OPCIÓN A. rg A = rg A* = n = 3 sistema compatible determinado.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "OPCIÓN A. rg A = rg A* = n = 3 sistema compatible determinado."

Transcripción

1 UNIVERSIDDES ÚBLICS DE L COUNIDD DE DRID RUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OFICILES DE GRDO Cuso -5 TERI: TEÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN Dsués l tntnt tos ls gunts, l luno á sog un ls os oions ousts son onnt ls ustions l oión lgi. l liión st u s u utili lulo intíi, qu no isong i sntión gái o álulo ólio. Tos ls susts án st int justiis. Cliiión: Ls gunts ª ª s vloán so untos; ls gunts ª ª so untos. Tio: 9 inutos. OCIÓN Ejiio. Cliiión ái: untos. Do l st uions linls: s i: ) ( untos) Disutilo sgún los vlos l áto. ) (,5 untos) Rsolvlo n l so. ) (.5 untos) Rsolvlo n l so. Soluión.. El st vin inio o ls tis oiints () li (*). * * g g * Si l tinnt l ti oiints s istinto o, g g * n, l st sá otil tino, o tnto s isut l tio soluión l st los vlos l áto qu nuln l tinnt l ti oiints. 6 ( 6 ) ( )( ) ( )( ) : Disuón. i. Si,. g g * n st otil tino. ii. Si. g <. g. * tino l no on ts istinto o, s stuin sus nos olos. D los os nos olos, l oo o l ª, ª ª olun n l tinnt l ti oiints, o lo tnto solo qu o stui l oo o l ª, ª ª olun. g * g, st inotil.

2 iii. Si. g <. g * tino l no on ts istinto o, s stuin sus nos olos. D los os nos olos, l oo o l ª, ª ª olun n l tinnt l ti oiints, o lo tnto solo qu o stui l oo o l ª, ª ª olun. n g g *, st otil intino.., st otil tino. S u solv o l étoo Guss o o l étoo C. { Soluión (,, ) C: 8 ; 8 ; Soluión (,, ).. Sist otil intino ngo. El st quivlnt st oo o os uions linlnt innints. slion ls linlnt innints s to oo ni l no on istinto o qu s h utilio tin l ngo Coo l st tin s inógnits qu uions, s tnso un vil n áto s sulv l st n unión s áto. sgus l sulto, s to oo áto l vil qu no oo t l no on (l ). Suno ls uions s lul, onoi, s sj R 7 :

3 Ejiio. Cliiión ái: untos L t s o (,, ) tin vto ito (,, ); l t s s o Q(,, ) tin vto ito (,, ). 9 ) ( untos) Clul > qu l istni nt s s. 59 ) ( unto) Clul qu s niul l t qu s o Q. Soluión. (,, ) Q(,, ). s v(,, ) u(,, ) L íni istni nt os ts qu s un no s otn s u lul oo liión l outo ito ts vtos. Tnino n unt qu l volun un llío s (Á l s) (ltu), l ltu s l' íni istni nt l t o lo qu sjno tnino n unt ls liions l outo ito l óulo l outo vtoil: ( s) ( s) h v u Qo v Volun llío Á l s Q Qo v u ( v u) (,, ) (,, ) (,, ) (,, ) (,, ),, ( 8, 6, ) ( v u) (,, ) o ( 8, 6, ) 8 6 u ( 8, 6, ) ( s) Onno s otin un uión sguno go ; 5 : 6. Si os ts son niuls, sus vtos iión tién lo sán o tnto su outo sl á s nulo. Si Q vo Q,, o,, ( ) Ejiio : Cliiión ái: untos. ) (,5 untos) Estui l iinto l unión (). ) (,5 untos) Dost qu l uión tin un úni soluión l loli un intvlo longitu qu l ontng. Soluión.. El iinto un unión s soi l gno su iv: Si > s int Si < s int 6 6 ± ± : R > R s stitnt int

4 . oo l unión tin l nos un soluión Rl, s stui ul ls oniions l to Bolno. 6 () s ontinu n too R o s un unión olinói o lo tnto s ontinu n [, ], ás ( l) < (l) >, sgún l to Bolno, ist un vlo (, ) tl qu () Un o ost qu l soluión s úni, s intnt ost int l to Roll qu ist os soluions llg un inonguni. st tio ostions s ls noin uión lo suo. Hióts Eistn os vlos n los uls s nul l unión () (() () ). Bjo st hióts, l unión (), ul ls oniions l to Roll i. L unión o s olinói s ontinu n [, ]. ii. L unión o s olinói s ivl n (, ). iii. L unión ln vlos iguls n los tos l intvlo () () (hióts).. Sgún l to Roll, isti un vlo (, ), tl qu Cálulo : 6 6 ± 6 ; R No ist ningún vlo qu ul l to Roll, o lo qu no s ul l to, tnino n unt qu l unión o s olinói s ontinu ivl n R, lo únio qu u ll s l hióts iniil, o lo tnto, no istn os vlos ints los qu l unión to l iso vlo, n onsuni l unión solo s nul un v l soluión l uión s úni. Ejiio : Cliiión ái: untos. ) ( unto) Clul l intgl ini ( ) ) ( unto) Clul Lí ( ) Lí ( ) Soluión.. S i o solv l inini. Un v lul l iitiv l unión s sulv l intgl ini. L intgl inini s sulv o l étoo ts, tono oo u l t olinói oo v l t onnil. u u ( ) ( ) ( ) ( ) ( ) ( ) v v C C C. Lí ( ) Lí C ( ) ( ] ( ) Lí Lí L H ( ) ( ) ( )

