesor: H. Fabian Ramirez Cálculo Vectorial INTEGRALES TRIPLES

UNIVERSIDAD NACIONAL Facultad de Ciencias Departamento de Matemáticas. TALLER IV Profesor: H. Fabian Ramirez Cálculo Vectorial INTEGRALES TRIPLES UNIVERSIA NAIONAL Facultad de iencias epartamento de Matemáticas 1. alcule TALLER IV Profesor: H. Fabian Ramirez álculo Vectorial INTEGRALES TRIPLES 3dV, donde está limitado por las superficies z =, y

Más detalles

FUNCIONES DE VARIAS VARIABLES

FUNCIONES DE VARIAS VARIABLES FUNCIONES DE VARIAS VARIABLES Deinición: Si D es un conjunto de n-uplas de números reales... n una unción de valores reales sobre es una regla que asigna un número real w... n a cada elemento de D donde

Más detalles

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 10. Cálculo vectorial.

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 10. Cálculo vectorial. ÁLULO ngeniería ndustrial. urso 2009-2010. Departamento de Matemática Aplicada. Universidad de evilla. Lección 10. álculo vectorial. Resumen de la lección. 10.1. ntegrales de línea. ntegral de línea de

Más detalles

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2 Ejemplos de parcial de Análisis Matemático II Los ítems E1, E, E3 E4 corresponden a la parte práctica Los ítems T1 T son teóricos (sólo para promoción) T1) Sea F : IR IR diferenciable tal que F(,) 00 =

Más detalles

LECCIÓN 8. LOS TEOREMAS INTEGRALES

LECCIÓN 8. LOS TEOREMAS INTEGRALES LEIÓN 8. LOS TEOREMAS INTEGRALES Matemáticas III (GI y GITI, curso 2015 2016 1. EL TEOREMA DE GREEN El denominador común de los teoremas integrales que trataremos en esta lección es que establecen la igualdad,

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

Teorema de la Divergencia (o de Gauss) y la Ecuación de

Teorema de la Divergencia (o de Gauss) y la Ecuación de E.E.I. CÁLCULO II Y ECUACIONE IFEENCIALE Curso 2016-17 Lección 13 (Lunes 13 mar 2017) Teorema de la ivergencia (o de Gauss) y la Ecuación de ifusión. 1. Teorema de la ivergencia (o Teorema de Gauss). 2.

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16. Integración en varias variables.

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16. Integración en varias variables. AMPLIACIÓN DE MATEMÁTICA. Curso 2015/16. Integración en varias variables. 1. Calcular para = [0, 1] [0, 3] las integrales (a) xydxdy. (b) xe y dxdy. (c) y 2 sin xdxdy. 2. Calcular las integrales dobles

Más detalles

Universidad Autónoma del Estado de México Unidad Académica Profesional Nezahualcóyotl Lic. en Ingeniería en Sistemas Inteligentes.

Universidad Autónoma del Estado de México Unidad Académica Profesional Nezahualcóyotl Lic. en Ingeniería en Sistemas Inteligentes. Universidad Autónoma del Estado de México Unidad Académica Profesional Nezahualcóyotl Lic. en Ingeniería en Sistemas Inteligentes. PROBLEMARIO Unidad de aprendizaje: CÁLCULO III Autor: Dr. Israel Gutiérrez

Más detalles

Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002.

Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002. Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso -. Examen de Septiembre. 6 de Septiembre de. Primera parte Ejercicio. Un canal abierto cuya sección es un trapecio isósceles de bases horizontales,

Más detalles

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy =

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy = TEOREMA E GREEN. 1. Calcular y dx x dy, donde es la frontera del cuadrado [ 1, 1] [ 1, 1] orientada en sentido contrario al de las agujas del reloj. Por el teorema de Green, si llamamos al interior del

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte ÁLULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 000 Primera parte Ejercicio 1. Entre todos los rectángulos del plano YOZ,inscritos en la parábola z = a y (siendo a>0) yconbaseenelejeoy

Más detalles

SERIE ÁLGEBRA VECTORIAL

SERIE ÁLGEBRA VECTORIAL SERIE ÁLGEBRA VECTORIAL 1.-Sea C(2, -3, 5) el punto medio del segmento dirigido AB. Empleando álgebra vectorial, determinar las coordenadas de los puntos A y B, si las componentes escalares de AB sobre

Más detalles

Práctica 4. Teorema de la divergencia, Teorema de Stoke y Campos conservativos.