5 OCIÓN B Ejiio. Cliiión ái: untos. D l unión Ln > (on Ln not logito nino s un núo l) s i: ) ( unto) Clul l vlo qu () s ontinu n too R. on s ol. ) ( unto) Clul Soluión.. qu l unión () s ontinu tnino n unt qu ls unions ils on ontinus n suoinios iniión, () á s ontinu n l unto ont ( ). ) ( unto) Clul qu l unión s ontinu n, s uli: Lí Lí Lí Lí Lí L H Lí( ) ( ) ( ) ( ) Ln Lí Lí Ln Lí Ln Lí. Ln > ( Ln ) Ln Ln ( ) ( ) Igulno: ( Ln ) ( ) > < Ln ( ) > < oo l unión s ivl n, s stuin ls ivs ltls n o ( ) : Ln L unión no s ivl n.. ( ) L intgl inini s sulv o ts, ás, tnino n unt qu s olinói o onnil, l o ás snill li l étoo s int un tl. 5

6 En l olun l iqui s on l unión qu tú oo u ( ) s v ivno hst qu s nul, n l olun l h s on l unión qu tú oo v ( ) s v intgno. L soluión s otin oo inin ls lhs los stivos gnos. C ( ) C Si no os onvn st étoo, oéis l l o iguos: u u v v u u v v [ ] C ( ) C Clul l iitiv l unión s lul l intgl ini. 5 ( ) ( ) ] ( ) Ejiio. Cliiión ái: untos Dos los untos (,, ), Q(,, ) los lnos π, π 6, π ; s i: ) ( unto) Clul los vlos los qu los ts lnos s otn n un t. ) ( unto), hll l uión l lno qu ontin l unto s niul l t intón los lnos π π. ) ( unto) Hll l istni nt los untos Q, no l unto étio sto l lno π. Soluión.. qu los ts lnos s otn n un t, l st qu on sus uions s otil intino on un go intinión (g g * n ). 6 Sist hoogéno g g * qu l st s otil intino,. 6 ( 6) ( 6) : - Si. g < 6 g g *. Los lnos s otn so un t. - Si. g < 6 g g *. Los lnos s otn so un t. 6

7 7. :, v, π π El lno uso tná oo vto nol l vto iión l t ontná l unto. K σ,,, v, n σ lul K s us l unto σ K ` K σ. Coons, étio sto π. El étio un unto sto un lno s lul oo étio sto, no l oión otogonl so π oo s osv n l igu. sos: ) S lul l t, niul π qu ontin ) S lul oo intón π. ) Conoios s luln ls oons on ls uions l unto io un sgnto. Clulo s: o s niul l lno π ontn l unto : s :,,,, n v s π Clulo. S lul oo intón s π : ; ; : π s,, Conoio s luln ls oons tnino n unt qu s l unto io l sgnto :,, ' ' ' ' ' ' ' ' ',, u Q Q

8 8 Ejiio. Cliiión ái untos Sino qu usno ls ois los tinnts, lul l vlo los guints tinnts: ) ( unto) 5 5 ) ( unto) 6 Soluión.. lino ls ois los tinnts s tnson los tinnts qu s in n l tinnt qu nos n oo to. C C C C C olun n l ª 5 to oún olun n l ª to oún F F F olun n l ª to oún il ª n l to oún 6 F F Ejiio. Cliiión ái untos D l ti, hll tos ls tis B qu onutn on, s i qu uln B B. Soluión. Intiino téino téino: { {.... R, B

UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Guix Mtátis II UNIDD DETERMINNTES.. DETERMINNTE DE ORDEN UNO. D un triz ur orn uno sri o in, oo l núro rl:. DETERMINNTE DE ORDEN DOS. D un triz ur orn os oo l núro rl: Ejplos:, s in l rinnt,

Más detalles

1. ÁREA BAJO UNA CURVA. INTEGRAL DEFINIDA. PROPIEDADES. Sea f continua en [ ] = K con. : Conjunto finito de puntos P { x x,, x, x }

1. ÁREA BAJO UNA CURVA. INTEGRAL DEFINIDA. PROPIEDADES. Sea f continua en [ ] = K con. : Conjunto finito de puntos P { x x,, x, x } IES P Pov (Gui Mtmátis II UNIDD : INTEGRL DEFINID.. ÁRE BJO UN CURV. INTEGRL DEFINID. PROPIEDDES., o (,. S otiu [ [ Ptiió [, : Cojuto iito putos P {,,, } < < < K < K o, Diámto l ptiió P : Myo los vlos,,

Más detalles

1. ÁREA BAJO UNA CURVA. INTEGRAL DEFINIDA. PROPIEDADES. Sea f continua en [ ] = K con. : Conjunto finito de puntos P { x x,, x, x }

1. ÁREA BAJO UNA CURVA. INTEGRAL DEFINIDA. PROPIEDADES. Sea f continua en [ ] = K con. : Conjunto finito de puntos P { x x,, x, x } IES P Pov (Gui Mtmátis II UNIDD INTEGRL DEFINID.. ÁRE BJO UN CURV. INTEGRL DEFINID. PROPIEDDES., o (,. S otiu [ (Positiv [ Ptiió [, : Cojuto iito putos P {,,, } < < < K < K o, Diámto l ptiió P : Myo los

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES STER BDJOZ RUEB DE ESO (OGSE) UNIVERSIDD DE STI Y EÓN JUNIO - (RESUETOS por ntonio nguino) TEÁTIS II Tipo áio: hors inutos ritrios gnrls vluión l pru: S osrvrán funntlnt los siguints sptos: orrt utiliión

Más detalles

CONICAS ESTUDIO DE SUS FORMAS REDUCIDAS. ESTUDIO DE LA ECUACIÓN GENERAL DE 2º GRADO EN DOS VARIABLES

CONICAS ESTUDIO DE SUS FORMAS REDUCIDAS. ESTUDIO DE LA ECUACIÓN GENERAL DE 2º GRADO EN DOS VARIABLES CONICAS ESTUDIO DE SUS ORMAS REDUCIDAS. ESTUDIO DE LA ECUACIÓN GENERAL DE º GRADO EN DOS VARIABLES Lug Goétio: Consios l plno oo onjunto puntos llos lug goétio n l plno too suonjunto puntos l iso finio

Más detalles

VIGA AS Fll olun n ot S oiinn n it 45º fon o un "X" n l t l olun qu u no tá tini o uo ltl. Tbién u un u it ionl lo l lo l olun ot. t tio fll í ui. Fiu

VIGA AS Fll olun n ot S oiinn n it 45º fon o un X n l t l olun qu u no tá tini o uo ltl. Tbién u un u it ionl lo l lo l olun ot. t tio fll í ui. Fiu CO OLUMNAS TIPO D OA VALUAR Colun ñ y it Dniintto l onto y xoiión l o fuz zo on l núlo tuio DSCRIPC CCION D DAÑ ÑO t tio n olun initivo un flt tibo. n olun uho á io qu q n uo qu l to inifi onto h ufio

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

UNIDAD 2 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 2 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Gux táts pls ls CCSS II UNIDD DETERINNTES.. DETERINNTE DE ORDEN UNO. D un trz ur orn uno sr o n, oo l núro rl:. DETERINNTE DE ORDEN DOS. D un trz ur orn os oo l núro rl: Eplos:, s n l rnnt,

Más detalles

( ) ( ) 60 ( ) ( ) ( ) Opción A. Ejercicio A.1- Se sabe qué Calcular, de manera razonada, aplicando las propiedades

( ) ( ) 60 ( ) ( ) ( ) Opción A. Ejercicio A.1- Se sabe qué Calcular, de manera razonada, aplicando las propiedades IES Mditáo d Málg Soluió Juio Ju Clos loso Giotti Oió Ejiio.- S s ué. Clul d od lido ls oidds duds l lo d los siguits dtits: B B IES Mditáo d Málg Soluió Juio Ju Clos loso Giotti Ejiio..- Hll l uió dl

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2010 Juan Carlos Alonso Gianonatti OPCIÓN A

I.E.S. Mediterráneo de Málaga Junio 2010 Juan Carlos Alonso Gianonatti OPCIÓN A I.E.S. diáno álg Junio Jun Clo lono Ginoni OPCIÓN.- ) Pon un jplo i iéi on oo i niiéi on. ) S un i iéi on on () -. Clul onndo l pu l inn indo l i pu. ) Clul un i iéi ngo qu iiqu ) Un i iéi qull n qu l

Más detalles

UNIDAD 6: DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 6: DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Gux ás II UNIDD : DETERINNTES.. DETERINNTE DE ORDEN UNO. D un rz ur orn uno sr o n, oo l núro rl:. DETERINNTE DE ORDEN DOS. D un rz ur orn os oo l núro rl: Eplos:, s n l rnn, y s, s n l rnn.

Más detalles

A puede expresarse como producto de matrices elementales

A puede expresarse como producto de matrices elementales TLLER GEOMETRÍ VECTORIL Y NLÍTIC FCULTD DE INGENIERÍ-UNIVERSIDD DE NTIOQUI - Profsor: Jim nrés Jrmillo Gonzálz jimj@onptoomputorsom Prt l mtril s tomo oumntos los profsors lrto Jrmillo Grimlo Ols En los

Más detalles

Determinantes D - 1 DETERMINANTES

Determinantes D - 1 DETERMINANTES Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MATRICES Y DETERMINANTES EJERCICIOS RESUELTOS D l triz A, qué relión een gurr ls onstntes pr que se verifique l igul A A. Cluleos A : A. Coo se h e uplir que A A, teneos que:, por tnto se otiene el siguiente

Más detalles

p m son términos semejantes

p m son términos semejantes Páin dl Colio d Mtmátics d l ENP-UNAM Ocions con monomios olinomios Auto: D. José Mnul Bc Esinos OPERACIONES CON MONOMIOS Y POLINOMIOS UNIDAD IV IV. OPERACIONES CON MONOMIOS Un vil s un lmnto d un ómul,

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

SEPTIEMBRE 2001 INSTRUCCIONES:

SEPTIEMBRE 2001 INSTRUCCIONES: SEPTIEMBRE INSTRUCCIONES El mn psnt os opcions B; l lumno bá lgi un lls contst zonmnt los cuto jcicios qu const ich opción n h. min. OPCIÓN Ejcicio. Clificción máim puntos. Dtmin l cución ctsin l lug gomético

Más detalles

SEPTIEMBRE Tiempo: 90 minutos OPCIÓN A ( ) ( )

SEPTIEMBRE Tiempo: 90 minutos OPCIÓN A ( ) ( ) SEPTIEMRE 5 INSTRUCCIONES El mn psn os opcions ; l lumno bá lgi un sólo un lls solv los cuo jcicios qu cons. No s pmi l uso clculos con cpci psnción gáfic. PUNTUCIÓN L clificción máim c jcicio s inic n

Más detalles

solución para los valores del parámetro que anulan el determinante de la matriz de coeficientes.

solución para los valores del parámetro que anulan el determinante de la matriz de coeficientes. UNIVERSIDDES PÚBLICS DE L COUNIDD DE DRID PRUEBDE CCESO LS ENSEÑNZS UNIVERSITRIS OFICILES DE GRDO Curso - (JUNIO) TERI: TEÁTICS PLICDS LS CIENCIS SOCILES II INSTRUCCIONES Y CRITERIOS GENERLES DE CLIFICCIÓN

Más detalles

Reducción de. Estados equivalentes. Reducción de estados equivalentes. Ejemplo. Tabla de estados Mario Medina C. 1