Práctica 4. Teorema de la divergencia, Teorema de Stoke y Campos conservativos. Práctica 4 Teorema de la divergencia, Teorema de Stoke y Campos conservativos. 1 Teorema de la divergencia Sea suave y una región tipo IV acotada por la cual es una superficie cerrada y orientada. Entonces

Más detalles

Lectura 2 Ampliación de Matemáticas. Grado en Ingeniería Civil

Lectura 2 Ampliación de Matemáticas. Grado en Ingeniería Civil 1 / 12 Lectura 2 Ampliación de Matemáticas. Grado en Ingeniería Civil Curso Académico 2011-2012 Cambio de variables 2 / 12 Idea básica: en ocasiones, la utilización de variables apropiadas en lugar de

Más detalles

7. [2013] [JUN-A] a) Pueden existir vectores u y v tales que u = 2, v = 3 y u v = 8? Justifique la respuesta.

7. [2013] [JUN-A] a) Pueden existir vectores u y v tales que u = 2, v = 3 y u v = 8? Justifique la respuesta. 1. [014] [EXT-A] a) Determine el valor o valores de m, si existen, para que la recta r: mx+y = x+ mz = : x-y-z+6 = 0. b) Determine la distancia del punto P= (,1,1) a la recta r cuando m =. sea paralela

Más detalles

TEMA 0: Herramientas matemáticas

TEMA 0: Herramientas matemáticas 1 TEMA 0: Herramientas matemáticas Tema 0: Herramientas matemáticas 1. Campos escalares y vectoriales 2. Gradiente 3. Divergencia 4. Rotacional 5. Teoremas de Gauss y de Stokes 5. Representación gráfica

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 9 de Junio de 4 Primera parte Ejercicio. Un depósito subterráneo de gasolina tiene forma de cilindro elíptico con semieje orizontal a

Más detalles

Analisis Vectorial. 19 de octubre de 2011

Analisis Vectorial. 19 de octubre de 2011 M.Sc. Alejandro Galo Roldan Physics Professor Head of the Physics Program at the National University of Honduras UNAH 19 de octubre de 2011.Sc. Alejandro Galo RoldanPhysics Professor Head of the Analisis

Más detalles

Escuela Técnica Superior de Ingeniería Universidad de Sevilla. GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II

Escuela Técnica Superior de Ingeniería Universidad de Sevilla. GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II Escuela Técnica Superior de Ingeniería Universidad de Sevilla GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II CURSO 2015-2016 Índice general 1. Derivación de funciones

Más detalles

Análisis II - Primer Parcial Coloquio- Tema 1

Análisis II - Primer Parcial Coloquio- Tema 1 .5. Coloquio 1/08/03. Análisis II - Primer Parcial Coloquio- Tema 1 1. Hallar a de manera que sea máximo el flujo de campo F (x,y,z)= (x,y,z) a través del borde ( con tapas!) del cilindro elíptico descripto

Más detalles

e+ 2 Fay* Límites de una función Teoremas de los límites de funciones Límites unilaterales Límites infinitos 105

e+ 2 Fay* Límites de una función Teoremas de los límites de funciones Límites unilaterales Límites infinitos 105 e+ I f 1.1 Números reales y desigualdades 2 1.2 Coordenadas y rectas 16 1.3 Circunferencias y gráficas de ecuaciones 32 1.4 Funciones 42 1.5 Gráficas de funciones S5 1.6 Funciones trigonométricas 61 Ejercicios

Más detalles

TEORIA MATEMATICAS 5 PRIMER PARCIAL

TEORIA MATEMATICAS 5 PRIMER PARCIAL Def: Grafica de una función TEORIA MATEMATICAS 5 PRIMER PARCIAL Sea:. Definimos la grafica de f como el subconjunto de formado por los puntos, de en los que es un punto de U. Simbólicamente grafica es:

Más detalles

Definir la Integral del campo vectorial F sobre una superficie S como una suma de Riemann.

Definir la Integral del campo vectorial F sobre una superficie S como una suma de Riemann. .7. Integral de superfície de campos vectoriales. Otra de las aplicaciones importantes de la integral de superficies, es cuando se integra un campo vectorial sobre ella. El significado que adquiere este

Más detalles

Indice de contenido. Ecuaciones de los círculos / Ecuación estándar de un círculo. Problemas complementarios

Indice de contenido. Ecuaciones de los círculos / Ecuación estándar de un círculo. Problemas complementarios l' Indice de contenido Un sistema de coordenadas lineales / Intervalos finitos / Intervalos infinitos / Desigualdades Ejes de coordenadas / Coordenadas / Cuadrantes / Fórmula de la distancia / Fórmulas

Más detalles

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes

Más detalles

Tarea 9. H ds = E ds (2)

Tarea 9. H ds = E ds (2) Tarea 9. ea una supercie con frontera y suponga que E es un campo eléctrico que es perpendicular a - Muestre que el ujo magnético inducido a través de es constante en el tiempo. (Use la Ley de Faraday)

Más detalles