Reducción de. Estados equivalentes. Reducción de estados equivalentes. Ejemplo. Tabla de estados Mario Medina C. 1 Ruión stos quivlnts Mrio Min. mriomin@u.l Ruión stos quivlnts Proso isño ntrior no sgur l númro mínimo stos Ruión númro stos Ru l númro lip-lops Ru l lógi ominionl Asignión vrils sto tmién pu ruir lógi

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2006 Juan Carlos Alonso Gianonatti PRUEBA A PROBLEMAS

IES Mediterráneo de Málaga Solución Septiembre 2006 Juan Carlos Alonso Gianonatti PRUEBA A PROBLEMAS IES Mditáno d Málg Solución Spti 6 Jun Clos lonso Ginontti PRUEB PROBLEMS PR-- - ) Hálls l lo d p l qu l ct l plno sn pllos ) P clcúls l cución dl plno qu contin s ppndicul ) Los ctos dictos d ct plno

Más detalles

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO RETÍCULO RECÍPROCO A pti el etíulo efinio nteiomente, en el que omo nuo oespone un motivo o llmemos etíulo ieto, es posible efini oto etíulo (que llmemos eípoo) en el ul los tes vetoes funmentles son:

Más detalles

( ) = Junio Problema 3.- (Calificación máxima: 2 puntos)

( ) = Junio Problema 3.- (Calificación máxima: 2 puntos) Modlo. Problm B.- (Cliiión máim puntos) L igur rprsnt l grái d un unión [ ; ] R. Contésts rzondmnt ls prgunts plntds. ) Cuál s l gno d d?. L intgrl dinid rprsnt l ár (on gno) nrrd por l urv, l j y ls rt

Más detalles

POTENCIA BASE EXPONENTE VALOR

POTENCIA BASE EXPONENTE VALOR TEMA POTENCIAS Y RADICALES CONCEPTO DE POTENCIA Un potni s un or rvi sriir un prouto oro por vrios tors iuls. = Los lntos qu onstitun un potni son L s l potni s l núro qu ultiplios por sí iso n st so l.

Más detalles

7. CONDICIÓN DE COPLANARIDAD

7. CONDICIÓN DE COPLANARIDAD UNIVEIDAD DE ALAMANCA MATE DE GEOTECNOLOGÍA CATOGÁFICA EN INGENIEÍA AQUITECTUA 7. CONDICIÓN DE COPLANAIDAD Jvi Góm Lho Dtmnto d Ingnií Ctogái dl Tno Esul Politéni uio d Ávil 7.Condiión d olnidd. INDICE.

Más detalles

UNIBERTSITATERA SARTZEKO PROBAK 2015eko EKAINA

UNIBERTSITATERA SARTZEKO PROBAK 2015eko EKAINA UNIBERTSITATERA SARTZEKO PROBAK 05eko EKAINA MATEMATIKA II PRUEBAS DE ACCESO A LA UNIVERSIDAD JUNIO 05 MATEMÁTICAS II Ateket honek i uke ditu. Hietko ti entun eh diou. E htu teketko oilde koiten kode jte.

Más detalles

Álgebra I Práctica 1 - Conjuntos

Álgebra I Práctica 1 - Conjuntos FEyN - U - Sguno utimst 203 Álg I Páti - onjuntos Si s un suonjunto un onjunto nil V, notmos po l omplmnto spto V.. Do l onjunto = {, 2, 3}, tmin uáls ls siguints imions son vs i) ii) {} iii) {2, } iv)

Más detalles

I n s t i t u t o d e D e s a r r o l l o P r o f e s i o n a l. U l a d i s l a o G á m e z S o l a n o

I n s t i t u t o d e D e s a r r o l l o P r o f e s i o n a l. U l a d i s l a o G á m e z S o l a n o 1 A n t o l o g í a : P r o m o c i ó n y A n i m a c i ó n d e l a l e c t u r a M i n i s t e r i o d e E d u c a c i ó n P ú b l i c a I n s t i t u t o d e D e s a r r o l l o P r o f e s i o n a l.

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -

Más detalles

DETERMINANTES. Resuelve la ecuación propuesta en a) y calcula el valor del determinante propuesto en b):

DETERMINANTES. Resuelve la ecuación propuesta en a) y calcula el valor del determinante propuesto en b): DETERINNTES Ejeiio nº.- Clul el vlo e los siguienes eeminnes: Ejeiio nº.- Resuelve l euión oues en ) lul el vlo el eeminne oueso en ): Ejeiio nº.- ) Resuelve l euión: ) Clul el vlo el eeminne: Ejeiio nº.-

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración Integrión. Cálulo de áres. INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA F() es un primitiv de f() si F ()= f(). Esto se epres sí: f() = F'() = F() L integrión es l operión invers l derivión, de modo que: FUNCIONES

Más detalles

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos lr I 1r. utrimstr 013 Práti 1 - onjuntos Si s un suonjunto un onjunto rrnil V, notrmos por l omplmnto rspto V. Por onvnión, si x s un númro rl positivo, x not l únio númro rl positivo uyo uro s x. 1. Do

Más detalles

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre Cálulo II (5) Smstr - TEMA 3 INTEGRAL IMPROPIA Smstr - Junio Dprtmnto d Mtmáti Aplid U.C.V. F.I.U.C.V. CÁLCULO II (5) Ls nots prsntds ontinuión tinn omo únio fin, l d prstr poyo l studint y filitr su ntndiminto

Más detalles

Hacia la universidad Álgebra lineal

Hacia la universidad Álgebra lineal Hi l universi Álger linel OPCIÓN A Soluionrio. Un mtriz ur A se llm ntisimétri uno su trspuest es igul su opuest. Otén l form generl e un mtriz A e oren que se ntisimétri. Clul A, A y A. Consieremos l

Más detalles

Compuerta i Compuerta i+1 y i. u i q i. Figura 12 Esquema general del sistema a controlar

Compuerta i Compuerta i+1 y i. u i q i. Figura 12 Esquema general del sistema a controlar Cítuo. Moo Mtáto -MODELO MEMÁICO.-SISEM GLOBL E sst oto onto s un n o N tos on N outs N vons ts. E u u s un ósto uo n to us out on nv u s ntn onstnt uno o os N tos st n úto to on s nunt on un vto. E su

Más detalles

B y sus traspuestas,. c) Ninguna de las anteriores. Solución: En este caso se cumple b), pues:

B y sus traspuestas,. c) Ninguna de las anteriores. Solución: En este caso se cumple b), pues: nálisis eáio (eáis Eresriles ) José rí rínez eino ROLES DE TRCES DETERNNTES eguns e io es () Ls ries, y sus rsuess, y, ulen: ) ) ) Ningun e ls neriores Soluión: En ese so se ule ), ues: L resues es ) ()

Más detalles

2. MÉTODO DE COEFICIENTES INDETERMINADOS.

2. MÉTODO DE COEFICIENTES INDETERMINADOS. . MÉTODO DE COEFICIENTES INDETERMINADOS. E un étodo r hllr un olución rticulr d l cución linl colt [], u conit fundntlnt n intuir l for d un olución rticulr. No udn dr rgl n l co d cucion linl con coficint

Más detalles

, donde a y b son números cualesquiera.

, donde a y b son números cualesquiera. Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.

Más detalles

Álgebra I Práctica 1 - Conjuntos, Relaciones y Funciones

Álgebra I Práctica 1 - Conjuntos, Relaciones y Funciones FEyN - U - Vno 204 onjuntos Álg I Páti - onjuntos, Rlions y Funions Si s un suonjunto un onjunto nil V, notmos po l omplmnto spto V.. Do l onjunto = {, 2, 3}, tmin uáls ls siguints imions son vs i) ii)

Más detalles

Tema 13: INTEGRALES DEFINIDAS

Tema 13: INTEGRALES DEFINIDAS Tem : INTEGRALES DEFINIDAS REFLEXIONA Ls gnnis de l ompñí RAMSES S.L. dunte los meses de un ño, en deens de miles de euos, se dn en l siguiente gái: 5 ENE FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DIC Si

Más detalles

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son: 1º. A A

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son: 1º. A A Memáis II Deerminnes PVJ7 Se l mriz 9 8 7 Se l mriz que resul l relizr en ls siguienes rnsformiones: primero se mulipli por sí mism, espués se min e lugr l fil segun l erer finlmene se muliplin oos los

Más detalles

Una variable es un elemento de una fórmula, proposición o algoritmo que puede adquirir o ser sustituido por un valor cualquiera.

Una variable es un elemento de una fórmula, proposición o algoritmo que puede adquirir o ser sustituido por un valor cualquiera. Fcultd d Contduí Administción. UNAM Polinomios Auto: D. José Mnul Bc Esinos MATEMÁTICAS BÁSICAS POLINOMIOS OPERACIONES CON MONOMIOS Un vil s un lmnto d un ómul, oosición o loitmo u ud duii o s sustituido

Más detalles

IES Mediterráneo de Málaga 2009 Juan Carlos Alonso Gianonatti. DISTRITO UNIVERSITARIO DE Madrid MATEMÁTICAS (Mayores de 25 años).

IES Mediterráneo de Málaga 2009 Juan Carlos Alonso Gianonatti. DISTRITO UNIVERSITARIO DE Madrid MATEMÁTICAS (Mayores de 25 años). IES Mditáo d Málg Ju los loso Giotti DISTRITO UNIVERSITRIO DE Mdid MTEMÁTIS (Mos d ños. OPIÓN Ejcicio.- (. tos. S id l cució ticil do ls tics:. tos. Idic ls dios qu d t l ti.. tos. lcul l is -. c. tos.

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

Programación II. Presentación Curso , grupo 216. Programación II. Programación II. Programación II. Iván Cantador

Programación II. Presentación Curso , grupo 216. Programación II. Programación II. Programación II. Iván Cantador Prsntión Curso 0-07, grupo Iván Cntor Dspho: B.8 E-mil: ivn.ntor@um.s Págin w: http://www.ps.um.s/~ntor - trnsprnis ls Mool: https://mool.um.s/ours/viw.php?i=8 - guí ont, punts, jriios y prolms, prátis

Más detalles

( ) ( ) ( ) ( ) BLOQUE A + = + IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti

( ) ( ) ( ) ( ) BLOQUE A + = + IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti IES Mditáno d Málg Solución Junio Jun Clos Alonso Ginontti BLOQUE A CUESTIÓN A..- ) Discut l guint stm d cucions n unción dl pámto [ 5 puntos] ) Rsul l stm cundo s comptil [ punto] λ λ λ Solución 8 Con

Más detalles

( ) [ ( )] ( ) MATEMÁTICAS BÁSICAS PRODUCTOS NOTABLES. a + b se puede obtener multiplicando término a término:

( ) [ ( )] ( ) MATEMÁTICAS BÁSICAS PRODUCTOS NOTABLES. a + b se puede obtener multiplicando término a término: Fult Cotuí Aiitió. UNAM Pouto otl Auto: D. Joé Mul B Eio MATEMÁTICAS BÁSICAS PRODUCTOS NOTABLES CONCEPTO DE PRODUCTO NOTABLE Tto l ultiliió li oo l itéti iu u loito uo o ou l ulto. Si o, it outo lio u

Más detalles

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1.

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1. TRNSRMINES GEMÉTRIS Poyctivi y homogfí Homologí y fini Invsión TEM4 IUJ GEMÉTRI bjtivos y ointcions mtoológics Est Tm tin como objtivos intouci l lumno n los conocimintos poyctivi, homogfí, homologí, fini

Más detalles

Integrales dobles y triples

Integrales dobles y triples Integrles dobles y triples 1 Integrles dobles Integrles triples 3 Cmbios de vrible R: retángulo R = [, b [, d f : R R: mpo eslr e dos vribles. Si f es ontinu en R f x : [, d R y f y : [, b R son funiones

Más detalles

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras:

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras: Deterites DETERMINNTES. DEFINICIÓN. tod tri udrd se le uede her orresoder u úero (deterite uo álulo se uede her de ls siguietes ers:.. DETERMINNTE DE SEGUNDO ORDEN. det Es deir, es el roduto de los eleetos

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluionio Deeinnes CTIVIDDES INICILES.I. us ls eliones de deendeni linel ene ls fils oluns de ls siguienes ies e indi el vlo de su ngo. g() g().ii. Coue ue ls siguienes ies son invess un de l o. Se deeín

Más detalles

Determinantes: un apunte teórico-práctico

Determinantes: un apunte teórico-práctico Deterinntes: un punte teório-prátio Definiión d triz udrd se le soi un núero denoindo deterinnte de. El deterinnte de se denot por o por det(). Cálulo de deterinntes Pr un triz de x el deterinnte es sipleente

Más detalles

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro. MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -

Más detalles

Examen de Introducción a la Investigación de Operaciones Fecha: 14 de Diciembre de 2010

Examen de Introducción a la Investigación de Operaciones Fecha: 14 de Diciembre de 2010 Emn Introuión l Invstigión Oprions Fh: 4 Diimr 00 INDICACIONES Durión l mn: 4 hrs. Esriir ls hojs un solo lo. Numrr ls hojs. Ponr nomr y éul inti n l ángulo suprior rho hoj. Esriir n l primr hoj l totl

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE)

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) UNIVERSIDDES PÚLICS DE L COUNIDD DE DRID PRUET DE CCESO ESTUDIOS UNIVERSITRIOS (LOGSE) Curso 8-9 (Sepiebre) TERI: TEÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN El aluno conesará a los cuaro ejercicios de

Más detalles

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia . Grfos Un grfo s un onjunto puntos y un onjunto líns llms rists o ros, un ls uls un un punto llmo noo o vérti on otro. S rprsntn l onjunto vértis un grfo o G por V G V G = {,,,, El onjunto ros por A G

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

Ejercicio 1. x a. Ejercicio 2.

Ejercicio 1. x a. Ejercicio 2. Sptim 5 - Opción A (Molo 6) Ejcicio. D un función f: R R s s qu f() y qu f (. () [ punto] Dtmin f. () [ 5 puntos] Clcul l á l ión limit po l áfic f, po l j sciss y po ls cts cucions - y. () Aplicno l Tom

Más detalles

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2? ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni

Más detalles

f(t)dt para todo x [a, b].

f(t)dt para todo x [a, b]. ANÁLISIS MATEMÁTICO BÁSICO. EL TEOREMA FUNDAMENTAL DEL CÁLCULO. L integrl lnz todo su poder undo se li on l derivd. Esto ourre en el Teorem Fundmentl del Cálulo. Funiones definids trvés de l integrl. Dd

Más detalles

- S o b r e los m o d e l o s de ge s t i ó n y pri v a t i z a c i o n e s.

- S o b r e los m o d e l o s de ge s t i ó n y pri v a t i z a c i o n e s. ACTO DE SALUD EN VILADECA N S, 4 DE MARZO DE 2010. B u e n a s tar d e s : E s t a m o s aq u í p a r a h a b l a r de sal u d y d e at e n c i ó n sa n i t a r i a pú b l i c a en el B a i x Ll o b r

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO. RELACIONES DIAGRAMAS DE HASSE. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Digrms Hss Un rlión R:A B s orn pril o prilmnt orn si

Más detalles

Nudo Es todo punto de la red en que concurren tres o más conductores.

Nudo Es todo punto de la red en que concurren tres o más conductores. ltos 1 4.12-1 Rgls Kirhho Un iruito, n gnrl, stá ormo por un onjunto rsistnis y gnrors..m. ontos un orm ritrri, mnr qu no simpr s posil sustituir los onjuntos rsistnis por sus quivlnts, y qu no suln str

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 UNIVERSIDADES ÚBLICAS DE LA COMUNIDAD DE MADRID RUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 20-202 MATERIA: TECNOLOGÍA INDUSTRIAL II MODELO INSTRUCCIONES Y CRITERIOS GENERALES

Más detalles

LÓGICA PROPOSICIONAL CLASES DE PROPOSICIONES: INTRODUCCIÓN

LÓGICA PROPOSICIONAL CLASES DE PROPOSICIONES: INTRODUCCIÓN LÓGICA PROPOSICIONAL INTRODUCCIÓN L lógi tui l fom zonminto. E un iilin u utiliz tmin i un gumnto válio, tin liión n too lo mo l ; n l filoofí, tmin i un zonminto válio o no, u un f u tn ifnt inttion;

Más detalles

En un grafo se puede recorrer la información de diferentes maneras para llegar de un punto a otro.

En un grafo se puede recorrer la información de diferentes maneras para llegar de un punto a otro. CAMINOS Y CIRCUITOS En un grfo s pu rorrr l informión ifrnts mnrs pr llgr un punto otro. Cmino Ciruito (Cilo) Ciruito simpl longitu n Cmino simpl longitu n ulquir suni noos n l qu pr son ynts. Es un mino

Más detalles

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CUESTIONES RESUELTS. VECTORES Y MTRICES FUNDMENTOS DE MTEMÁTICS. º GRDO GESTIÓN ERONÚTIC. Se el onjunto e vetores } tl que entones se verifi:. El onjunto M es linelmente inepeniente.. El onjunto M tiene

Más detalles

TEMA 9: DETERMINANTES

TEMA 9: DETERMINANTES más º llo. Ál Lnl TE : DETERNNTES. DETERNNTE DE UN TRZ UDRD. PROPEDDES DE LOS DETERNNTES. ENOR OPLEENTRO Y DJUNTO DE UN ELEENTO DE UN TRZ UDRD. DESRROLLO DE UN DETERNNTE POR LOS ELEENTOS DE UN LÍNE. ENORES

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

José Antonio Galindo. CANTIGAS DE SANTA MARÍA de Alfonso X "el Sabio" 4 Cantigas Armonizadas para Coro mixto "a capella" SATB

José Antonio Galindo. CANTIGAS DE SANTA MARÍA de Alfonso X el Sabio 4 Cantigas Armonizadas para Coro mixto a capella SATB é Antni Glin ANIGA DE ANA MARÍA d Aln X "l i" 4 ng Amnizd xt " cll" A ROA DA ROA ANA MARÍA, RELA DO DÍA O QUE OLA IRGEN LEIXA AN GRAN ODER Ducin md 3' +1'15 (4') +2'45", 2'40" Edición i dl Aut Mdid, 2011

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 ÁLGR (Seleividd ) José Mrí Mríne Medino LGUNOS PROLMS D SLCTVDD PROPUSTOS N Mries deerinnes rgón, junio Deerin el rngo de l ri, que ree oninuión, según los vlores de : ) Deerin, si eise, un ri,, que verifique

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Uni Mtries PÁGINA 7 SOLUCIONES. L resoluión e los sistems puee expresrse e l form siguiente: L segun mtriz proporion l soluión x 5,y 6. L últim mtriz proporion l soluión x, y, z 4. . Vemos que P P. Pr

Más detalles

PLUMAS NÁUTICAS. ALTURA DE COLUMNA (H METROS) CAPACIDAD EN Tn. GH-275

PLUMAS NÁUTICAS. ALTURA DE COLUMNA (H METROS) CAPACIDAD EN Tn. GH-275 PLUS NÁUTIS GH-2 GH-3 N GH ISPONOS UN PLI VRI PÓRTIOS UTOOTOR, QU VN S HST 300 TN. TOOS LLOS S RTRIZN POR SU GRN ROUSTZ, SNILLZ USO, FÁIL NTNIINTO Y NIORILI. GH-0 S UL S L PI L PÓRTIO RQURIO, TOOS LOS

Más detalles

SISTEMA DE COORDENADAS EN EL PLANO

SISTEMA DE COORDENADAS EN EL PLANO Mtemáti Diseño Inustril Coorens en el lno Ing. Avil Ing. Moll SISTEMA DE CRDENADAS EN EL LAN SISTEMA UNIDIMENSINAL Es sio que es posile soir los números reles on los puntos e un ret reípromente. Es lo

Más detalles

Integrales impropias.

Integrales impropias. IX / 8 UNIVERSIDAD SIMON BOLIVAR MA nro-mrzo d 4 Dprtmnto d Mtmátics Purs y Aplicds. Intgrls impropis. Ejrcicios sugridos pr : los tms d ls clss dl 4 y 9 d mrzo d 4. Tms : Otrs forms indtrminds. Intgrls

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II IES STELR BDJOZ Emen Junio e (Espeífio) ntonio engino orho UIVERSIDD DEL PÍS VSO TEÁTIS II TEÁTIS II Tiempo máimo: hor minutos Instruiones: El lumno elegirá un e ls os opiones propuests un e ls utro uestiones

Más detalles

Álgebra I Práctica 1 - Conjuntos, Relaciones y Funciones

Álgebra I Práctica 1 - Conjuntos, Relaciones y Funciones FEyN - U - uso Vno 206 onjuntos Álg I Páti - onjuntos, Rlions y Funions Si s un suonjunto un onjunto nil V, notmos po l omplmnto spto V.. Do l onjunto = {, 2, 3}, tmin uáls ls siguints imions son vs i)

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTAS D CUACIONS. Resolver los siguientes sistems de dos euiones lineles on dos inógnits. Se puede resolver por ulquier método, pero deido que es fáil despejr l de l primer euión, lo resuelvo por sustituión.

Más detalles

Ecuaciones de Poisson y Laplace

Ecuaciones de Poisson y Laplace Elctc y Mgntsmo / Elctostátc Dfncón Los conuctos n lctostátc. mpo un cg puntul. plccons l Ly Guss Intgls supposcón. Potncl lctostátco Dfncón Intptcón. Intgls supposcón. Ecucons Posson y Lplc. oncons Intfs.oncons

Más detalles

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A IES Medieáneo de Málg Soluión Junio Jun Clos lonso Ginoni OPCIÓN..- Clul l se l lu del iángulo isóseles de peímeo áe máim h Máimo. d d u u h u Si d d.h h IES Medieáneo de Málg Soluión Junio Jun Clos lonso

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2015 Juan Carlos Alonso Gianonatti OPCIÓN A

I.E.S. Mediterráneo de Málaga Junio 2015 Juan Carlos Alonso Gianonatti OPCIÓN A I.E.. Mdiáno d Málg Junio Jun Clo lono Ginoni OPCIÓN.- Conido l unción dinid n l inlo [ ]. Din l cución d l c ngn l cu qu pll l c qu p po lo puno P( Q(. ( puno..- Clcul l ingl indinid iguin d d ( puno.

Más detalles

Introducción a la dinámica Segunda Ley de Newton

Introducción a la dinámica Segunda Ley de Newton noduión l dinái Seund e de Newon Objeio Deeinión de l eleión de un óil io usndo diess énis eeienles on el disosiio indido esqueáiene en l Fiu, que inlue un ooineuo edi el deslzieno en unión del ieo. Esudio

Más detalles

b-h s:= )EE F "fif E(e )kq r 7: 60 su) ) { ; ;l ec_ .A nf ;c"t {d<r \-{ o+ qtrc s;.., Yts f F{ q )'6 =O (U LU o- )) $fi 3 -tue ah ;.

b-h s:= )EE F fif E(e )kq r 7: 60 su) ) { ; ;l ec_ .A nf ;ct {d<r \-{ o+ qtrc s;.., Yts f F{ q )'6 =O (U LU o- )) $fi 3 -tue ah ;. l l ll l l,l " l l '( i '( (. j /, 1 l l.l l *l.t..., T 0!. ^. L \ \ \.>. i. L \ L L 1 ( i > ' K i!! : l ( 1 bh Q,Lj 5 T QD 1..,4 ' 0 0 L > L L? 4 u l! i5 0, ul l l l i' l (l (l > * Y { '* {! : ( l } D

Más detalles

Minimización por el método de QUINE-McCLUSKEY

Minimización por el método de QUINE-McCLUSKEY Minimizión por l métoo QUINE-MCLUSKEY S tinn os forms srrollr l métoo Quin-MClusky: on un ominión inri y un ominión iml. Ams forms s srrollrán mint os jmplos, rsptivmnt. Cominión BINARIA. S l funión: F(A,

Más detalles

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras.

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras. Alonso Fernánez Glián TEMA FRACCIONES Ls friones permiten trjr e mner simóli on nties no enters.. CONCEPTO DE FRACCIÓN Un frión es un expresión e l form numeror enominor ( 0) Represent el resulto e iviir

Más detalles

OPCIÓN A. c) (1 punto)

OPCIÓN A. c) (1 punto) UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OICILES DE GRDO Curso / MTERI MTEMTICS II. se de Modlidd OPCIÓN Ejercicio. Clificció ái putos. Sbiedo que, utilizdo ls

Más detalles

206 MÉTODOS NUMÉRICOS

206 MÉTODOS NUMÉRICOS 6 MÉTODOS UMÉRICOS.. Alguos hhos mortts r ls rs vs wto: ls sguts so lgus ls ros más mortts ls rs vs wto: (. S s u rmutó K ) ( ) K tos [ K ] [ K ] CASO PARTICULAR: [ ] [ ] ( Est ro s osu l u l olomo trolt

Más detalles

Modelo 3 Opción A. , + ) Decreciente: (0, )) = ( , f(

Modelo 3 Opción A. , + ) Decreciente: (0, )) = ( , f( Modlo Opción A Ejrcicio º Sa f : (, ) R la función dfinida por f() Ln() (Ln dnota la función logarito npriano). (a) [ 5 puntos] Dtrina los intrvalos d crciinto d dcrciinto los tros rlativos d f (puntos

Más detalles

Determinantes. Ejercicio nº 1.-

Determinantes. Ejercicio nº 1.- Deerminnes Ejeriio nº.- Hll el vlor e los siguienes eerminnes. En el pro ), lul, emás, los posiles vlores e pr que el eerminne se ero: Ejeriio nº.- ) Clul el vlor el eerminne: ) Resuelve l euión: Ejeriio

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

SECOS EN BAJA TENSIÓN PARA USO GENERAL

SECOS EN BAJA TENSIÓN PARA USO GENERAL SEOS EN J TENSIÓN PR USO GENERL TRNSMGNE s un mprs i l lorión Trnsformors pr l inustri ltróni: trnsformors uio, pulso y ontrol, Trnsformors sos j tnsión, lstos pr iluminión y utotrnsformors pr quipos protión

Más detalles

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125 Friones CONTENIDOS PREVIOS Reueres lo que es un frión y uáles son sus términos. Lo neesitrás omo punto e prti pr mplir tus onoimientos. Los términos e un frión son el NUMERADOR y el DENOMINADOR. Numeror

Más detalles

FACTORIZACIÓN. Capítulo TRILCE

FACTORIZACIÓN. Capítulo TRILCE TRILCE Cpítulo FACTORIZACIÓN Ftorizr un polinomio s somponrlo n os o más polinomios llmos ftors, tl moo qu, l multiplirlos, s otng l polinomio originl. Ejmplo : y ( y)( y) Ants ftorizr y ftorizo ftors

Más detalles

Juegos para la clase de español. Superdrago. Carolina Caparrós Charlie Burnham

Juegos para la clase de español. Superdrago. Carolina Caparrós Charlie Burnham Jugo o Sugo 1 Coin Có Chi Bunhm 1. Enunt b Eib 10 númo ágin ibo umno n tozo y iz t, o jmo: A, J, R, C, S, E, T, H, O, L. Póng o o n o quo monton. Divi o umno o j o n guo quo. Invit uno o og un númo y oto,

Más detalles

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest

Más detalles

Una ecuación tiene dos miembros 3x 2 + 5x = 3 (x-3) + 3

Una ecuación tiene dos miembros 3x 2 + 5x = 3 (x-3) + 3 TEMA : ECUACIONES CONCEPTO DE ECUACIÓN Un uión s un igul lgri qu solo s umpl pr irtos vlors trminos. A stos vlors qu hn irt l uión s ls llm soluions. 0 tin omo soluión X.. Un igul lgri qu s váli pr ulquir

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas Deprtmento e Mtemátis PROBLEMAS DE TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS. 1º Un señl e rreter ini que l peniente e ese trmo es el 1%, lo que quiere eir que por metros que reorre en horizontl siene 1

Más detalles